
BENCHIP: Benchmarking Intelligence
Processors

Jinhua Tao1, Zidong Du1,2, Qi Guo1,2, Huiying Lan1, Lei Zhang1

Shengyuan Zhou1, Lingjie Xu3, Cong Liu4, Haifeng Liu5, Shan Tang6

Allen Rush7,Willian Chen7, Shaoli Liu1,2, Yunji Chen1, Tianshi Chen1,2

1ICT CAS,2Cambricon,3Alibaba Infrastructure Service, Alibaba Group
4IFLYTEK,5JD,6RDA Microelectronics,7AMD

Abstract

The increasing attention on deep learning has tremendously spurred the
design of intelligence processing hardware. The variety of emerging intel-
ligence processors requires standard benchmarks for fair comparison and
system optimization (in both software and hardware). However, existing
benchmarks are unsuitable for benchmarking intelligence processors due to
their non-diversity and nonrepresentativeness. Also, the lack of a standard
benchmarking methodology further exacerbates this problem. In this paper,
we propose BENCHIP, a benchmark suite and benchmarking methodology
for intelligence processors. The benchmark suite in BENCHIP consists of
two sets of benchmarks: microbenchmarks and macrobenchmarks. The mi-
crobenchmarks consist of single-layer networks. They are mainly designed
for bottleneck analysis and system optimization. The macrobenchmarks
contain state-of-the-art industrial networks, so as to offer a realistic com-
parison of different platforms. We also propose a standard benchmarking
methodology built upon an industrial software stack and evaluation met-
rics that comprehensively reflect the various characteristics of the evaluated
intelligence processors. BENCHIP is utilized for evaluating various hard-
ware platforms, including CPUs, GPUs, and accelerators. BENCHIP will be
open-sourced soon.

1

ar
X

iv
:1

71
0.

08
31

5v
2

 [
cs

.P
F]

 2
5

N
ov

 2
01

7

1 Introduction

1.1 Motivation
Recently, deep learning has become a de facto technique for intelligent processing
tasks such as image classification [1, 2, 3], video captioning [4], speech recogni-
tion [5], and machine translation [6]. As deep learning architectures (i.e., artificial
neural networks) are evolving towards deep topologies with complicated transfor-
mations, existing general-purpose hardware platforms such as CPUs and GPUs
are not able to provide high performance and energy efficiency. As an efficient
alternative for deep learning, a large variety of customized hardware architec-
tures, ranging from specialized GPUs (e.g., NVIDIA DGX-1 [7]) to FPGAs (e.g.,
CNP [8] and [9]) to ASICs (e.g., DianNao [10], NeuFlow [11], and EIE [12]) have
emerged. We call those specially designed architectures intelligence processors
(IPs)1.

Benchmarking has served long as the foundation of designing new hardware
architectures. For example, the SPEC-CPU series [13] and the corresponding
methodology (e.g., framework, procedure, and metrics, etc.) have been the in-
contestable source for evaluating and optimizing general-purpose architecture,
and they have evolved over time to keep pace with the rapid advance of unicore
architecture. With multicore architectures dominating the market, the PARSEC
benchmark suite [14] was released in 2008 accordingly. Recently, especially in
last one or two years, intelligence processors have become a hot topic. How-
ever, with the chaos of benchmarks, it is difficult to compare and quantize the
various IPs, especially the rapidly increasing works emerging at top architecture
conferences [12, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]. Still,
fair and comprehensive benchmarking is a necessity for assessing the progress of
IPs. Moreover, with the help of benchmarking, both architects and practitioners
can compare various architectures, identify their bottlenecks, and conduct corre-
sponding system/architectural optimization. As a result, during the design and
deployment of intelligence processors, one of the central tasks is benchmarking.

Benchmark suite. When benchmarking intelligence processors, designing an
appropriate benchmark suite is the top-most consideration. Roughly, two main cate-
gories of benchmarks already exist: the collective benchmarks, which are collected
and documented as a benchmark suite (e.g., BenchNN [31], DeepBench [32], and
Fathom [33]), and the personalized benchmarks, which have been used to evaluate

1Both CPUs and GPUs can be viewed as intelligence processors from a broader perspective, as they
remain the mainstream of intelligent processing.

2

different intelligence processors in various computer architecture papers.
BenchNN illustrates the potential of neural networks by using them to re-

implement five tasks from the well-known PARSEC benchmark suite to reveal
the broad application scope of neural networks. Though BenchNN successfully
demonstrated an urgent need for neural networks, it is more like a symbol rather
than a practical benchmark suite. To be specific, there are three limitations: (1)
BenchNN provides a very limited number of neural network applications (i.e., five
in total), (2) the neural networks used in BenchNN are classic models such as
simple multi-layer perceptrons that fails to characterize the latest trend reflected
by state-of-the-art deep learning techniques, and (3) BenchNN does not reflect
the significant diversity among neural networks—for example, both the ferret and
streamcluster benchmarks are built on the Self Organizing Maps [34].

DeepBench aims at measuring the performance of basic deep learning opera-
tions across various hardware platforms. Such operations include matrix multipli-
cation, convolution, recurrent layer, and all-reduce operations. As DeepBench only
contains basic primitive operations, it cannot approximate high-level behaviors of
the full-stack neural networks widely used in industry. For example, the Faster-
RCNN [35] used for object detection contains far more operations than the basic
operations in DeepBench. In short, due to its inability to evaluate of the full-stack
neural networks used in practice, DeepBench is not suitable for benchmarking
intelligence processors.

Fathom focuses on better understanding a broader variety of deep learning
workloads. However, with an assembled set of only eight archetype deep learning
workloads, Fathom has limited capability for benchmarking intelligence processors.
First, Fathom fails on diversity, as it only contains common layers such as Conv.
and Fully-Connected but lacks important layers such as Deconv., Unpooling and
Batch normalization. Second, Fathom fails to provide a benchmarking method
for several of the most important categories of intelligence processors, e.g., cus-
tomized hardware architectures. Third, Fathom cannot benchmark fine-grained
performance or efficiency, which are important for intelligence processors, espe-
cially customized hardware. Thus, Fathom is also not suitable for benchmarking
intelligence processors.

The personalized benchmarks are the neural networks that appear in computer
architecture papers but not as a benchmark suite for evaluating intelligence proces-
sors. Such benchmarks include both basic operations (e.g., convolution, activation,
and normalization) and full neural networks (e.g., AlexNet [1], VGG [2], and
ResNet [3]). As such benchmarks vary for evaluating different architectures, they
may suffer from non-diversity and nonrepresentativeness. Figure 1(a) shows that

3

CV/ML/NLP

Architecture

856149

2012 2013 2014 2015 2016
Year

0

100

200

300

400

500

N
u

m
b

er
 o

f
n

et
w

o
rk

s CV/ML/NLP community

Architecture community

(a) (b)
Figure 1: (a): The number of neural network models proposed in CV/ML/NLP top-tier confer-
ences (e.g., CVPR/ICML/EMNLP) has increased rapidly, while the number of neural networks
utilized in the computer architecture community (e.g., ISCA/MICRO/HPCA/ASPLOS) exhibits
relatively moderate growth. (b): The neural networks used in the computer architecture community
only cover a small range of the neural networks used in applications from the AI community.

there exists a large gap between the neural networks proposed in CV (computer
vision)/ML(machine learning)/NLP (natural language processing) applications and
those used for evaluating hardware architectures. We also notice the increasing
capability of performing multiple types of neural networks in the architecture
community. Interestingly, from Figure 1 (b), we observe that more than half of
the personalized benchmarks utilized in computer architecture papers are not prac-
tically used in AI research fields (e.g., CV/ML/NLP). Even when we assume a
one-year delay for transferring knowledge from the AI community to the computer
architecture community, this number is still larger than 30%. This observation
clearly shows a risk that conclusions made by the computer architecture community
might mislead the AI community.

In short, due to their non-diversity and nonrepresentativeness, existing bench-
marks are not suitable for benchmarking intelligence processors.

Benchmarking methodology. A benchmark suite only specifies what to mea-
sure. We also need to determine how to benchmark intelligence processors, i.e.,
develop a benchmarking methodology. The existing benchmarking methodology
utilized in the computer architecture community is chaotic, mainly due to the
complicated software/hardware stacks of modern computer systems. Given the
prototypical nature of a newly published intelligence architecture, a full software
stack may not exist to conduct a fair comparison against commodity hardware. As
a result, some evaluate their architectures with a high-level programming frame-
work [22, 26], while others are evaluated directly at the RTL level by getting rid
of the software stack [12]. Since the software stack in real applications is very

4

crucial to overall performance, comparison at different hardware/software levels
seems to be a case of comparing “apples and oranges.” To alleviate this problem,
a benchmark specification for the evaluation framework, metrics, and procedure
should be clearly defined.

Moreover, intelligence processors have unique features compared with general-
purpose architectures that pose further challenges for the methodology. One such
feature is that the prediction accuracy is also an important design tradeoff in
addition to performance/power/area. While it could be a reasonable solution to
slightly relax the prediction accuracy of machines learning models (via adopting,
e.g., data quantization [36] or connection sparsity [37]) for performance and energy
efficiency, excessive relaxation on the prediction accuracy will lead to unfair and
degenerate comparisons. Therefore, it is necessary to take the accuracy, together
with other traditional design tradeoffs, into consideration when designing the
benchmarking methodology.

