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Abstract With the rapid development of computing technology, three-dimensional (3D) human body

models and their dynamic motions are widely used in the digital entertainment industry. Human perfor-

mance mainly involves human body shapes and motions. Key research problems include how to capture

and analyze static geometric appearance and dynamic movement of human bodies, and how to simulate

human body motions with physical effects. In this survey, according to main research directions of human
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body performance capture and animation, we summarize recent advances in key research topics, namely

human body surface reconstruction, motion capture and synthesis, as well as physics-based motion sim-

ulation, and further discuss future research problems and directions. We hope this will be helpful for

readers to have a comprehensive understanding of human performance capture and animation.

Keywords human surface reconstruction, body motion capture, motion synthesis, physics based motion

simulation

1 Introduction

Ever since the Renaissance, precise mod-

eling of human bodies has become an impor-

tant subject explored by both the scientists

and artists alike. Da Vinci’s drawing Vitru-

vius Man sketches the ideal proportion of a

man who lived in Italy in the fifteenth century.

Michelangelo’s sculpture David accurately por-

trayed the Jewish hero David King. In modern

times, with the rapid development of comput-

ing technology, reconstruction and synthesis of

human appearance and motion play an impor-

tant role in film production, animation, digital

entertainment and other industries.

A major goal of human performance cap-

ture and animation is to reconstruct and sim-

ulate realistic human behaviors, which benefits

many downstream applications. For example,

this will help enhance the sense of immersion

for virtual reality. However, it is a challenging

problem, because human performance includes

diverse shapes (due to variation of individuals

and poses) and complex motions. Moreover,

a well-known psychological observation known

as “uncanny valley” states that high standard

of realism is required for human bodies to be

perceived as real. To capture the performance

accurately, a series of devices have been devel-

oped. For example, laser scanners are used to

capture and reconstruct the geometry of hu-

man shape, and optical sensor based motion

capture equipment such as VICON is used to

track human motions.

In the virtual digital world, shape and mo-

tion are the two major aspects essential to char-

acterize a human body. The shape of a hu-

man body is typically represented as a three-

dimensional mesh and the motion is usually

represented by a deforming skeleton. One way

of obtaining digital representation of dynamic

human bodies is to capture them in real world.

The research topics include human shape re-

construction and motion capture. This can of-

ten be expensive and time-consuming, so an al-

ternative approach considers reusing captured

motion data to synthesize new motions by an-
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alyzing existing motions, to satisfy diverse en-

vironmental constraints. The motion of hu-

mans obeys physical laws, so another direction

of motion synthesis is by simulation. In order

to simulate realistic human motions, significant

research effort has been put on physics based

human body simulation including forward dy-

namics and inverse dynamics.

In the following, we first overview research

on human surface reconstruction, and body

motion capture and synthesis in Section 2 and

Section 3, respectively. In Section 4, we sum-

marize methods in physics based shape defor-

mation for human motion modeling. And fi-

nally in Section 5, we draw conclusions of this

survey.

2 Human Body Surface Reconstruction

Human body modeling refers to building a

mathematical model for a human body, which

is suitable for computer representation and pro-

cessing. Human body modeling is the basis of

handling, operation and analysis of the virtual

human body in the digital environment. Ob-

taining high quality geometric models is often

the first step towards realistic animation.

Existing methods for human body mod-

eling can be divided into two categories:

modeling without prior data, which recon-

structs human models from acquired raw three-

dimensional (3D) data (including Kinect-type

depth images, and depth images obtained from

structured light scanning, laser scanning, Li-

DAR scanning, etc.), and modeling based on

prior data, which uses human body databases

as prior knowledge in the form of embedded

skeletons, template models, parametric models,

etc.

2.1 Human Body Modeling from Raw

3D Data

Different 3D data acquisition techniques

can be used to obtain raw 3D data for human

body modeling. In the following, we will dis-

cuss four typical acquisition techniques, namely

laser scanning, photometric stereo, using stan-

dard video input, and using depth cameras.

The data obtained using each technique has

its unique characteristics, leading to the needs

of developing different human body modeling

techniques.

2.1.1 Human Body Modeling by 3D Laser

Scanning

3D laser scanning technology is character-

ized by its capability of capturing 3D data with

high precision. When applied to 3D human

body modeling, it can be used to build 3D mod-

els of high accuracy.

The 3D laser scanning technology is rel-
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atively mature and widely applied. It plays

an important role in building 3D human body

datasets for those methods exploiting prior

knowledge (see Section 2.2). For example, the

CAESER (Civilian American and European

Surface Anthropometry Resource) project [1]

utilizes the Cyberware WB4 laser scanner pro-

duced by the Cyberware Inc. in America to col-

lect American human body data. Meanwhile,

it utilizes Vitronic laser scanner manufactured

by German company Vitronic to obtain Euro-

pean human body data.

Wang et al. [2] utilized unorganized point

cloud data collected by a 3D laser scanner to

reconstruct human body models. By exploit-

ing human body structure and semantic fea-

tures, their method is able to reconstruct hu-

man body models with high topological fidelity

and fine details.

Although 3D laser scanners have the ad-

vantages of high precision, it also has draw-

backs such as being expensive, large and sensi-

tive to calibration errors.

2.1.2 Human Body Modeling using Photomet-

ric Stereo

Photometric stereoscopic modeling is a

classic problem in computer vision, which was

first proposed by Woodham [3]. Photometric

stereo is a branch of SfS (Shape from Shading)

method. The major difference from standard

SfS is that photometric methods use multiple

images to restore the 3D structure of the ob-

ject’s surface. An important research direction

is to combine photometric stereo with other

techniques, such as optical flow, stereo match-

ing.

Vlasic et al. [4] utilized a multi-view video

taken at a light stage to capture the detailed

geometry of a moving human body using the

photometric stereo method. All of the meth-

ods above require specific light sources to work,

which is a major limitation. To address this,

Wu et al. [5] proposed a general method to

estimate high-quality surface details in uncon-

trolled lighting conditions by analyzing multi-

view video sequences captured in a common

environment, along with spatio-temporal maxi-

mum a posteriori (MAP) probability inference.

Existing methods which can be approx-

imated using a Lambertian surface reflection

model either require highly controlled capture

environments, or assume the shape to be re-

constructed. Further research with more gen-

eral reflection models in less controlled environ-

ments is needed to expand its practical use and

improve the reconstruction quality for general

non-Lambertian surfaces.
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2.1.3 Human Body Modeling using Video

Traditional 3D scanning technology (such

as laser scanning) requires complex equipment

and is very time consuming. Consumer-level

3D sensors (such as Kinect) provides a low-

cost alternative. However, the quality of gener-

ated data is substantially compromised for out-

door scenes. In essence, this is because they

are active scanning technology, which is easily

disturbed by the outdoor light. On the con-

trary, video-based methods are passive: they

only need a normal video camera and are suit-

able for outdoor reconstruction of human bod-

ies. Moreover, such methods are flexible and

have lower requirements for the scanning envi-

ronments compared with depth cameras, so in

recent years human body reconstruction based

on video or image sequences has become a pop-

ular research topic.