1.2 Our work

Based on the above observations, in this paper, we propose BENCHIP, a novel
benchmark suite and benchmarking methodology deliberately designed for intelli-
gence processors. The benchmark suite in BENCHIP contains two types of bench-
marks: microbenchmarks and macrobenchmarks. The microbenchmarks contain
12 representative single-layer networks, such as convolution, pooling, activation,
etc., that are mainly used for architectural/system optimization. The macrobench-
marks consist of 11 commonly-used full neural networks (e.g., AlexNet, VGG, and
Faster-RCNN) from different intelligent processing scenarios. These are directly
extracted from real applications and they are mainly used for the evaluation and
comparison of hardware platforms.

Our benchmarking methodology is mainly designed for creditability, portability,
and fairness. The creditability is achieved by building an industrial software stack
consisting of a high-level programming model, library, and device driver. The porta-
bility is accomplished by providing a standard interface for the intermediate-level
high-performance library. Thus, with a new architecture, once the corresponding
library complies with the standard interface, it can be easily plugged into the soft-
ware stack for evaluation. For the fairness purpose, we report evaluation metrics
that take the accuracy into consideration in order to comprehensively reflect the
various characteristics of intelligence processors.

Contributions. The work in this paper makes the following key contributions:

5

Table 1: The benchmarks in BENCHIP
Layer # Config. Note NN Dataset Scenario

Conv. 7 (3/1/3)1 LeNet-5 [38] MNIST [38] Hand written digits recognition
Pooling 7/7 (3/1/3) Avg./Max RNN [39] WSJ [40] Speech recognition
FC 7 (3/1/3) AlexNet [1] ImageNet [41] Image classification
ReLU 7 (3/1/3) VGG [2] ImageNet [41] Image classification
Sigmoid 7 (3/1/3) ResNet [42] ImageNet [41] Image classification
LRN 7 (3/1/3) Faster R-CNN [35] PASCAL VOC 2012 [43] Object recognition
BN 7 (3/1/3) Deep Face Recog. [44] LFW [45] Face recognition
Unpooling 7/7 (3/1/3) Avg./Max DeconvNet [46] PASCAL VOC 2012 [43] Semantic segmentation
Deconv. 7 (3/1/3) FCLN [47] Visual Genome [47] Image captioning
LSTM 7 (3/1/3) S2VT [48] MSVD [49] Video captioning

SyntaxNet [50] English WSJ [40] Nature language processing

1Total configurations (Normal configurations/Extreme small configurations/Extreme large configurations)

• We build a benchmark suite consisting of microbenchmarks and macrobench-
marks to evaluate the accuracy, performance, and energy of intelligence proces-
sors.

• We conduct a comprehensive analysis of the proposed benchmarks in order to
demonstrate that the proposed benchmark suite is representative and diverse.

• We propose a benchmarking methodology that contains an industrial-level
software stack and evaluation metrics for guaranteeing creditability, portability,
and fairness.

• We evaluate various intelligence processors, including CPUs, GPUs, and accel-
erators, with BENCHIP.

2 The Benchmark Suite
In this section, we first introduce the requirements of an ideal benchmark suite for
intelligence processors. We next present our benchmarks in detail. Finally, we
conduct an analysis to demonstrate the rationality of the proposed benchmarks.

2.1 Design requirements

An ideal benchmark suite for intelligence processors should meet the following
requirements from both the application and architecture perspectives.

• Application perspective. The selected benchmarks should include mainstream
neural network algorithms from a broad range of application scenarios. More-

6

over, in order to reduce benchmarking efforts, benchmarks with similar charac-
teristics should not be included redundantly [51].

• Architecture perspective. In addition to the common usage scenarios, the
selected benchmarks should be able to explore the processing boundary of
underlying architectures, as well as address the future trends for intelligence
processors.

2.2 Benchmarks
Based on the above requirements, we construct both microbenchmarks and mac-
robenchmarks in BENCHIP, particularly for system optimization and platform
comparison, respectively. In the context of deep learning, the microbenchmarks
only include single-layer networks, while the macrobenchmarks contain entire neu-
ral networks extracted from real applications. For the microbenchmarks, individual
layers are equipped with multiple configurations, including normal and extreme
cases for stress-testing intelligence processors. For the macrobenchmarks, entire
neural networks are used for processing end-to-end intelligent tasks where data
movements between layers are also crucial.

2.2.1 Microbenchmarks

Microbenchmarks are widely used for system and architectural optimization in
both industry and academia. These benchmarks measure a specific component
of the system. For example, STREAM is a well-known microbenchmark for
evaluating the memory bandwidth of the system [52]. The University of Edinburgh
provides the OpenMP microbenchmark suite for measuring the overheads of
synchronization, loop scheduling, and array operations in the OpenMP runtime
library [53].

In the context of deep learning, the microbenchmarks refer to single-layer net-
works. Unlike DeepBench, we do not select basic operations as microbenchmarks
because basic operations cannot benchmark the efficiency of data movements. We
include 10 single-layer networks, as listed in Table 1. In order to fulfill the re-
quirements mentioned in Section 2.1, the principle is threefold: the selected layers
should be widely used in existing neural networks (e.g., convolutional layer); such
layers should have significant different computational, memory, and control pat-
terns; and such layers may have huge impacts on future designs (e.g., deconvolution
layer).

7

Table 2: Statistics of the different types of layers in CVPR, EMNLP, ICML, ICRA,
and NIPS (2012∼2016).

Layer Type # Presence Ratio(%) Network # Presence Ratio(%)

Conv. 452 19.28 LeNet 17 1.99
Pooling1 440 18.76 AlexNet 159 18.57
FC 473 20.17 VGG 171 19.98
LRN 181 7.72 ResNet 5 0.58
ReLU 425 18.12 Faster-

RCNN
34 3.97

Sigmoid 90 3.84 CNN 128 14.95
Tanh 100 4.26 DNN 82 9.58
Deconv. 19 0.81 RNN 260 30.37
Unpooling 16 0.68 Others2 30 1.28
LSTM 133 5.67
BN 16 0.68

Total 2345 - Total 856 -

1Average Pooling + Max Pooling
2RBM, SNN, and other ML techniques

Conv. The convolutional layer is the most important layer in deep learning,
especially for images/video tasks as it automatically extracts features from the input
images/videos (2D/3D input data) by applying a set of 2D/3D filters. Regarding
representativeness, we study network layers employed in application scenarios
from the AI community (e.g., the CV/NLP/ML community). More specifically, we
count the appearance time of a layer/network (# Presence) in the papers of such
fields and thus the appearance ratio to the total layers/networks (# Ratio). These
results are shown in Table 2. From the Table, we can see that convolutional layer
appears in 19.28% of all layers.

Pooling. In deep learning, the pooling layer is required to aggregate features
for later classification by downsampling 2D input data. As shown in Table 2,
the pooling layer is as important as the convolutional layer, having a 18.76%
appearance ratio among all layers.

FC. The fully-connected (FC) layer is the most common layer, where each out-
put neuron is connected to all input neurons with independent synapses. According
to Table 2, it has been employed in most application scenarios, with an appearance
ratio as high as 20.17%.

ReLU. Nonlinear activation layer is a key component as it introduces nonlinear-
ity into the existing deep neural networks to improve the capability of classification.
The inputs and outputs can be treated as one-dimensional data with element-wise
operations. Rectified Linear Units (ReLU) is becoming popular (with an appear-

8

ance ratio of 18.12%) as it achieves better accuracy.
Sigmoid. The Sigmoid layer is another type of activation layer. While the

Sigmoid layer is becoming less popular, the appearance ratio is still about 3.84%
of all employed network layers. Both ReLU and Sigmoid are typical element-
wise operations but have very different functionality. Thus, we include both as
microbenchmarks.

LRN. The normalization layer introduces competition between input neurons at
the same position on different input feature maps, which have significantly different
computation patterns from other layers. There exists two typical normalization
layers: Local Response Normalization (LRN) [1] and Local Contrast Normalization
(LCN) [54]. We include LRN as the representative layer for its relative high
appearance ratio (7.72%) compared to many other layers (including LCN). In an
LRN layer, output neurons are the results of input neurons divided by responses
among neighboring feature maps in the same spatial location.

BN. Batch normalization performs normalization to each mini-batch, which
allows networks to use larger learning rate and thus to accelerate neural network
convergence in training. It also helps reduce the dependency on weight initializa-
tion. We select it as a microbenchmark due to the increasing trend of using BN to
accelerate the training.

Deconv. The deconvolutional layer is emerging in the fields of feature ex-
traction, image reconstruction, and image semantic segmentation as it increases
the size of inputs for better matching and locating. It can be viewed as a reverse
operation of convolution. We include it as a microbenchmark for its unique compu-
tational pattern and the increasing popularity of employing such a layer in emerging
applications (e.g., semantic segmentation).

Unpooling. The unpooling layer has a purpose and effect similar to the deconv
layer. It performs the reverse operation of pooling and reconstructs a larger size of
activations. The unpooling operations have gained increasing attentions in recent
years, as semantic segmentation and image reconstruction have become more
popular.

LSTM. The LSTM layer is a variant of the recurrent layer, which prevents
the gradient from vanishing or exploding. It contains multiple element-wise gate
operations and active operations (i.e., Sigmoid and Tanh). It is selected for its
high appearance ratio of 5.67% and also because of the representative of recurrent
computing patterns.

Summary. In Table 2, almost all appearing layers are included as microbench-
marks except for Tanh, which is mostly used as a part of the LSTM layer. Thus,
it is fair enough to say that our chosen microbenchmarks for BENCHIP has been

9

thorough and rational.

2.2.2 Macrobenchmarks

Macrobenchmarks indicate workloads that are directly extracted from real industrial
applications for evaluating and comparing different platforms—for example, in
SPEC CPU-2006 [13], all benchmarks are collected and documented from desktop
software for approximating real application scenarios. The PARSEC benchmark
suite comprises emerging workloads from various areas, e.g., computer vision,
financial analytics, and animation physics [14] and is aimed at benchmarking
dominant chip multiprocessors.

In the context of deep learning, macrobenchmarks refer to entire neural net-
works such as AlexNet, VGG, and Faster-RCNN. We selected the 11 entire net-
works, as listed in Table 1. There are three reasons for having entire networks as
macrobenchmarks: (1) compared with single-layer networks in microbenchmarks,
entire networks are commonly used for performing end-to-end tasks such as speech
recognition; (2) using combinations of individual layers for evaluation is not suf-
ficient because factors such as the data exchange when coupling two layers are
critical to the performance and energy efficiency, especially as networks become
deeper and larger with increasing processing complexity; and (3) the optimization
between layers cannot be measured with microbenchmarks, which are only capable
of evaluating inter-layer optimizations.

LeNet-5. LeNet-5 is a notable convolutional neural network used to classify
handwritten and machine-printed characters. It is selected as the representation of
handwritten digits recognition.

RNN. RNN is a network for end-to-end speech recognition. It consists of a
deep bidirectional LSTM recurrent neural network and a Connectionist Temporal
Classification (CTC) objective function. We select it to represent the speech
recognition scenario.

AlexNet. AlexNet is a deep convolutional neural network designed for the
classification task of ImageNet. We select it as it is a very popular and widely
used network in both architecture and AI communities, with appearance ratios of
33.54% and 18.57%, respectively (See Table 2).

VGG. VGG is a series of networks with very deep architecture designed
for image classification. It uses very small kernels (e.g., 3× 3 and 1× 1) for
convolutional layers through the whole network. It is also a very popular network
with the appearance ratio of 36.08% in architecture community and 19.98% in AI
community.

10

ResNet. ResNet refers to the deep residual networks. The residual learning
framework allows it to achieve extremely deep architecture, and it gains high
accuracy from the increased depth. It uses “shortcut connections” to skip one or
more layers to ease the degradation problem. We select ResNet because it is the
state-of-the-art network for image classification.

Faster R-CNN. Faster R-CNN is an object detection system with high perfor-
mance and detection accuracy. It is composed of two modules: a region proposal
network (RPN) for generating region proposals, and a fast R-CNN detection net-
work that uses such proposals for detection. We select it as the representation of
object detection network.

Deep face recognition. Deep face recognition utilizes deep CNN networks
to classify and verify face images. The networks are derived from the VGG
architectures with the last FC layer replaced by a classifier or an embedding
descriptor vector. We select it as the representation of face recognition scenario.

DeconvNet. DeconvNet is a deconvolutional network for semantic segmenta-
tion that consists of two subnetworks: convolution and deconvolution. We choose
this network due to the deconvolutional and unpooling layers it contains, and as
the representation of semantic segmentation scenario.

FCLN. FCLN is a learning system for image caption tasks, which is composed
of a convolution network and a recurrent network. The input images are first
processed by a VGG16-based convolution network and then fed into the localization
layer to identify regions of interest. These regions are input into the recurrent
language model to generate captions. We selected FCLN as the representative
network of image caption scenario.

S2VT. S2VT is a sequence-to-sequence LSTM model trained on video-sentence
pairs for generating descriptive natural language text of video clips. It uses a
VGG16-based network to extract features from the raw image and then feeds the
features into the LSTM network, which decodes the representation into a sequence
of words. We selected S2VT as the representation of video caption scenario.

SyntaxNet. SyntaxNet is a globally normalized transition-based feed-forward
network for part-of-speech tagging, dependency parsing, and sentence compres-
sion. It at core is a transition-based parser, where neural network is adopted for
computing the score of decisions in certain states. We select it to represent the
natural language processing scenario.

Summary. Macrobenchmarks include well-known neural networks, e.g, LeNet-
5, AlexNet and VGG, as well as typical networks such as RNN. Thus, BENCHIP
has both representativeness and diversity as it well covers 98.72% of the networks
that appeared in application domains in the last five years. Especially, note that

11

most authors of this paper are from both hardware and AI industry/academia, and
the selected benchmarks are commonly used in our daily production environments.

2.3 Benchmark analysis
In this section, we conduct a comprehensive analysis of the selected benchmarks to
demonstrate that they can meet the requirements from both the application and ar-
chitecture perspectives. The basic intuition is to characterize the benchmarks using
architecture-independent characteristics. As the macrobenchmarks are composed
of single-layer networks—for example, the microbenchmark Conv. layer provides
a configuration that is exactly the second layer in the macrobenchmark VGG—we
focus on analyzing the microbenchmarks.

In Figure 2, we still report the similarity of macrobenchmarks to better under-
stand the variation of macrobenchmarks. We use operation amounts in different
layers as feature vectors and Euclidean distances to hierarchically cluster similar
networks into groups (see right part of Figure 2). The x-axis is the linkage distance
between two macrobenchmarks or two clustered groups; similar networks will be
grouped first. Similarly, we report the correlation of macrobenchmarks using a
heatmap as shown in the left part of Figure 2. Each square block in various sizes
or colors shows the correlation between the two networks which are indicated
by the top and right labels. It is not surprising to observe the close relationship
between the sparse and dense versions of a network as they share the same network
architecture but have a different amount of operations. For example, sparse VGG
and VGG merge early in the dendrogram and have cooler colors (more related) in
heatmap. In addition, half the macrobenchmarks have distances larger than 3.12
(geometric mean distance, 39% of the longest distance). As well, the heatmap is
almost occupied by square blocks with warmer color (less related). It clearly shows
the diversity of the macrobenchmarks achieved by carefully considering the rep-
resentativeness and diversity from the perspective of application and architecture
(see Section 2.1).

2.3.1 Characteristics

The employed architectural-independent characteristics are listed in Table 3. They
can be classified into three categories: memory, computation, and control, which
are the main factors of overall efficiency.

Memory characteristics. As the memory wall continues to grow, we first
consider three types of memory characteristics: the number of memory accesses
(MemAcc), reuse distance (ReDist), and the memory footprint. The number of

12

−1 −0.5 0 0.5 1

LeNet−5
Sparse LeNet−5

RNN
AlexNet

Sparse AlexNet
VGG

Sparse VGG
ResNet

Faster R−CNN
Deep Face Recog.

FCLN
S2VT

DeconvNet
SyntaxNet

8 6 4 2 0

ResNet
SyntaxNet
DeconvNet
RNN
S2VT
AlexNet
Sparse AlexNet
LeNet−5
Sparse LeNet−5
Deep Face Recog.
VGG
Sparse VGG
Faster R−CNN
FCLNd=3

Figure 2: Left: Correlation heatmap of macrobenchmarks. Right: Similarity of
macrobenchmarks.

Table 3: Architecture-independent characteristics
Category Name Notes

Memory MemAcc the number of total memory accesses
ReDist reuse distance
InMem memory size of input
OutMem memory size of output
WghMem memory size of weight

Computation Ops the number of operations
OpMem the ratio of operations to memory access
ComPtt computation patterns

Control PR branch prediction ratio
MPR misprediction ratio

memory accesses is a direct metric of memory-intensiveness. Reuse distance refers
to the number of different data elements accessed between two consecutive reuses
of the same element [55]. It has long been used for measuring locality behaviors.
Memory footprint refers to the amount of memory accessed at runtime. It is crucial
to systems, which are sensitive to memory capacity such as embedded systems.
In the context of neural networks, memory footprint can be further classified into
three groups: input (InMem), output (OutMem), and weight (WghMem).

Computation characteristics. We define three types of computation charac-
teristics: the number of operations (Ops), the ratio of operations to memory access
(OpMem), and the computation patterns (ComPtt). The number of operations is a
direct indicator of the problem size. The ratio of operations to memory access can
determine whether an algorithm is compute- or memory-intensive. Also, regarding
the computation patterns of deep learning algorithms, there are three types: reduc-
tion (RD), element-wise (EW) and enlargement (EL). RD refers to operations that

13

transform multiple input neurons into a single neuron, e.g., Conv., Pooling, FC, and
LRN. EW refers to operations that enforce element-wise transformations on the
input neurons, e.g., ReLU, Sigmoid, and BN. EL is the operation that transforms
one or a set of input neurons into multiple output neurons, e.g., Deconv. and
Unpooling.

Control characteristics. The control characteristics are closely related to
branch behaviors. We use two metrics to measure control characteristics: branch
prediction ratio (PR) and the misprediction ratio (MPR). The branch ratio is the
number of branches to that of all instructions, and the misprediction ratio is the
number of mispredicted branches to the number of total branches.