Stoll et al. [6] presented a comprehensive

approach to reconstructing human models in

video, which includes a physics-based garment

model that enables real-time rendering of high-

quality human body models in the video. Re-

cently, Zhu et al. [7] have proposed to use a

single ordinary camera in the outdoor environ-

ment to shoot videos for human reconstruction

which is easy to deploy. However, the method

cannot cope with large-scale motions, and re-

lies on the success of SfM (Structure from Mo-

tion) and multi-view segmentation algorithms

to work effectively.

Reconstruction of dynamic 3D humans

from 2D video is an inherently ill-posed prob-

lem. Despite significant progress, it still re-

mains challenging to capture detailed geometry

and complex motions, and is thus worth further

research.

2.1.4 Human Body Modeling by Depth Cam-

eras

Since 2009, the research in reconstruction

of human body has made great progress with

the advent of depth cameras (e.g., Kinect).

Compared with traditional 3D scanners, it is

not only much cheaper but also capable of cap-

turing dynamic color and depth (RGB-D) data.

The emergence of Kinect in the field of com-

puter graphics and computer vision research is

a remarkable achievement, making it possible

to develop cheap and rapid methods to acquire

3D point clouds. However, Kinect-type depth

cameras also have disadvantages. First, the

data captured is often incomplete and noisy.

Second, the resolution of captured images is not

high enough. Finally, the range that a Kinect

can scan is limited. Thus a lot of research has

been carried out to address them in order to

obtain satisfactory 3D reconstruction.
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Reconstruction with a single Kinect.

Single Kinect based systems are easy to set

up. However, depth images captured by a sin-

gle Kinect are of low quality. To address this

problem, several methods have been proposed.

Newcombe et al. [8] proposed a system named

KinectFusion that can acquire complex mod-

els accurately in real time with only a single

Kinect. The basic idea is to merge depth data

from multiple views automatically to recon-

struct a high quality model. Nevertheless, it is

only able to scan static human bodies since it

does not adopt non-rigid registration. To make

single Kinect systems more user friendly, Li et

al. [9] proposed a modeling method that lets

ordinary people acquire their self-portrait with

a single Kinect. This method does not need a

turntable or calibration, so it is easier to setup.

However, it requires the subject to be in the

same pose after turning. Moreover, the rotat-

ing motor of Kinect is required in the system,

so this method is not applicable to those depth

cameras without a rotating motor.

Recent work considers reconstructing dy-

namic human bodies using a single Kinect.

Newcombe et al. [10] proposed a real-time sys-

tem called DynamicFusion to reconstruct and

track non-rigid scenes. This system is mainly

used for non-rigid reconstruction from local

perspectives. For dynamic motions that are

fast moving or form closed loops, since the

method registers point cloud sequences frame

by frame, error accumulation can lead to the

drifting problem. Dou et al. [11] addressed

the drifting problem by error dispersion, and

adopted cluster adjustment to improve the re-

construction results of error dispersion.

Reconstruction with multiple Kinects.

With a single Kinect, it can only capture

RGB-D data from a single viewpoint at a spe-

cific time, which unavoidably has the occlusion

problem. When a sequence of scans are taken,

even if the subject is trying to stand still, some

minor movement is often unavoidable. As a re-

sult, non-rigid alignment is usually needed to

capture high quality human bodies. To cap-

ture the full human body, the Kinect sensor

also needs to be sufficiently far away from the

subject, resulting in low depth resolution. To

address such limitations, systems with multiple

Kinects have been developed.

However, multi-Kinect systems also have

problems: as an active acquisition technique,

Kinects interfere with each other in the over-

lapping areas when several Kinects are active

simultaneously. To acquire satisfactory results

through multiple Kinects, research works have

been done to address such problems. But-

ler et al. [12] developed a simple and effective



Xia SH,Gao L,Lai YK et al.: A Survey on Human Performance Capture and Animation 7

method to reduce interference among Kinects

by mechanical augmentation, i.e. using vibra-

tion motors to blur the infrared patterns. Al-

ternatively, Tong et al. [13] proposed a scanning

system (see Figure 1) to capture static hu-

man body using three Kinects and a turntable.

To avoid interference, they use two Kinects to

scan the upper and lower parts of frontal hu-

man body respectively and the third Kinect to

scan the middle part of human body from be-

hind, which avoids overlaps between scanning

areas. Compared with using a single Kinect,

the quality of depth data acquired by this sys-

tem is higher because the Kinects are placed

closer to the human body. Lin et al. [14] de-

veloped a system for fast capture of 3D human

body with desired accuracy by optimizing the

configuration and locations of RGB-D cameras.

Their final system uses 16 Kinect sensors to

capture a human body within one second. To

reduce the requirement for system setup and

calibration, Ye et al. [15] proposed an algo-

rithm which can be used for marker-less perfor-

mance capture of interactive humans with only

three hand-held Kinects. Although high qual-

ity depth data can be acquired, the method is

not suitable for scenes with uncontrolled light-

ing.

Figure 1. Tong’s multi-Kinect human body

capture system [13].

In summary, the current 3D human cap-

ture systems still need to be improved; e.g.,

to capture complex human motions, to im-

prove the accuracy of 3D reconstruction, to ob-

tain more detailed information such as material

properties, and to reduce the setup effort. One

way to achieve these is to use prior data, as will

be discussed in the following subsection.

2.2 Human Body Modeling using Prior

Data

Previously mentioned 3D human model-

ing techniques all have their disadvantages such

as limited availability, high cost, low qual-

ity. Since human bodies generally have similar

shapes and dynamics, it is possible to further

improve acquisition quality and reduce acqui-

sition restrictions by exploiting prior data. To

achieve this, it is essential to have high quality
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3D human body databases.

2.2.1 CAESAR database

The first large-scale 3D human body

database is CAESAR⋆(the Civilian Ameri-

can and European Surface Anthropometry Re-

source database) [1]. It consists of 2400 Ameri-

can and Canadian and 2000 European civilians

aged 18-65. However, it does not take poses

into account. Robinette et al. [1] also propose

a learning approach based on PCA (Princi-

pal Component Analysis) to guide a morphing

model. However, their model does not involve

pose changes. With a similar purposed as PCA,

Wang et al. [16] proposed a spectral animation

compression method to efficiently compress dy-

namic animations under the assumption that

the deformation is continuous.

2.2.2 SCAPE

To model pose deformation, Stanford Uni-

versity proposed SCAPE (Shape Completion

and Animation of People) [17], a data-driven

human body modeling database in 2005. It

records 72 standard postures for each individ-

ual. In this model, Anguelov et al. built a pa-

rameter function with uniform standard data

of human body. The method considers the

body subspace as characterized by the pose di-

mension and the shape dimension during the

process of generating a specific human shape.

3D human body shapes produced based on the

SCAPE model not only have complete, realis-

tic 3D human body meshes, but can also ef-

fectively present details in different poses. The

parameterized human body model of SCAPE

includes shape deformation and pose deforma-

tion. By adjusting corresponding parameters in

the two dimensions of pose and shape, it builds

reasonable instances of human body models.

Since the SCAPE was proposed, many re-

search findings have been reported and they

can be roughly divided into two categories, us-

ing SCAPE for modeling and improvement and

extension to SCAPE.

Using SCAPE for modeling. Anguelov et

al. [17] proposed a data-driven mathematical

model which can build uniform parameters of

standard human body data based on SCAPE.

The model can simulate the pose and shape

in the human body space, and generate 3D

mesh models of individual instances by alter-

ing parameters. Weiss et al. [18] reconstructed

a model of human body by fitting a parameter-

ized human model to the depth data captured

by a Kinect. However this method can only

capture static human models wearing tights.

Bogo et al. [19] used a parameterized human

⋆ http://store.sae.org/caesar/
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body model to a monocular depth sequence of

moving human body to estimate the 3D sur-

face. These models learn from a 3D model

library of human dressing tight clothes, thus

they cannot be applied to modeling subjects

dressing loose clothes. They also cannot gen-

erate geometric details of personalized human

body, such as face, hairstyle and apparel. The

methods [17, 19, 20, 21] first learn a param-

eterized model from the training library, and

produce the output by fitting the model in the

input data. However, these methods cannot re-

construct 3D models of human body out of the

database.

Recent work considers improving recon-

struction efficiency and quality using SCAPE

and a single Kinect. Cheng et al. [22] pro-

pose a method for parametric reconstruction

of human body. To improve efficiency, their

method uses a sparse set of key points for

modeling. The success of the method how-

ever depends on correctly identifying such key-

points. Zeng et al. [23] utilize a depth data

sequence to reconstruct approximate rigid ob-

jects, but again it cannot address dynamic ob-

jects. Chen et al. [24] use a single depth cam-

era and an SCAPE model to capture dynamic

human bodies by decoupling shape and pose.

Their method first obtains shape parameters of

the subject with the help of a model database

and then uses linear blending skinning (LBS) to

reconstruct the animation of the human body.

SCAPE improvement. To address the lim-

itations of the SCAPE model, further re-

search augments it with additional models

for physics-based simulation of clothing [25]

and for breathing [26]. Further research con-

siders generating 3D human shape and pose

from point cloud data [21], multiple depth im-

ages [18] and video streams [20, 27, 28]. How-

ever, all these works have a common disad-

vantage that their calculation time is too long

to meet the need of generating a model in

real time, which is fundamentally caused by

non-linearity in the SCAPE model for non-

rigid deformation. Chen et al. [20] proposed a

tensor-based 3D model (TenBo model). Com-

pared with the popular SCAPE model which

separates the shape and pose deformations,

their approach simultaneously models shape

and pose deformations in a systematic manner.

Ponsmoll et al. [29] proposed a Dyna model,

which is extended from SCAPE and can model

dynamic humans. Inspired by SCAPE, Zuffi

et al. [30] proposed the stitched puppet (SP)

model, a new part-based human body model

which is more efficient and flexible.
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2.2.3 Datasets from MPI (Max Planck Insti-

tute)

Hasler et al. and Bogo et al. intro-

duced datasets [21] and FAUST (Fine Align-

ment Using Scan Texture) [31] respectively.

Dataset [21] was captured by a laser scanner,

consisting of 114 subjects with every subject

having 35 different poses. However, the scan-

ning quality is not high. Data of human bodies

in the FAUST dataset is lifelike, because it uti-

lizes a 3D multi-stereo system to acquire data.

FAUST consists of 10 subjects and each sub-

ject has 30 poses. Recently, Bogo et al. [32]

released a dynamic FAUST dataset for model-

ing and registering human bodies in motion.

In summary, the availability of 3D hu-

man body databases provides opportunities to

develop more effective 3D human acquisition

techniques. Among the currently available

databases, CAESAR [1] consists of the largest

number of subjects, SCAPE [17] contains most

poses, and FAUST [31] has geometric models

of the highest precision.

Recent research on human reconstruction

has benefited significantly from the develop-

ment of 3D human body databases. In the fu-

ture, it would further contribute to technology

advances by building and exploiting high qual-

ity dynamic human databases with detailed ge-

ometry and material properties.

3 Human Body Motion Capture & Syn-

thesis

To produce realistic animation, human

body motion is essentially important. This sec-

tion overviews the techniques for capture and

synthesis of human body motions. The ulti-

mate aim of human body motion capture tech-

nology is to capture the motion of human body

at low cost and with high efficiency and preci-

sion. Equipment for human body motion cap-

ture based on optical sensors is widely used in

the industry, such as Vicon and OpticalTrack.

From the research perspective, how to recon-

struct human body motion by monocular or

multiple depth or color cameras is a hotspot. In

addition to capturing human body motion, hu-

man body motion synthesis techniques are also

proposed to generate new motion data from the

existing data of realistic human body motions.

Methods can be categorized into data-driven,

physics-based and stylized human body motion

synthesis.

3.1 Human Body Motion Capture

Human body motion capture uses physi-

cal or image information obtained by sensors

to reconstruct the joints of the human body.

According to the equipment used in the mo-

tion capture, it is categorized as sensor-based

human body motion capture and image-based
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human body motion capture.

3.1.1 Sensor-based Human Body Motion Cap-

ture

For human body motion capture, com-

monly used physical sensors include pressure

sensors, magnetometer sensors, inertial sen-

sors, acoustic sensors and optical sensors. The

movement information of human is obtained by

the sensors worn on the human body [33, 34].

Among all the sensors, motion capture systems

based on optical sensors are most widely used.

Such systems use a few infrared cameras to

capture the human body motion in different

viewpoints simultaneously, and use the loca-

tions of the markers in different infrared images

to recover the positions of human body joints.

Such equipment is precise but expensive, so it’s

often used in film and animation production.

CMU⋆⋆ (Carnegie Mellon University)’s human

body motion database is captured by an op-

tical sensor-based motion capture device. To

facilitate storage and transmission of motion

capture data which has different characteristics

from images and videos, Hou et al. [35] propose

a method that splits a motion sequence into

clips and uses a dedicated transform to encode

motion in the frequency domain with substan-

tially reduced dependency.

3.1.2 Image-based Human Body Motion Cap-

ture

Among human body posture capture tech-

niques, capturing human body motion based

on images is one of the most popular meth-

ods. Based on the type of images, the capture

methods can be divided into color image based

and depth image based methods. Based on the

number of cameras, the capture methods can

also be divided into single-camera and multi-

camera methods.