2.3.2 Application perspective

Though our benchmarks include most representative neural networks from a wide
range of application scenarios, their inherent characteristics should be diverse
to reduce the redundancy of the benchmark suite. Based on the aforementioned
architecture-independent characteristics, the diversity can be quantitatively mea-
sured. Intuitively, there are two types of diversities in the BENCHIP benchmark
suite: inter-layer and intra-layer diversity. The inter-layer diversity is achieved with
12 different benchmarks, and the intra-layer diversity is achieved with seven con-
figurations per benchmark, including three normal configurations (Cfg. A∼C), one
small configuration (Cfg. D), and three large (extreme) configurations (Cfg. E∼G).
The normal configurations are directly extracted from commonly used entire net-
works, while the extreme configurations can be used for stress testing hardware
architectures.

Figure 3 shows the kiviat chart of seven configurations from all 12 microbench-
marks. The axes represent characteristics listed in Table 32, and the meaning of
each ring is shown in Figure 3 as well. We can observe that the characteristics
of the extreme configurations are significantly different from those of the normal
configurations, which well demonstrates the intra-layer diversity. For instance,
for the FC layer, the weight size of extreme configurations (e.g., Cfg. F) is much
larger than that of the normal configurations (e.g., Cfg. C). Moreover, even for
the extreme configurations, as they are carefully designed to emphasize different
characteristics, the diversity between them is also obvious, e.g., the input size of
Cfg. F is 5.3 times smaller than that of Cfg. G for the Pooling-Avg layer. For the
normal configurations, we can also observe sufficient diversity between different

2The ComPtt characteristic is not included in this figure since there are only three categories.

14

InMem

OutMem

ReDist

MemAcc

Ops

OpMem
 MemAcc

Ops

OpMem

WghMem

MPR

PR

InMem
OutMem

ReDist

PR

MPR Maximum

Mean+1*Std

Mean

Mean-1*Std

Mean-2*Std

Cfg. A Cfg. B Cfg. C Cfg. D Cfg. E Cfg. F Cfg. G
Conv.

Pooling-Avg

Pooling-Max

FC

ReLU

Sigmoid

LRN

BN

Unpooling-Avg

Unpooling-Max

Deconv.

LSTM

Figure 3: Kiviat chart of all configurations of microbenchmarks.

15

A
ve

ra
ge

 R
eu

se
 D

is
ta

nc
e

(lo
g1

0)
0

1
2

3
4

5
6

7 Cfg. A Cfg. B Cfg. C Cfg. D Cfg. E Cfg. F Cfg. G

Conv.
Pooling−Avg

Pooling−Max

FC ReLU
Sigmoid

LRN BN Unpooling−Avg

Unpooling−Max

Deconv.
LSTM

Figure 4: Average reuse distances of microbenchmarks.

benchmarks, where the inter-layer diversity can be observed. Taking the normal
configuration Cfg. A as an example, the average reuse distance of Conv. (i.e., 3468)
is two orders of magnitude larger than that of FC (i.e., 24), see Figure 4.

Memory characteristics. Figure 4 shows the average reuse distances of all
microbenchmarks, where the reuse distance ranges from 1.2 to 3.8E+7. For the
normal configurations of most benchmarks, the reuse distances are less than 10 (e.g.,
Pooling, ReLU, and LRN), and thus designing an architecture with on-chip local
memory (i.e., cache or scratchpad memory) of 10× element size can significantly
reduce off-chip memory accesses (except for the Conv., FC, and Deconv). In an
extreme case such as Cfg. F of Conv, the reuse distance is more than 106, and an
on-chip memory buffer would be more than 10MB for holding all the data, which
is prohibitively costly with existing SRAM technology. In this case, the on-chip
eDRAM employed in DaDianNao [56] and on-die 3D-stacked DRAM [57] would
be a potential solution for alleviating the penalty of vast off-chip memory accesses
caused by large reuse distances.

Figure 5 further shows the reuse distances of all configurations of Conv. and FC,
which have a relatively large average reuse distance. For the Conv. layer, the reuse
distance ranges from 21 to 229 for the normal configurations. While for the extreme
configurations, the reuse distance would exceed 230, posing a higher challenge on
the underlying memory hierarchy. For the FC layer, the reuse distances can be
roughly classified into three groups: 22, 217, and 222. Thus, for the FC layer, it is
intuitive to customize the memory hierarchy with three levels to accommodate the
reuse distances listed above.

16

0 5 10
0
5

10
15
20
25
30

R
eu

se
 D

is
ta

nc
e

(lo
g2

)

0 5 10 0 5 10 0 5 10

CONV Cfg. A~G

0 5 10 0 5 10 0 5 10

0 5 10
0
5

10
15
20
25
30

R
eu

se
 D

is
ta

nc
e

(lo
g2

)

0 5 10 0 5 10 0 5 10
Accesses (log10)

FC Cfg. A~G

0 5 10 0 5 10 0 5 10

Figure 5: Reuse distances of all configurations of Conv. and FC.

Computation characteristics. Figure 7 shows the number of operations (Ops)
of all benchmarks, where the maximal number of operations could be 8E+12
(Cfg. F of Conv.). For the normal configurations, most Ops are less than 108, while
the Ops reach about 1010 in some cases. Given a specific benchmark, the Ops also
varies significantly to well demonstrate the diversity. A more detailed analysis is
the ratio of operations to memory access (i.e., OpMem). The layer with the highest
value is the Cfg. F of the Conv. layer (> 33), while the Cfg. F of the FC layer is
only 0.039. This observation is in accordance with the intuition that the Conv. layer
is compute intensive and the FC layer is relatively memory intensive.

Control characteristics. Figure 6 illustrates the MPR of all benchmarks. An
interesting observation is that the smallest configuration always has the highest
MPR compared with other configurations, as the number of computations is much
less than that of others. Another observation is that for the Pooling layer, the
MPR values of the average pooling and max pooling are completely different. For
example, for the normal configuration Cfg. A, the MPR of average pooling is less
than 0.5%, while the MPR of max pooling is about 4%. The underlying reason is
that max pooling consists of comparison operations that do not exist in average
pooling.

17

M
P

R
 (

%
)

0
2

4
6

8
Cfg. A Cfg. B Cfg. C Cfg. D Cfg. E Cfg. F Cfg. G

Conv.
Pooling−Avg

Pooling−Max

FC ReLU
Sigmoid

LRN BN Unpooling−Avg

Unpooling−Max

Deconv.
LSTM

Figure 6: MPR of microbenchmarks.

O
pe

ra
tio

ns
 (

lo
g1

0)
0

4
8

12

Cfg. A Cfg. B Cfg. C Cfg. D Cfg. E Cfg. F Cfg. G

Conv.
Pooling−Avg

Pooling−Max

FC ReLU
Sigmoid

LRN BN Unpooling−Avg

Unpooling−Max

Deconv.
LSTM

Figure 7: The number of operations of microbenchmarks.

2.3.3 Architecture perspective

From the architecture perspective, the benchmarks should be able to explore the
boundary of the processing ability of intelligence processors. This is achieved by
using the extreme configurations (Cfg. E∼G) of each benchmark. In addition, the
benchmarks should be timely and reflect future trends in the intelligence processors.

Stress testing. According to Figure 4, the average reuse distances of extreme
configurations are much larger than those of the normal configurations, exhibiting
different behaviors on conventional architectures. Given the Conv. layer as an
example, on a specific CPU (i.e., Intel i5-3470), the L2 cache miss rate of Cfg. F
(67%) is 8.4x larger than that of the normal configuration as Cfg. C (8%). Moreover,
the average reuse distances of extreme configurations in Conv., Deconv., and
LSTM are larger than those of others, which puts extreme pressure on the memory
hierarchy for these benchmarks. For example, the L3 cache miss rate of Cfg. C in
Conv. is 1.26x larger than that of Cfg. C in ReLU.

In Figure 7, the number of operations of the most extreme configurations is

18

larger than that of the normal configurations, except for Unpooling-Max. The
reason is that an extremely large unpooling window size leads to few operations.
Regarding the ratio of operations to memory access (OpMem), the extreme config-
urations are quite different from the normal configurations. Taking the Conv. layer
as an example, the OpMem of Cfg. F is 33.1, while the OpMem of Cfg. A is only
0.36. In this case, the memory system is more crucial for extreme configurations
than the normal ones.

Regarding the control characteristics in Figure 6, the extreme configurations
do not exhibit significantly different behaviors. For the ReLU layer, the MPR of
extreme configurations is almost the same as that of the normal configurations. A
potential reason is that the number of comparison operations increases in proportion
to the input size, leading to a comparable branch and misprediction ratio regardless
of the input size.

Future trends. We expect that there are at least two trends for deep learn-
ing. The first is that more algorithms and network structures will be proposed
for achieving higher accuracy on solving more generalized problems. As our
benchmarks already have sufficient diversity in terms of computation, memory, and
control behaviors, the problem can be alleviated to a certain extent. Besides, we
will also update the BENCHIP benchmark suite frequently to keep pace with the
rapid advance of deep learning by either adding new benchmarks or eliminating
out-of-date benchmarks. The second trend is that the network model tends to be
more compact by sacrificing accuracy for performance/energy efficiency. The
most notable techniques include the sparse model and low-precision models (e.g.,
models with an 8-bit fixpoint and even 1-bit values). To reflect this trend, for the
microbenchmarks, we provide sparse and 16-bit models for Conv. and FC that
requires weight values. For the macrobenchmarks, we provide sparse models for
LeNet-5, AlexNet, and VGG, as they are the basis of many others networks (e.g.,
Faster-RCNN and S2VT). The research community is very active in considering
both accuracy and architectural improvement, including pruning and compression.
In the future, we will update the benchmarks by providing more sparse networks
and models.