Motion capture using multi-camera color

image data. In the process of human body

motion capture from images, occlusion is a se-

rious problem, resulting in ambiguity of pos-

ture reconstruction. To alleviate this problem,

multiple cameras are often used to capture im-

age data of human body motion from differ-

ent viewpoints. Human body motion is recon-

structed using features extracted form images,

such as silhouette, texture and edges.

The SfS method, namely visual hull con-

struction method for human body motion

tracking treats the human body as an articu-

lated model and uses a rigid object to approx-

imate each human limb. In the first step it

segments the silhouette to a few parts corre-

sponding to the parts of the articulated model

⋆⋆ http://mocap.cs.cmu.edu/
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and assigns six degrees of freedom to each part.

In the second step the motion of each part of

the articulated model is estimated respectively.

The positions of articulation points are the lo-

cation of human joints. Vlasic et al. [36] used a

similar method to reconstruct the skeleton and

shape of a human body, and further strengthen

the details of the shape by silhouettes. How-

ever, the method requires manually correcting

the pose of human body and does not make the

most of the human body’s texture.

The above methods can only reconstruct

motion of a single human subject in the scene at

a time. Liu et al. [37] proposed a method that

simultaneously reconstruct shapes and poses of

multiple people. The method segments individ-

ual subjects from the image, and classifies the

foreground pixels by a maximum a posteriori

(MAP) probability method to get human body

regions of different people.

Traditional multi-camera systems require

hardware synchronization with fixed cameras.

Hesler et al. [38] proposed a method to recon-

struct the human pose and shape from videos

captured by unsynchronized hand-held video

cameras. They use SfM to recover a static

background and camera positions, and audio

streams to assist synchronization. The meth-

ods described above require multiple cameras

recording from different viewpoints, so they are

not suitable for large scenes or outdoor use. To

address this, Shiratori et al. [39] used 16 Go-

Pro cameras bound onto the human body to

estimate human poses using SfM.

In order to reduce the number of cam-

eras for human body motion capture, Elhayek

et al. [40] proposed a method that combines

image-based joint detection and model-based

generative motion tracking to recover human

body motion with fewer cameras.

To develop and evaluate methods of hu-

man capture, multiple databases have been

proposed. Human3.6M [41] database provided

color, depth and posture data of human in dif-

ferent genders and actions. HumanEva [42]

provided a database for evaluating multi-view

human tracking algorithms.

Motion capture using monocular color

image data. It is a very challenging prob-

lem to recover a human body’s 3D posture from

a single 2D image. This is not only because

of the occlusion and deformation existing in a

single image, but also because of the ambigu-

ity of the posture. Methods using monocular

color image data can be divided into interac-

tive methods involving manual assistance and

automatic statistical learning based methods.

Early methods mostly require manual in-

teractions to label the initial position of the
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body’s joints on the image. This is accept-

able for some applications, but not others. Au-

tomatic methods to obtain human posture are

demanded. Dantone et al. [43] used a regression

method involving two layers of random forests

to recover human posture from a single picture.

First, they use a classifier to obtain separated

parts of the human body, and in the second

stage, they obtain the human body’s joint po-

sitions.

With the widespread application of convo-

lutional neural networks (CNNs), a lot of meth-

ods apply CNNs to estimate human pose are

proposed. They reconstruct 3D poses of the

human body from video sequences, taking into

account both spatial and temporal information.

Wei et al. [44] used CPMs (Convolutional Pose

Machines) which are implicit spatial models to

estimate pose by a single image.

In addition, Wei et al. [45] used mechan-

ical principles to constrain the solution space

of human poses, which is able to simultane-

ously obtain pose and joint torque information.

Meanwhile, Insafutdinov et al. [46] developed

a methods to estimate motions of multiple in-

dividuals in an image. In order to compare

different algorithms, Andriluka et al. [47] pro-

posed MPII Human Poses dataset, which con-

tains 40,000 images with human joint locations

marked.

3.1.3 Depth Image based Human Body Motion

Capture

Compared to color images, depth images

provide useful spatial information. We divide

the depth image based methods into methods

based on monocular depth images and multiple

depth images.

Motion capture using monocular depth

data. A single depth image can provide more

spatial information than a color image. Meth-

ods to capture human body motion from a sin-

gle depth image can be categorized into dis-

criminative methods, generative methods and

hybrid methods.

Discriminative methods are also called

model-free methods. Such methods do not con-

sider the prior information and employ clas-

sifiers to identify feature points or pixels for

human pose recovery. Baak et al. [48] used

boosted classifiers with local features to extract

human body from depth images. It obtains

interest points and local information from a

depth image and classifies the local informa-

tion using classifiers. Doing so allows detecting

human joints from a single depth image. Due

to the use of classifiers, the algorithm is effi-

cient and achieves real-time performance. Ye

et al. [49] utilized a data-driven method to re-

store the posture information of a human body
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from a depth map. For a given depth image,

they search for related gestures from a human

body model database and further optimize the

pose according to the current gesture. Liu et

al. [50] used the Gaussian Process model as a

prior to recover more precise postures.

Generative methods are also called model-

based methods. They need to build an a pri-

ori human model. The a priori human model

can be based on a skeleton-driven 3D human

body scan model or an approximate chained 3D

cylinder model. Pose estimation involves two

stages, namely modeling and estimation. The

process of modeling is to construct the likeli-

hood equation between the pose and captured

data by considering information such as cam-

era matrices, image features, 3D human body

models, matching equations, and/or physical

constraints.

Hybrid methods combine the advantages

of discriminative methods and generative

methods. Wei at al. [51] formulated the reg-

istration problem as a maximum a posteriori

probability (MAP) problem. The algorithm

uses both registration and feature point detec-

tion. Registration can effectively reduce the

impact of occlusion and improve accuracy and

robustness. They further use GPU (Graphic

Processing Unit) acceleration to achieve real-

time performance.

Motion capture using multiple depth

cameras. The occlusion is also a problem

for techniques with a monocular depth camera.

Methods have been developed to use multiple

depth cameras to address this. Such meth-

ods require calculating spatial position rela-

tionships between depth cameras. Ye et al. [15]

proposed an approach that uses three hand-

held Kinects to collect depth data from differ-

ent viewpoints. The method is able to capture

the pose and shape of multiple people in the

scene, and at the same time obtain the camera

parameters.

3.1.4 Human Body Motion Capture with Hy-

brid Sensors

Image-based human body motion capture

is often influenced by environment and lighting.

Self-occlusion and pose ambiguity can also lead

to pose reconstruction errors. In order to im-

prove the robustness of the system, methods

combining a variety of sensors are proposed.
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Figure 2. Hybrid human body motion capture

by combining depth data and foot pressure sen-

sors [52].

Zhang et al. [52] developed a system that

combines three depth cameras and foot pres-

sure sensors to obtain human body motion

data, and at the same time reconstruct both

the pose and kinetic information (see Figure 2

for an overview of the system). Von Marcard

et al. [53] used a color camera and five inertial

sensors. The camera data is used to eliminate

inertia sensor offsets.