3 Benchmarking Methodology

In this section, we first present the guidelines and overview of the proposed
benchmarking methodology in BENCHIP. Then, we detail the benchmarking
framework.

19

Accuracy
Energy

Evaluation
Module

NN algorithm
Architecture

API

CPU GPU ACC

Caffe

Inputs

Weights

BLAS cuDNN IPLib

Performance

Figure 8: The overall framework of BENCHIP’s benchmarking methodology.
3.1 Guidelines and overview
BENCHIP has two main objectives. The first is to provide a reference toolset for
comparing emerging intelligence processors in a fair and easy-to-use fashion. The
second is to facilitate identifying performance/energy bottlenecks for potential
optimization. The benchmarking methodology should follow at least the following
guidelines:

• Creditability. The benchmarking methodology should replicate the real appli-
cation scenario.

• Portability. The benchmarking framework should be portable across different
platforms, i.e., CPUs, GPUs, and accelerators.

• Fairness. The benchmarking methodology should provide fair comparison
through specifying the rules and metrics.

To meet the above requirements, we offer a general software stack with a
portable interface for different intelligence processors, and the software stack is a
replicate of the most widely used industrial software stack, i.e., the stack consisting
of high-level programming model, high-performance library, and device driver.
The fairness is mainly guaranteed by specifying several benchmarking rules and
specially designed evaluation metrics.

3.2 Benchmarking framework
In Figure 8, the benchmarking framework is built upon Caffe [58], where all
necessary layers and networks are implemented. Currently, we support Caffe firstly
because it is a widely used production-quality framework. We will support other
software frameworks progressively. The descriptions of network architecture, input
datasets, and pre-trained synaptic weights are treated as standard inputs. The Caffe
framework interfaces with the underlying high-performance libraries for different
architectures—for example, BLAS for CPUs and cuDNN for GPUs. Given a new
hardware accelerator, the corresponding library should be offered, so as to be
integrated into the Caffe framework. The platform should be able to report the

20

performance and energy. Also, the entire framework should report the accuracy
of the neural networks. Finally, these individual results are sent to the evaluation
module for producing final evaluation results.

Benchmark specification. In BENCHIP, the following files are provided. (1)
Configuration file. Since the benchmarking framework is built upon Caffe, the
same configure file is used for describing the network architecture. In more detail,
we provide the Caffe-compatible .prototxt file to characterize both single-layer
and entire networks, specifying parameters of each layer and connections between
layers. Note that single layers are also considered as independent networks com-
posed of a data layer and the tested layer. (2) Learned parameters (e.g., weight
and bias for Conv and FC, γ for BN). For each single layer and entire network, the
.caffemodel file, where the parameters of every weight layer in that network are
stored, is offered. (3) Reference output. BENCHIP offers reference output to mea-
sure the precision of tested intelligence processors. Regarding microbenchmarks,
we provide input data and reference output data, and the difference between the
reference output and the computed output is measured using Mean Squared Error
(MSE). Regarding macrobenchmarks, since we select networks from different
application scenarios, the evaluated metrics vary as well. Intuitively, their original
metrics are employed. For example, we employ the Top-5 error rate for measuring
the networks that aim at image classification (e.g., AlexNet) and METEOR [59]
for networks targeting video captioning (e.g., S2VT).

Library interface. We provide a standard library interface, allowing con-
venient evaluation of different architectures with the Caffe-style framework. It
comprises a set of high-level function interfaces implemented in C/C++, each
of which corresponds to a basic operation in neural networks. Given a new
intelligence processor, the standard interface can be overriden with its own li-
brary. Listing 1 presents examples of such interfaces and how to implement
them with user-provided library. The accConvolutionLayer and virtual function
Forward acc() are provided by our benchmarking framework. The virtual func-
tion is then implemented by the user-provided library function accConvolutionForward().
We also provide an interface for fusing multiple layers—accFusionLayer::Forward acc()—
since some processors could be able to obtain better performance by eliminating
boundaries between consecutive layers. As shown in Listing 1, the standard inter-
face is implemented with the user-provided accMultiLayerForward() so as to
optimize the combined execution of the convolutional and pooling layers.

Evaluation metrics. There are four important design considerations for intel-
ligence processors: performance, energy, area, and accuracy. These are deployed
as the evaluation metrics. Performance and energy should be reported when run-

21

Listing 1: Example of Caffe implementation

// standard interface for a single layer

void accConvolutionLayer::Forward_acc(...) {

...

accConvolutionForward(...); // user-provided lib

...}

// standard interface for fused layers

void accFusionLayer::Forward_acc(...) {

...

accMultiLayerForward(Conv, Pool, ...); // user-provided lib

...}

ning the benchmarks. On CPUs and GPUs, such metrics can be collected using
PAPI [60] and nvsim, respectively. On the accelerator, if it is a simulation prototype,
the corresponding simulator should be able to report performance, energy, and area.
The collection of the accuracy metric is built into the framework as well.

For microbenchmarks, such metrics already cover various design tradeoffs,
and they are sufficient for optimization. For macrobenchmarks, we also provide
several synthesized scores for better evaluating design tradeoffs balancing, from
the efficiency perspective. Such efficiency includes operations per Joule as energy
efficiency, operations per second as computation efficiency and accuracy affected
by area savings as silicon efficiency.

With such direct and synthesized metrics, it is relatively easy to conduct plat-
form comparisons and optimizations in multiple dimensions, e.g., performance,
energy, and various efficiencies. This allows architects to consider potential designs
for flexibly balancing different tradeoffs. Given two platforms, macrobenchmarks
can be deployed on both platforms to obtain the overall evaluation results. With
there results, end-users can perform an overall comparison of these two plat-
forms within their interests. For the weak platform, the architects can leverage
microbenchmarks to conduct a problem diagnosis. For the better one, microbench-
marks can be used for further improvements.

4 Benchmarking with BenchIP

In this section, we show how to benchmark IPs by using BENCHIP. We first mea-
sure eight IPs (three CPUs, three GPUs and two accelerators) with macrobench-
marks to obtain the overall scores. Then, we delve into the details of the execution
efficiency of IPs using the fine-grained microbenchmarks.

22

... ... * +

 * + +

... NFU

... ... * +

 * + +

NBin

NBout

SB

IM

AM

Scalar Func.
Unit

Vector Func.
Unit

Matrix Func.
Unit

Co
nt

ro
l S

ig
na

ls

L1 Cache

Vector
Scratchpad

Memory

Matrix
Scratchpad

Memory

IO
 D

M
A

IO
 in

te
rf

ac
e

(a) ACC-1 (b) ACC-2

Figure 9: The frameworks of ACC-1 and ACC-2.

4.1 Evaluated IPs

CPU. We select three types of CPUs—CPU-E, CPU-D and CPU-S—for different
scenarios. CPU-E is an embedded processor, i.e., 4xA57 Atlas/2MB L2. CPU-D is
a desktop processor, i.e., Intel i5-3470@3.2GHz with 16GB memory. CPU-S is a
server processor, i.e., Intel E5-2620 v2@2.1GHz with 64GB memory.

GPU. Similarly, we select three GPUs with different levels of capabilities:
GPU-E, GPU-D, and GPU-S. GPU-E is a embedded GPU, i.e., Nvidia Maxwell
GeForce [61] (256 CUDA cores, 512 GFlops with FP32). GPU-D is a desktop
GPU, i.e., GeForce GTX950 [62] (640 CUDA cores, 2GB GDDR5, 1.57 TFlops).
GPU-S is a server GPU, i.e., Nvidia Tesla K40 [63] (2880 processors, 12GB
GDDR5, 4.29 TFlops).

ACC. We select two prototypes of ASIC IPs—ACC-1 and ACC-2—by care-
fully reimplementing DianNao [10] and Cambricon [25], respectively, with ex-
actly the same parameters in the papers. The reason for selecting DianNao and
Cambricon as prototypes of ACC-1 and ACC-2 is twofold. First, DianNao is a
notable accelerator that has moderate performance and cost that supports basic
matrix/vector operations in neural networks. Second, Cambricon is one of the few
accelerators that supports various kinds of neural network algorithms but still has
performance comparable with the state-of-the-art high-performance accelerator,
DaDianNao [56]. Thus, ACC-1 and ACC-2 can cover various scenarios.

In Figure 9, we present the framework of both ACC-1 and ACC-2. ACC-1
consists of a neural functional unit (NFU), an input/output neuron buffer (NBin/N-
Bout), a synaptic buffer (SB), an indexing module (IM), and an assemble module
(AM). Note that we modify the architecture of DianNao to produce ACC-1, by
adding several features such as sparsity (i.e., IM). ACC-2 consists of a matrix
function unit (MFU), a vector function unit (VFU), a scalar function unit (SFU),
an address generation unit (AGU), and companied scratchpad memory.

23

Lo
g1

0(
O

ps
./s

ec
.)