3.2 Human Body Motion Synthesis

Capturing human motion directly is ex-

pensive and often infeasible. Motion synthesis

aims to generate new motion sequences from

existing ones. Realistic, vivid human body

motions are more likely to provide the users

with immersive feeling, and make them res-

onate. However, human visual perception is

very sensitive to even minor distortion of hu-

man motions, so how to generate high qual-

ity human body motion sequences is an ac-

tive research direction. Current human motion

synthesis methods are mainly composed of the

following three types: (1) data-driven human

body motion synthesis, (2) physics-based hu-

man body motion synthesis, and (3) human

body motion style synthesis. We will discuss

physics-based human body motion synthesis in

detail in Section 4. Data-driven human body

motion synthesis can be further divided into

the following four major types: (1a) motion

graph, (1b) motion editing, (1c) motion inter-

polation, and (1d) statistical motion synthesis.

3.2.1 Motion Graphs

The motion graph based methods divide

motion data in the database into several differ-

ent fragments and reassemble them to generate

new motion sequences that do not exist in the

original database. Unlike other methods, the

motion graph based methods can be applied

not only to the whole motion sequences [54, 55]

but also partial body such as a limb [56]. When

applying such methods to the whole motion se-

quence, the motion sequence is split into sev-

eral sections corresponding to poses. Then

these poses are reassembled to produce new

motion sequences. When applying the meth-

ods to a limb, the limb movement is split

and reassembled to get new motion sequences.

However, the motion graph based methods are
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also restricted by the motion sequences in the

database. Since it does not actually change the

motion data in the database, it cannot generate

novel motions beyond those in the database.

3.2.2 Motion Editing

Another type of techniques to synthesize

new motions is motion editing. Through edit-

ing key frames of a given motion sequence, mo-

tion editing based methods modify the origi-

nal motion data to satisfy the key frame con-

straints [57]. As in [57], the authors proposed

a trajectory control method based on displace-

ment mapping. The main advantages of motion

editing based methods are they are easy to use

and it is intuitive to edit an action. The main

limitation is the amount of work involved. If

the motion sequence to be edited is long, this

method can be very time-consuming. Similar

techniques are used for planning of whole-body

motion of virtual humans in virtual scenes [58].

Kim et al. [59] retargeted human motion to vir-

tual avatars in real time based on a precom-

puted spatial map, taking object interaction

into account.

3.2.3 Motion Interpolation

Motion interpolation based methods inter-

polate existing human posture or motion se-

quences to generate a new motion sequence. To

use this method, it is necessary to register the

existing motion data in time, and then map the

motion sequences to an abstract space suitable

for interpolation. Various methods can then

be used to control the process of motion blend-

ing, such as geostatistical interpolation [60]. In

addition, interpolation functions may also be

weighted [60, 61] to control their contributions.

Motion interpolation is often used as a tool for

manipulating motion sequences. For example,

in [61], a continuous motion sequence space is

constructed by interpolating similar motions.

Wang et al. [62] formulated motion planning

between two substantially different poses as a

boundary value problem on an energy graph

taking into account desired motion character-

istics.

3.2.4 Statistical Motion Synthesis

Statistical model based motion synthesis

methods apply statistical models and machine

learning models to generate human body mo-

tion sequences. Earlier statistical motion syn-

thesis methods include clustering-based hidden

Markov models [63] which generate motion be-

tween two key frames. The approach benefits

from both the flexibility of the key frame based

motion synthesis and the accuracy and realism

of original database motions. At the same pe-

riod, Pullen et al. [64] proposed a motion syn-
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thesis method by decomposing the motion data

in the frequency domain, and then generating

the joint angle and global translation of the

motion. The work [65] proposes a method of

generating stylized motions based on a linear

time invariant (LTI) method. Later work [66]

regards user-constrained motion generation as

a maximum a posteriori probability problem,

and proposes a motion synthesis method using

linear dynamic system modeling. The work [67]

uses the Bayesian dynamic model to generate

motion sequences which have similar spatio-

temporal relationship as the input motion se-

quences. Min et al. [68] used the Gaussian pro-

cess model-based method to generate motion

sequences. In more recent work, Holden use

convolutional autoencoders to learn the mani-

fold of motion data [69], and then use a deep

feedforward neural network to generate motion

sequence [70].

3.2.5 Stylized Motion Synthesis

Even for the same action (e.g. walking),

motion sequences can vary significantly. The

style of human body motion is a high-level at-

tribute to characterize such differences. By

varying styles, richer and more vivid human

body motion can be generated, avoiding unnat-

ural synthesis with little variability. However,

collecting different styles of human body mo-

tion is time-consuming and laborious, so syn-

thesizing stylized human body motion is of sig-

nificant research value. The study can be di-

vided into implicit style modeling and explicit

style modeling according to the different views

on the source of motion styles.

Implicit style modeling. Implicit style

modeling [65, 71] mainly focuses on characteriz-

ing the differences between human body motion

of different styles, while retaining the content of

the motion, therefore it is more widely used for

style transfer of human body motion, i.e. given

an input motion sequence, the aim is to gen-

erate a new motion sequence with a specified

style but the same content. Hsu et al. [65] used

a linear time-invariant (LTI) system to model

the differences between motion sequences of the

same content and different styles. Once the

parameters of the LTI system are trained, the

system can efficiently convert an input motion

to other styles. The work [71] uses a Gaus-

sian mixture model (GMM) to model the kine-

matics and dynamic differences after manual

motion editing. The models trained with the

GMM can convert a new input motion to the

desired style. Xia et al. [72] proposed a new ap-

proach that first retrieves candidate sequences

from a motion database that are close to the

input motion by K-nearest neighbor search,
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and then models the transformation involved

for style transfer by building online local mix-

tures of autoregressive (MAR) models, which

are then used to generate stylized motion for

the input. This method is related to [65], but

with fundamental differences: [72] uses local

MAR models whereas [65] used a global LTI

model, and local models can represent complex

and highly nonlinear relationships between mo-

tion sequences better. As a result, [72] can

handle unlabeled heterogeneous input motion

and is more robust. Figure 3 shows some re-

sults of MAR-based stylized motion synthesis.

As can be seen from the figures, the MAR-

based method can handle motion sequence with

different content, such as running, walking and

jumping.

Figure 3. MAR-based stylized motion synthe-

sis [72].

Explicit style modeling. Explicit style

modeling [73, 74, 75] attributes differences in

motion styles to involving both the content and

the style, so it treats them as two hidden fac-

tors, and finally uses a statistical model to solve

this problem. Since this method models styles

explicitly, it is more often used for synthesiz-

ing large-scale stylized motions. However, the

effectiveness of such methods is also largely

restricted by the size and quality of motion

databases. The work [73] regards motion con-

tent as hidden states of a hidden Markov model

(HMM), while treating motion styles as param-

eters in the HMM such as state transition prob-

abilities. Wang et al. [74] proposed a method

that uses a multi-factor latent Gaussian pro-

cess to model style differences of human body

motion. Min et al. [75] further extended this

idea of simultaneously modeling motion con-

tent and styles. They use a large number of

pre-registered motion data to construct a mul-

tidimensional motion model, useful to charac-

terize motion content and style from a motion

sequence. This facilitates various applications

such as motion style transfer, style-aware edit-

ing. Motivated by these works, Ma et al. [76]

proposed a method to model motion data’s con-

tent and style at the same time. They use

several joint groups to represent the skeleton

and introduce latent parameters to represent

the variation of each group. Bayesian network

is then used to parameterize the relationships

between the style and latent variation parame-

ters.
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3.3 Research Problems and Future Di-

rections

Current technology for human body mo-

tion capture cannot satisfy the needs for cap-

turing large-scale and outdoor scenes. More-

over, high-precision capture devices still require

markers and sensors, making them expensive

and difficult to use. A future direction is to re-

duce restrictions while increasing the accuracy

of low-cost solutions,e.g. using hand-held non-

calibrated multi-color cameras to reconstruct

poses of multiple human subjects. The current

limitation of human body motion synthesis lies

in the difficulty of building motion databases

and generating vivid motion sequences. Meth-

ods using machine learning have shown great

potential. There are still scopes to exploit re-

cent development in deep learning, with various

CNN-based architectures, including Generative

Adversarial Networks (GANs).

4 Physical Simulation of Human Body

Motion

Although kinematics-based human body

motion simulation methods are generally ma-

ture, having made great progress in the use of

motion data and the generation of responsive

movement, the shortcoming is inevitable— re-

lying extensively on existing movement data.

The realism of human body motion is based on

a variety of physical laws, full of complex sit-

uations and possibilities. Simulation methods

based only on kinematics cannot generate com-

pletely realistic human body motions which are

able to respond to the environment in real-time

and are not mechanically repetitive. In con-

trast, physical simulation provides this possi-

bility. Instead of directly manipulating existing

human body motion data sequences for editing

and synthesis as the methods mentioned in the

previous section, physical simulation computes

the driving torques of joints through the force

and torque given by environmental constraints,

which are then used to drive the subject to pro-

duce physically realistic motion like a real hu-

man subject. The development of physical sim-

ulation has greatly improved the authenticity

and richness of the simulated human body mo-

tions. We divide physical simulation of human

body motion into physical simulation based on

forward dynamics and inverse dynamics. We

now describe these methods in detail.

4.1 Physical Simulation based on For-

ward Dynamics

The goal of forward dynamics is to cal-

culate the linear and angular accelerations of

the simulated objects with external forces and

constraints. When applied to human bodies,
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such methods can achieve physical simulation

of human body motion. In physical simulation,

collision detection is used to determine whether

the human and the environment are in contact,

and calculate the contact force, environmental

constraints and other information. Then the

linear acceleration and angular acceleration of

characters are computed by forward dynamics.

Such information will be used to synthesize hu-

man body motions. We now overview key tech-

niques in the following subsections.

4.1.1 Collision Detection

Physical simulation based on forward dy-

namics typically requires the use of physical

engines to obtain ground contact information.

Ground contact information is generally ob-

tained by collision detection between the foot

and the ground, and then the contact force can

be calculated using a suitable model. There are

two main types of models. The first type is the

penalty strategy model [77], which is similar

to the spring-damping model, and calculates

the contact force according to the penetration

depth of the foot. The other is the friction

cone model [78], which models the ground con-

tact force as being generated by discrete fric-

tion contact points. The friction cone defines

the parameters of such friction points.

Many mature and stable physical simu-

lation engines are available. These physical

engines integrate collision detection and other

useful features, and provide a good environ-

ment for physics-based human body motion

simulation. Commonly used physical engines

include Open Dynamics Engine (ODE), PhysX,

etc.

4.1.2 Controller based Physical Simulation

One approach for physical simulation of

human body motion is to use a finite state ma-

chine where at each state, joint torques are con-

trolled by PD (Proportional Derivative) con-

trollers, which are then used to update the sub-

ject status from the current to the next. The

PD controller typically takes the target joint

pose as input, and after computation, outputs

the controlled joint torque. The advantage of

this method is its high efficiency and robust-

ness. However, there is a major problem for

human body motion simulation: the force and

torque are not intuitive, making controller de-

sign difficult.

Controllers with manual parameter set-

tings. In the study of controllers, early work

manages to generate complex kangaroo jump-

ing motions by manually setting the state ma-

chine, or to generate motions for actions such

as running, cycling and vaulting using con-
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trollers with manual parameter settings. An

important advance was made by Yin et al. [79]

who proposed a motion controller named SIM-

BICON(Simple Biped Locomotion Control),

which features a very robust Feedback Error

Learning strategy and is one of the most repre-

sentative controllers. Figure 4 show the state

machine and motion synthesis result of SIMBI-

CON.

Figure 4. Finite state machine in [79].

Optimization of controller parameters.

The parameters used in the controllers men-

tioned above are manually specified by the re-

searchers through understanding and analysis

of human motion. While being effective, such

controllers are designed for specific motion and

subject rather than for general motions. So to

apply such controllers to generate other types

of motions or subjects, the controller parame-

ters need to be re-adjusted, which is very la-

borious. To address this, Coros and his col-

leagues [80] presented a real-time control strat-

egy for physics-based simulation that general-

izes well across gait parameters, motion styles,

character proportions, and levels of skills. The

control is robust to disturbances because of its

universality, and can be used in a very wide

range of scenarios.

Applications of biomechanics to con-

troller design. It is worth noting that the

controller method uses state transition to de-

scribe human body motions, so the result-

ing motions can be rigid. In order to solve

this problem, Wang et al. [81] optimized con-

troller parameters with the help of biomechani-

cal rules, resulting in more realistic and natural

motions. Wang et al. [82] used a set of Hill-

type musculotendon units (MTUs) to augment

the joint actuated humanoid model. To drive

this new model, a new controller parameter op-

timization strategy is proposed which aims to

minimize metabolic energy consumption. The

method helps increase the authenticity of the

synthetic motion.

Methods based on sampling. In recent

years, simulation of simple motions such as

walking, running and jumping has become

more and more mature. On this basis, re-

searchers begin to design controllers that can
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simulate more complex and varied motions

with the help of sampling. Liu et al. [83] de-

signed a more robust controller parameter op-

timization method to generate a varying mo-

tion with parkour style using sampling. Liu et

al. [84] further presented a method using given

motion capture clips and transition paths be-

tween clips, as well as exploiting motion con-

trol graphs to learn a robust feedback strategy.

Their method supports real-time physics-based

simulation of multiple characters.

4.1.3 Date-Driven Simulation Methods

Motion capture is an efficient way to ac-

quire rich and natural kinematic trajectories.