 (
G

O
P

S
)

−
1

1
2

3
4 CPU−E

CPU−S
CPU−D
GPU−E

GPU−D
GPU−S

ACC−1
ACC−2

LeNet−5
Sparse LeNet−5

RNN
AlexNet

Sparse AlexNet

VGG
Sparse VGG

ResNet
Faster R−CNN

Deep Face Recog.

DeconvNet

FCLN
S2VT

SyntaxNet

GeoMean

Figure 10: Giga operations per second.

4.2 Benchmarking with macrobenchmarks

In Figure 10 and 11, we report the synthesized scores from the efficiency perspec-
tive, i.e., energy efficiency using giga operations per Joule (GOPJ) and perfor-
mance efficiency using giga operations per second (GOPS). Further, we report the
fine-grained metrics, i.e., performance and energy, in Figure 12 and 13, respec-
tively. We focus on performance and energy because area and accuracy basically
do not vary across different macrobenchmarks and IPs, respectively. Thus, we
have the following observations. Here also note that the overhead of the Caffe
software stack is small, less than 2% of the total runtime on CPUs/GPUs. And for
all the customized intelligence processors, we fetch end-to-end measured data for
benchmarking. Thus, the results would not be affected by software stack.

Observation #1. Embedded CPUs trade performance for silicon cost reduction
better than energy efficiency. Lightweight embedded CPUs are well known for
being suitable for power limited scenarios such as embedded systems, mainly
because of their low energy costs. Interestingly, as we observed, an embedded
CPU, i.e., CPU-E, improves silicon area utilization better than energy efficiency.
CPU-E achieves 9.22x and 11.11x better silicon area utilization but only 6.91x and
2.23x better efficiency in utilizing every joule for computation (GOPJ) than CPU-S
and CPU-D, 5.03x and 3.12x slower in performance, respectively.

Observation #2. GPUs still improve energy efficiency as well as provide high
performance efficiency. GPUs let applications exploit parallelism with tremendous
computation units and memory bandwidth, which motivated their widely usage
in intelligence processing. As observed, we confirmed that GPUs still leverage
the energy for more operations [64]. On average, GPU-E, GPU-D and GPU-S
achieve 4.65x, 23.14x, and 31.55x better computation efficiency than CPU-D

24

while still achieving certain improvements in energy efficiency, i.e., 5.74x, 7.02x,
and 10.15x, respectively. Interestingly, GPU-D has the best utilization of such a
tradeoff. Regarding the efficiencies, GPU-D achieves relatively high performance
and energy efficiency, i.e., 69.17% of GPU-E (122.42% of GPU-S) in GOPJ and
73.33% of GPU-S (497.99% of GPU-E) in GOPS. When detailed in energy costs
and execution times, compared to GPU-S, GPU-D has 0.84x energy consumption
and 1.41x slower performance with 40.64% area cost. Moreover, GPU-D achieves
4.91x speedup over GPU-E and 1.47x energy costs, with 1.43x more area cost.

Observation #3. Customized accelerators provide significantly better energy
efficiency with a relatively lower performance efficiency improvement and silicon
area cost reduction. We observed that ACC-1 and ACC-2 achieve 1.69x and 4.26x
performance efficiency but 220.10x and 170.80x energy efficiency when compared
against GPU-D, and 39.21x and 98.55x performance efficiency but 1545.78x
and 1199.56x energy efficiency when compared against CPU-S. Regarding both
performance and energy efficiency, ACC-1 and ACC-2 have higher utilization
in silicon area, i.e., 44.31%/4.00% and 390.06%/35.15 of smallest/largest CPU
(CPU-E/CPU-S), 18.77%/165.42% and 1.14%/10.03% of smallest/largest GPU
(GPU-E/GPU-S).

Observation #4. ACC-1 is more efficient than ACC-2, which complies with
the intuition that with sparse support the accelerator benefits from such sparsity.
Interestingly, ACC-1 is more efficient than ACC-2 in GOPJ (1.29x) but 39.79%
inefficient in GOPS. Moreover, due to the sparsity, ACC-1 is slightly more efficient
in GOPJ, where ACC-1 has a 2.99x speedup on average with sparse support and
ACC-2 gains nothing as it processes no differently on sparse and dense networks.
Furthermore, note that despite the very small network LeNet-5, both CPUs and
GPUs cannot leverage the benefit of computations and data amount reduction due
to sparsity, i.e., 2.09x and 4.15x slower when compared against dense version.
When detailed in energy costs and execution times, ACC-1 performs 2.51x slower
than ACC-2 but costs 1.29x less in energy and has far less area cost, averaging on
all macrobenchmarks.

In short, while using BENCHIP, we made the following observations from
the efficiency perspective:(1) embedded CPUs trades performance efficiently for
small area better than low power, (2) GPUs focus on performance improvement
but still improve the energy efficiency, and desktop GPUs have the best tradeoff,
(3)customized accelerators are suitable for almost all scenarios, and (4) accelerators
with sparse support are much better than their dense counterparts.

25

Lo
g1

0(
O

ps
./J

ou
le

)
(G

O
P

J)
−1

1
2

3
4

CPU−E
CPU−S

CPU−D
GPU−E

GPU−D
GPU−S

ACC−1
ACC−2

LeNet−5
Sparse LeNet−5

RNN
AlexNet

Sparse AlexNet

VGG
Sparse VGG

ResNet
Faster R−CNN

Deep Face Recog.

DeconvNet

FCLN
S2VT

SyntaxNet

GeoMean

Figure 11: Giga operation per joule.

S
pe

ed
up

s
(lo

g1
0)

0
1

2
3

4 CPU−S
CPU−D

GPU−E
GPU−D

GPU−S
ACC−1

ACC−2

LeNet−5
Sparse LeNet−5

RNN
AlexNet

Sparse AlexNet

VGG
Sparse VGG

ResNet
Faster R−CNN

Deep Face Recog.

DeconvNet

FCLN
S2VT

SyntaxNet

GeoMean

Figure 12: Speedups of evaluated IPs with macrobenchmarks (Normalized to
CPU-E).

4.3 Benchmarking with microbenchmarks

For the platforms with relatively low/high scores, we can study the reasons for the
inefficiency/efficiency with microbenchmarks. As illustrative examples, we further
evaluate especially CPU-D, GPU-E, and ACC-2 with microbenchmarks, as they
perform worse on macrobenchmarks. In Figure 14, we shown the performance of
IPs on certain microbenchmarks, i.e., Conv., FC, ReLU, and Deconv., which cover
all three computation patterns (corresponding to RD, RD, EW, and EL).

Regarding observation #1, the desktop-level CPU-D achieves better perfor-
mance than both CPU-E and the server end CPU-S, i.e., 5.03x and 1.61x on average,
respectively, as shown in Figure 12. Averaging on microbenchmarks with all the
configurations, CPU-D achieves results consistent with those on macrobenchmarks,
with 3.41x and 1.48x speedups over CPU-E and CPU-S. Also CPUs perform uni-

26

E
ne

rg
y

E
ffi

ci
en

cy
 (

lo
g1

0)
0

1
2

3
4

5 CPU−E
CPU−D

GPU−E
GPU−D

GPU−S
ACC−1

ACC−2

LeNet−5
Sparse LeNet−5

RNN
AlexNet

Sparse AlexNet

VGG
Sparse VGG

ResNet
Faster R−CNN

Deep Face Recog.

DeconvNet

FCLN
S2VT

SyntaxNet

GeoMean

Figure 13: Normalized energy consumption of evaluated IPs with macrobench-
marks (Normalized to CPU-S).

formly on normal or larger configurations (Cfg. A∼Cfg. C, Cfg. D∼Cfg. G), where
the speedups vary from 3.36x/1.50x to 4.07x/1.61x.

Regarding observation #2, the embedded system GPU, GPU-E, does not always
have a shorter execution time than the CPUs, especially on small networks (LeNet-
5 and sparse LeNet-5). With the microbenchmarks, we observe that GPU-E
has 0.02x speedup on average compared against CPU-D on Cfg. D which is the
extremely small cases. GPUs cannot take full advantage of their high computational
power because the small computational kernels map poorly on their hundreds and
thousands of threads.

Regarding observation #4, ACC-2 achieves the best performance on every
macrobenchmark and it is the same for all the microbenchmarks, i.e., a 2.2x
speedup averagely. Moreover, compared against ACC-1, ACC-2 performs better on
large configurations (3.19x speedup) than normal configurations (1.80x speedup)
where its high parallelism and throughput (peak performance of 2114 GOPS) can
be well leveraged.

Additionally, ACC-1 achieves better performance than all the CPUs and GPUs
on most CNNs and DNNs but fails on complex and irregular networks such
as ResNet and DeconvNet. It is because ACC-1 is designed to efficiently process
CNNs/DNNs. Thus, ACC-1 obtains a performance benefit over GPU-S on layers
commonly used in CNNs and DNNs, i.e., Conv. (1.43x) and FC (16.25x).

ACC-1 can be very effective on small networks, as it performs 217.78x faster
than GPU-S on Cfg. D. On normal configurations such as Cfg. A∼C, ACC-1 can
still keep its efficiency with a 1.71x speedup. However, on heavy workloads, GPUs
can well leverage their high parallelism. Thus, ACC-1 cannot exceed GPU-S
(0.65x speedup on Cfg. D∼G).