The obtained trajectories include velocity in-

formation. Since the trajectories are from real-

world human motions, they are obviously phys-

ically feasible. Unlike the kinematic-based edit-

ing synthesis method, the data-driven physical

simulation approach simulates motion of the

human body through calculating joint torques

using physical motion equations, driving the

model to track motion-captured data, and giv-

ing real-time feedback to environmental con-

straints. The difficulty of this method lies in

the following: 1) Discrepancies between the

physical character model and motion captured

subject are inevitable. 2) Some of the actor’s

feedback mechanisms are too subtle that can-

not be recorded by captured data, and some

only work in specific situations. 3) Motion cap-

ture data does not contain joint torques and

ground contact force information, so they can-

not be used to drive the model to track the

trajectories directly. 4) Physics-based charac-

ters are under-actuated, and errors accumulate

in applying global translations and rotations.

Human body motion simulation with-

out locomotion. Early work on data-driven

simulation combines motion capture data with

procedural balance strategies to simulate and

control human motion. At this stage, re-

searchers aimed to simulate human motions

without locomotion. Zordan et al. [85] tracked

full-body actions such as boxing and table ten-

nis playing with an in-place procedural bal-

ance strategy, trying to control the center of

mass using a virtual force. They use the in-

verse dynamics to adjust the upper body tra-

jectory, and finally create controllers for inter-

active boxing and table tennis playing. Zordan

et al. [86] also generated character falling mo-

tions under external forces with motion capture

data.

State-action mapping. Another approach

for data-driven physical simulation is state-

action mapping. It is based on the assump-

tion that the target pose can be derived di-
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rectly from the current pose at any time. At

any time during the control, the next pose can

be selected from a set of possible poses accord-

ing to the current state. Motion capture data

is used to establish the mapping between the

current pose and the target pose. Sharon and

van de Panne [87] developed a typical state-

action mapping control system. It uses a kine-

matic target trajectory not necessarily physi-

cally realizable to specify the desired style. It

then uses a nearest-neighbor controller repre-

sentation with its parameters optimized by lo-

cal search, where the optimization function is

formulated by integration of a mass-distance

metric over fixed time periods, measuring the

difference between simulated and target mo-

tions.

Given a biped motion which can be ei-

ther captured or synthesized, Sok et al. [88]

developed an optimization approach that ad-

justs it using physical simulation to produce

a physically-feasible motion with balance pre-

served. In the core of the method is a con-

troller learning algorithm that is able to cre-

ate and combine robust dynamic controllers

learned from training data. This provides a

useful tool for collecting a rich set of training

data containing stylistic human behaviors with

rich personalities.

Physical simulation coupled with inverse

dynamics. In data-driven approaches, the

PD controller is often used to predict and cal-

culate the acceleration of joints, and the motion

capture data is then tracked by computing the

torques using inverse dynamics. Silva et al. [89]

derived the corresponding control system ac-

cording to a given reference motion, and use

quadratic programming to combine style feed-

back and balanced feedback, which can gener-

ate motions similar to reference motions.

Geijtenbeek et al. [90] used a PD controller

to simulate character motions, using a special

form of the Jacobian conversion controller to

control the balance. They then use the CMA

(Covariance Matrix Adaption) offline parame-

ter optimization controller to track the motion

capture data.

Simulation of complex motions. Since

the simulation of simple motions has become

mature, researchers begin to focus on the

control and simulation of complex motions.

Hamalainen et al. [91] proposed a Model-

Predictive Control scheme, called Control Par-

ticle Belief Propagation (C-PBP). The method

finds paths and smoothes them at the same

time, and then evaluates cost functions to de-

cide whether to perform a resampling to cut

the unsatisfactory trajectories. In each itera-
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tion, the motions are guided by the trajecto-

ries generated in the last iteration. Further-

more, the method does not require any offline

precomputation, and can generate complex mo-

tions such as balancing on a ball, juggling a

ball. Although the generated motions are fairly

complex, the effect is not as satisfactory as the

simulation of simple motions. In addition, to

obtain more realistic simulation results, an im-

portant observation is that human body motion

is usually task oriented. Even for the same

action, subtle differences in motion exist for

different purposes. In previous work, the gen-

eral method of simulating human body motion

is usually simple movement between two po-

sitions without taking these rich motion types

into account. Agrawal et al. [92] used a task-

based foot-step template, combined with on-

line optimization, to generate task-based hu-

man body motions. The method is demon-

strated to generate a variety of motions such

as whiteboard writing, moving boxes, sitting

down, standing up and turning.

4.1.4 Problems and Future Directions

For physics-based simulation, both con-

troller methods and data-driven methods have

their limitations. For controller methods, pa-

rameterization of environmental constraints,

automatic optimization of parameters and re-

alistic simulation of motions are still challeng-

ing problems. This is where data-driven meth-

ods may help. For data-driven methods, cap-

turing complex motions in real-world environ-

ment is still difficult. Moreover, the effec-

tiveness of data-driven methods relies heavily

on sufficient amount of motion capture data.

From this perspective, these two types of ap-

proaches are complementary. To address such

challenges, it is worth exploiting hybrid meth-

ods that combine data-driven approaches with

controller based approaches, e.g. by training

physics-based controllers using motion capture

data, and choosing suitable controllers in a

data-driven manner.

4.2 Physical Simulation based on In-

verse Dynamics

Unlike methods based on forward dynam-

ics, methods based on inverse dynamics estab-

lish relevant objective functions, and obtain the

driving torques of joints by optimization, so as

to generate simulated human body motions. In

this subsection, we will introduce methods for

solving the body segment parameters essential

in inverse dynamics, and methods for simula-

tion of human body motions based on the in-

verse dynamics.
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4.2.1 Solving Human Body Inertia Parame-

ters

Human body motion is very complex, so in

simulation it is necessary to simplify a human

body as a system of multiple rigid components

with fixed joints and degrees of freedom. The

inertial parameters of each rigid component are

the key to solving human dynamics.

Human inertia parameters refer to the

mass, center of mass, and momentum of iner-

tia of each part of the human body. Several

major methods exist for acquiring the inertia

parameters of a human body. 1) Scanning and

Imaging: using medical imaging technology to

scan the body and then calculate the param-

eters. The scanning techniques include Mag-

netic Resonance Imaging (MRI), gamma scan-

ning, etc. 2) Regression forecasting methods:

building a regression model to forecast inertia

parameters based on human density data or re-

lation between inertia parameters and human

body parameters such as height and weight. 3)

Dynamics methods: Yeadon et al. [93] calcu-

lated inertia parameters using the characteris-

tics of human body motion in the air. 4) Mesh-

based methods. Based on the methods that can

generate adaptive human body meshes, Sheets

et al. [94] generated subject specific inertia pa-

rameters with the hypothesis that the density

of human body is identical. 5) Inverse dynam-

ics methods: Lv et al. [95] proposed a method

based on the Lagrangian equation. They trans-

fer the inertia problems into the optimization

problem of the Lagrangian equation and use

captured dynamic data to calculate human in-

ertia parameters.

4.2.2 Trajectory Optimization

Trajectory optimization is a computa-

tional method to solve simulation problems.

Given a piece of motion data as input, the tra-

jectory optimization framework generates the

desired motion using a set of constraints and

objectives. In order to make the generated mo-

tion more natural, the Minimal Principle is of-

ten applied in the trajectory optimization pro-

cess.

The idea of trajectory optimization was

first brought out by Witkin and Kass [96].

Their objective is to minimize the use of en-

ergy, where the constraints are physical con-

straints computed under the finite difference

framework and the boundary constraints on

the ground. This method finally generates

motion sequences such as the jumping mo-

tion of lamp ‘Luxo’. As a global optimiza-

tion method involving space-time constrains,

the method needs to calculate the whole mo-

tion offline, and it is relatively difficult to com-

pute and would easily get stuck in local min-
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ima. Follow-up work considers improving the

method in these aspects. Early methods try

to optimize efficiency by simplifying models or

reducing lengths of motion sequences. They

subdivide a motion sequence into sections and

solve these subproblems or reduce the complex-

ity of the motion by only preserving basic phys-

ical parameters of the model.

Although methods such as model simpli-

fication can reduce the complexity of com-

putation, the generated motions are not suf-

ficiently natural. Researchers have investi-

gated alternative solutions. Liu et al. [97]

took the desired character interactions as con-

straints and identify the variables needed for

optimization in each iteration. By reducing

the number of variables in optimization, the

method effectively reduces the amount of com-

putation. Borno et al. [98] synthesized full-

body motions such as breakdancing and get-

ting up from the ground based on the covari-

ance matrix adaptive (CMA) evolution strat-

egy, which aims to avoid getting stuck in local

minima.This method successfully solves large-

scale non-linear optimization problems.

Another way to solve trajectory optimiza-

tion problems for models of high degrees of

freedom (DOFs) is to use a three-phase op-

timization method [99]. Park et al [99] first

compute the initial trajectory from a discrete

contact configuration. Then they compute

the collision-free trajectory using a simplified

model. Finally they perform a full-body opti-

mization considering balancing and other con-

straints. Eventually the method is able to syn-

thesize realistic motions for humanoid models

with high DOFs.

4.2.3 Optimization with Dynamical Con-

straints

Another widely used approach to phys-

ical simulation is Optimization Control with

Dynamical Constraints. By adding multiple

objectives based on dynamical features, the

method obtains forces and torques needed for

the target motion through optimization. Since

this method has multiple objectives with differ-

ent weights, the design of weights is also a prob-

lem that needs consideration. Different from

traditional trajectory optimization which uses

off-line global optimization, dynamically con-

strained optimization uses online optimization

and can generate interactive motions. In gen-

eral, there are three ways to achieve necessary

efficiency [100]. 1) Local optimization, i.e. only

considering whether the current state meets

the required constraints. This method is only

applicable to motions that do not need long

term planning, such as maintaining balance.

2) Off-line precomputed trajectory based op-
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timization. This method uses the trajectories

precomputed for optimization and is applied to

tracking specific motions. 3) Low-dimensional

models. This method employs low-dimensional

models to reduce the amount of calculation and

uses predictive trajectories to guide the motion

in a short period.

Local optimization. By designing the

weights of objectives manually, Abe et al. [101]

controlled the human body’s center of mass

to maintain balance. They achieve robust

balance control that can interact with exter-

nal perturbation and change motion accord-

ingly. Alternative methods control momentum

by adding the center of mass and trajectory

of swing legs [102] to the objective function.

They achieve balanced control by adjusting

the center of mass. De Lasa et al. [103] divided

objectives according to their physical prior-

ity and obtain target trajectories by empirical

formulas. The method successfully synthesizes

walking and jumping motions of a human body.

Off-line precomputation of trajectories.

Muico et al. [104] used off-line trajectory opti-

mization to obtain trajectories similar to cap-

tured motion data, and then employ a nonlin-

ear quadratic regulator to optimize the joint

momentum and ground contact forces. They

then adjust the ground contact forces and fi-

nally generate walking motions of a human

body. Based on this work, they increase the

robustness of synthesized motions by tracking

multiple trajectories simultaneously and using

a graph to describe the blending and trans-

formation between trajectories [105]. Wu et

al. [106] used the covariance matrix adaptive

strategy to generate target trajectories off-line.

They then track the trajectory and adjust the

weights of the balance controller and tracking

controller. They finally generate walking mo-

tions that can adapt to different terrains.

Low-dimensional models. Kwon et

al. [107] used the first-order inverted pendu-

lum model optimized by motion data to con-

trol the position of the foothold in running (see

Figure 5). Mordatch et al. [108] generated

target trajectories using an inverted pendulum

and track the trajectory with the whole body

model. They finally synthesize robust motions

that can transfer between different gaits. Us-

ing a low-dimensional dynamic model, Han et

al. [109] obtained short-term control strategies

through model predictive control. They control

the trajectory of the center of mass, the angu-

lar momentum and the position of foothold

to generate real-time interactive balanced mo-

tions.
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Figure 5. First-order inverted pendulum [107].

4.2.4 Problems and Future Directions

The main problem of trajectory optimiza-

tion methods is efficiency. It is difficult to

achieve real-time performance. More efficient

optimization techniques may be exploited in

the future. Regarding optimization with dy-

namical constraints, the main problem is that

the design of objective functions requires re-

searchers to have complete knowledge of dy-

namics and optimization. In the future, it

is worth exploiting more generalized frame-

works that can help researchers design objec-

tives more easily. In addition, optimization

strategies may be applied to improve other as-

pects, e.g. the design of high-level controller

parameters.

5 Conclusion

In this survey, a number of key issues

related to human performance capture and

animation, including human geometric model

reconstruction, human body motion capture

and synthesis, physics-based simulation are de-

scribed and discussed. Most research directions

of human motion capture and animation are

covered in this survey. We hope that this sur-

vey can help readers have more comprehensive

understanding of existing work on human per-

formance capture and animation, and inspire

future research in this area.
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tiobjective control with frictional

contacts. In Proc. the 2007 ACM SIG-

GRAPH/Eurographics Symposium on

Computer Animation, Aug. 2007, pp.

249–258.

[102] Wu C C, Zordan V. Goal-directed

stepping with momentum con-

trol. In Proc. the 2010 ACM SIG-

GRAPH/Eurographics Symposium on

Computer Animation, Jul. 2010, pp.

113–118.

[103] De Lasa M, Mordatch I, Hertzmann

A. Feature-based locomotion controllers.

ACM Transactions on Graphics, 2010,

29(4):131.

[104] Muico U, Lee Y, Popović J, Popović Z.
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