27

5 Discussion

Overall Score. In current version, we do not provide an overall score for dif-
ferent IPs. The reason is two-fold. First, most architecture designs involve a
multi-dimension optimization process where architects make decisions on a series
of tradeoffs that leads to a final design for some specific targets. Thus, in such
case detailed evaluation results can be used directly for design improvement and
an overall score would be meaningless. Second, overall scores appropriate for
various platforms, e.g., CPU, GPU, FPGA, DSP, and customized accelerators
do not exist. One possible definition of an overall score could be the overall
efficiency, i.e., synthesizing energy efficiency, performance efficiency, and sili-
con efficiency. For example, the overall efficiency equation can be defined as
GeoMean(f (Ops

Energy)×g(Ops
Times)×h(Acc/Re f acc

Area)), where the f (·), g(·) and h(·) are
potential scaling/mapping functions. However, due to the huge gaps among various
platforms, those functions can only be user-defined or fitting equations learning
from collected data after BENCHIP is opened for public. Therefore, at present we
only provide direct measured metrics and synthesized efficiency scores.

6 Related Work

We review related work from three aspects: neural network models, accelerators,
and benchmarks.

Models. In recent years, deep learning has been applied to various scenarios
and achieved great success. For image recognition, variants of CNNs, as powerful
feature extractors, are applied to different tasks (e.g., image classification and
face recognition) [1, 2, 42, 44]. Image/video captioning adopts both CNN and
LSTM for extracting features and generating sentences, respectively [4, 47]. In
semantic segmentation, deconvolution and unpooling are used for reconstructing
features [46]. In addition to image processing, deep learning also achieves great
performance on speech recognition [65], and natural language processing [50],
where LSTM/RNN are the core learning models. Such diverse scenarios have
led to a number of variants of neural network architectures and models that have
seldom been considered in previous studies of neural network accelerators.

Accelerators. With the growing consensus that CPUs and GPUs, as the tradi-
tional platforms for running neural network models, are not able to provide high
energy-efficiency for specific workloads like CNN, researchers began to seek the
possibility of implementing neural networks on other platforms (e.g., FPGA [9]

28

c(0, 0)

c(
10

, 1
0)

CPU−E CPU−S CPU−D GPU−E GPU−D GPU−S ACC−1 ACC−2

Lo
g1

0(
P

er
fo

rm
an

ce
)

(m
s)

0

10^−2

10^0

10^2

10^4

10^6

Lo
g1

0(
E

xe
cu

tio
n

T
im

e)
 (

m
s)

Conv.

Lo
g1

0(
P

er
fo

rm
an

ce
)

(m
s) FC

Lo
g1

0(
P

er
fo

rm
an

ce
)

(m
s)

0

10^−2

10^0

10^2

10^4
ReLU

Cfg. A
Cfg. B

Cfg. C
Cfg. D

Cfg. E
Cfg. F

Cfg. G
GeoMean

Lo
g1

0(
P

er
fo

rm
an

ce
)

(m
s)

Cfg. A
Cfg. B

Cfg. C
Cfg. D

Cfg. E
Cfg. F

Cfg. G
GeoMean

Deconv.

Figure 14: Performance of IPs on microbenchmarks (Conv., FC, ReLU and De-
conv).

and ASIC [10,12,23,24,54,56]). The DianNao family [10,54,56] contains a series
of neural network processors to support most operations of CNN and DNN.

Han et al. [12] designed EIE, which is a specially optimized architecture for
sparse networks. Chi et al. [23] designed PRIME, a PIM architecture which accel-
erates NN algorithms in ReRAM-based main memory. The above studies evaluate
their processors on different sets of deep learning operations and configurations,
making it impossible to compare two processors in a fair fashion.

Benchmarks. Though the exploration of intelligence processors continues to
grow, a suitable benchmark for the evaluation and optimization of such hardware is
still absent. BenchNN and DeepBench are two benchmarks that partially address
this problem. However, due to their non-diversity and nonrepresentativeness, they
cannot be used for designing and optimizing state-of-the-art intelligence processors.
In the computer architecture community, several benchmarks have already been
used. Chen et al. [56] used 10 layers all extracted from AlexNet and two customized
RBMs for evaluation. Chi et al. [23] employed six networks, five extracted from
LeNet-5 and one from VGG. Han et al. employed nine DNNs extracted from
AlexNet, VGG, and Neural Talk [66]. Shafiee et al. [24] employed seven CNNs
(four from VGG, three from MSRA [67]), and two DNNs (one from DeepFace [68]
and the other one from [69]). Due to the lack of a standard benchmark suite,
employing such personalized benchmarks in the design of existing neural network
accelerators is relatively casual, which is unsuitable for benchmarking intelligence
processors.

29

7 Conclusions
This paper proposes BENCHIP, a benchmark suite and methodology for bench-
marking intelligence processors. The benchmark suite of BENCHIP consists of
two sets of benchmarks, i.e., microbenchmarks and macrobenchmarks—for fair
comparison and system optimization. The benchmark methodology is built upon
an industrial software stack consisting of a high-level programming model, library,
and device driver. We also provide evaluation metrics for comprehensively re-
flecting the various characteristics of the intelligence processors being evaluated.
BENCHIP is employed to evaluate various hardware platforms, including CPUs,
GPUs, and neural network accelerators. BENCHIP, which is already being used in
several companies, will be open-sourced soon to facilitate the design and evaluation
of intelligence processors in a broad sense.

References
[1] A. Krizhevsky, G. E. Hinton, I. Sutskever, and G. E. Hinton, “ImageNet Clas-

sification with Deep Convolutional Neural Networks,” Advances In Neural
Information Processing Systems, pp. 1–9, 2012.

[2] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for
Large-Scale Image Recoginition,” pp. 1–14, 2015.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in arXiv prepring arXiv:1506.01497, 2015.

[4] S. Venugopalan, M. Rohrbach, J. Donahue, R. J. Mooney, T. Darrell, and
K. Saenko, “Sequence to sequence – video to text,” in Proceedings of the
2015 International Conference on Computer Vision (ICCV’15), 2015.

[5] O. Abdel-Hamid, A. rahman Mohamed, H. Jiang, L. Deng, G. Penn, and
D. Yu, “Convolutional neural networks for speech recognition,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing, vol. 22, pp. 1533–
1545, 2014.

[6] A. Eriguchi, K. Hashimoto, and Y. Tsuruok, “Tree-to-sequence attentional
neural machine translation,” in Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (ACL’16), 2016.

30

[7] “The nvidia dgx-1 deep learning system.” NVIDIA DGX-1.

[8] C. Farabet, C. Poulet, J. Y. Han, and Y. LeCun, “Cnp: An fpga-based pro-
cessor for convolutional networks,” in Proceedings of the 2009 International
Conference on Field Programmable Logic and Applications (FPL’09), pp. 32–
37, 2009.

[9] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
fpga-based accelerator design for deep convolutional neural networks,” in
Proceedings of the 2015 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (FPGA’15), pp. 161–170, 2015.

[10] T. Chen, Z. Du, N. Sun, J. Wang, and C. Wu, “DianNao: a small-footprint
high-throughput accelerator for ubiquitous machine-learning,” in Proceedings
of the 19th international conference on Architectural support for program-
ming languages and operating systems (ASPLOS), (Salt Lake City, UT, USA),
pp. 269–284, 2014.

[11] C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello, and Y. LeCun,
“NeuFlow: A runtime reconfigurable dataflow processor for vision,” in IEEE
Computer Society Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), pp. 109–116, Ieee, jun 2011.

[12] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally,
“EIE: Efficient Inference Engine on Compressed Deep Neural Network,”
in Proceedings of the 43th Annual International Symposium on Computer
Architecture (ISCA’16), vol. 16, 2016.

[13] “The standard performance evaluation corporation (spec).” SPEC CPU.

[14] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC benchmark
suite: Characterization and architectural implications,” in Proceedings of
the International Conference on Parallel Architectures and Compilation
Techniques, pp. 72–81, 2008.

[15] M. Alwani, H. Chen, M. Ferdman, and P. Milder, “Fused-layer CNN ac-
celerators,” in 2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pp. 1–12, 2016.

31

[16] P. Judd, J. Albericio, and A. Moshovos, “Stripes: Bit-Serial Deep Neural Net-
work Computing,” in 2016 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), vol. 6056, pp. 1–1, 2016.

[17] M. Rhu, N. Gimelshein, J. Clemons, A. Zulfiqar, and S. W. Keckler, “Virtual-
izing Deep Neural Networks for Memory-Efficient Neural Network Design,”
in 2016 49th Annual IEEE/ACM International Symposium on Microarchitec-
ture (MICRO), 2016.

[18] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen, and
Y. Chen, “Cambricon-X : An Accelerator for Sparse Neural Networks,” in
Proceedings of the 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO-49), 2016.

[19] Y. Ji, Y. Zhang, S. Li, P. Chi, C. Jiang, P. Qu, Y. Xie, and W. Chen, “NEU-
TRAMS : Neural Network Transformation and Co-design under Neuromor-
phic Hardware Constraints,” in 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), no. October, 2016.

[20] D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopadhyay, “Neu-
rocube: A Programmable Digital Neuromorphic Architecture with High-
Density 3D Memory,” in 2016 ACM/IEEE 43rd Annual International Sympo-
sium on Computer Architecture (ISCA), pp. 380–392, 2016.

[21] R. LiKamWa, Y. Hou, Y. Gao, M. Polansky, and L. Zhong, “RedEye: Analog
ConvNet Image Sensor Architecture for Continuous Mobile Vision,” in 2016
ACM/IEEE 43rd Annual International Symposium on Computer Architecture
(ISCA), pp. 255–266, 2016.

[22] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and
A. Moshovos, “Cnvlutin: Ineffectual-Neuron-Free Deep Neural Network
Computing,” in 2016 ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA), pp. 1–13, 2016.

[23] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie, “PRIME:
A Novel Processing-in-Memory Architecture for Neural Network Compu-
tation in ReRAM-Based Main Memory,” in 2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture (ISCA), pp. 27–39, 2016.

[24] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan,
M. Hu, R. S. Williams, and V. Srikumar, “Isaac: A convolutional neural

32

network accelerator with in-situ analog arithmetic in crossbars,” in 2016
ACM/IEEE 43rd Annual International Symposium on Computer Architecture
(ISCA), pp. 14–26, June 2016.

[25] S. Liu, Z. Du, J. Tao, D. Han, T. Luo, Y. Xie, Y. Chen, and T. Chen, “Cam-
bricon: An Instruction Set Architecture for Neural Networks,” in 2016
ACM/IEEE 43rd Annual International Symposium on Computer Architecture
(ISCA), pp. 393–405, 2016.

[26] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A Spatial Architecture for Energy-
Efficient Dataflow for Convolutional Neural Networks,” in 2016 ACM/IEEE
43rd Annual International Symposium on Computer Architecture (ISCA),
pp. 367–379, 2016.

[27] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee, J. M.
Hernandez-Lobato, G.-Y. Wei, and D. Brooks, “Minerva: Enabling Low-
Power, Highly-Accurate Deep Neural Network Accelerators,” in 2016
ACM/IEEE 43rd Annual International Symposium on Computer Architecture
(ISCA), pp. 267–278, 2016.

[28] L. Song, X. Qian, H. Li, and Y. Chen, “PipeLayer : A Pipelined ReRAM-
Based Accelerator for Deep Learning Basics of Deep Neural Network,” in
Proceedings of The 23rd IEEE Symposium on High Performance Computer
Architecture (HPCA), 2017.

[29] W. Lu, G. Yan, J. Li, S. Gong, Y. Han, and X. Li, “FlexFlow: A Flexible
Dataflow Accelerator Architecture for Convolutional Neural Networks,” in
Proceedings of The 23rd IEEE Symposium on High Performance Computer
Architecture (HPCA), pp. 553–564, 2017.

[30] W. Wzr, V. Surfhvv, L. V. Ghsor, H. G. Rq, K. Hqg, D. Rq, P. D. Q. Fk-
doohqjlqj, P. Ohduqlqj, H. J. L. W. Wdnhv, W. Zhhnv, W. R. Wudlq, R. Q.
Irxu, and K. Hqg, “Towards Pervasive and User Staisfactory CNN across
GPU Microarchitecture,” in Proceedings of The 23rd IEEE Symposium on
High Performance Computer Architecture (HPCA), 2017.

[31] T. Chen, Y. Chen, M. Duranton, Q. Guo, A. Hashmi, M. Lipasti, A. Nere,
S. Qiu, M. Sebag, and O. Temam, “BenchNN: On the broad potential applica-
tion scope of hardware neural network accelerators,” 2012 IEEE International
Symposium on Workload Characterization (IISWC), pp. 36–45, nov 2012.

33

[32] B. Research, “Deepbench,” 2016.

[33] R. Adolf, S. Rama, B. Reagen, G.-y. Wei, and D. Brooks, “Fathom: Reference
Workloads for Modern Deep Learning Methods,” in 2016 IEEE International
Symposium on Workload Characterization (IISWC), 2016.

[34] F. Murtagh and M. Hernández-Pajares, “The kohonen self-organizing map
method: An assessment,” Journal of Classification, vol. 12, no. 2, pp. 165–
190, 1995.

[35] S. Ren, K. He, and R. Girshick, “Faster-R-Cnn-Towards-Real-Time-Object-
Detection-With-Region-Proposal-Networks,” in Advances in neural informa-
tion processing systems, pp. 1–9, 2015.

[36] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net: Ima-
geNet Classification Using Binary Convolutional Neural Networks,” arXiv
preprint, pp. 1–17, 2016.

[37] H. Song, J. Pool, J. Tran, and W. J. Dally, “Learning Both Weights and Con-
nections for Efficient Neural Networks,” in Advances in Neural Information
Processing Systems (NIPS’15), pp. 1135—-1143, 2015.

[38] Y. LeCun, L. L. Bottou, Y. Bengio, and P. Haffner, “Gradient-Based Learning
Applied to Document Recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278– 2324, 1998.

[39] A. Graves and N. Jaitly, “Towards End-To-End Speech Recognition with
Recurrent Neural Networks,” JMLR Workshop and Conference Proceedings,
vol. 32, no. 1, pp. 1764–1772, 2014.

[40] M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz, “Building a large an-
notated corpus of English: The Penn Treebank.,” Computational Linguistics,
vol. 19, no. 2, pp. 313–330, 1993.

[41] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet
Large Scale Visual Recognition Challenge,” p. 37, sep 2014.

[42] K. He, “Deep Residual Learning for Image Recognition,”

34

[43] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisser-
man, “The PASCAL Visual Object Classes Challenge 2012 (VOC2012)
Results.” http://www.pascal-network.org/challenges/VOC/voc2012/ work-
shop/index.html.

[44] O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep Face Recognition,” in
Procedings of the British Machine Vision Conference 2015, no. Section 3,
pp. 41.1–41.12, 2015.

[45] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, “Labeled faces in
the wild: A database for studying face recognition in unconstrained environ-
ments,” Tech. Rep. 07-49, University of Massachusetts, Amherst, October
2007.

[46] H. Noh, S. Hong, and B. Han, “Learning Deconvolution Network for Seman-
tic Segmentation,” in The IEEE International Conference on Computer Vision
(ICCV), vol. 1, 2015.

[47] J. Johnson, A. Karpathy, and L. Fei-Fei, “DenseCap: Fully Convolutional
Localization Networks for Dense Captioning,” arXiv preprint, 2015.

[48] S. Venugopalan, M. Rohrbach, T. Darrell, J. Donahue, K. Saenko, and
R. Mooney, “Sequence to Sequence - Video to Text,” in Proceedings of
the IEEE International Conference on Computer Vision, pp. 4534–4542,
2015.

[49] D. L. Chen and W. B. Dolan, “Collecting Highly Parallel Data for Paraphrase
Evaluation,” Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics, pp. 190–200, 2011.

[50] D. Andor, C. Alberti, D. Weiss, A. Severyn, A. Presta, K. Ganchev, S. Petrov,
and M. Collins, “Globally Normalized Transition-Based Neural Networks,”
in arXiv preprint, pp. 2442–2452, 2016.

[51] A. Phansalkar, A. Joshi, and L. K. John, “Analysis of redundancy and appli-
cation balance in the spec cpu2006 benchmark suite,” in Proceedings of the
34th Annual International Symposium on Computer Architecture (ISCA’07),
pp. 412–423, 2007.

35

[52] J. D. McCalpin, “Memory bandwidth and machine balance in current high
performance computers,” IEEE Computer Society Technical Committee on
Computer Architecture (TCCA) Newsletter, pp. 19–25, 1995.

[53] J. M. Bull and D. O’Neill, “A microbenchmark suite for openmp 2.0,”
SIGARCH Comput. Archit. News, vol. 29, no. 5, pp. 41–48, 2001.

[54] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, X. Feng, Y. Chen, and O. Temam,
“ShiDianNao: Shifting Vision Processing Closer to the Sensor,” in Proceed-
ings of the 42nd Annual International Symposium on Computer Architecture,
pp. 92–104, 2015.

[55] C. Ding and Y. Zhong, “Predicting whole-program locality through reuse
distance analysis,” in Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), pp. 245–257,
2003.

[56] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu,
N. Sun, and O. Temam, “DaDianNao: A Machine-Learning Supercomputer,”
in Proceedings of the 47th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO-47), pp. 609–622, 2015.

[57] J. T. Pawlowski, “Hybrid memory cube: breakthrough dram performance
with a fundamentally re-architected dram subsystem,” in Proceedings of the
23rd Hot Chips Symposium (HotChips’11), 2011.

[58] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadar-
rama, and T. Darrell, “Caffe: Convolutional architecture for fast feature
embedding,” arXiv preprint arXiv:1408.5093, 2014.

[59] M. Denkowski and A. Lavie, “Meteor Universal: Language Specific Transla-
tion Evaluation for Any Target Language,” pp. 376–380, 2014.

[60] P. J. Mucci, S. Browne, C. Deane, and G. Ho, “Papi: A portable interface
to hardware performance counters,” in In Proceedings of the Department of
Defense HPCMP Users Group Conference, pp. 7–10, 1999.

[61] NVIDIA, “Nvidia tegra x1: Nvidia’s new mobile superchip.”

[62] NVIDIA, “Geforce gtx 950m: specifications.”

36

[63] NVIDIA, “Nvidia tesla gpu accelerators.”

[64] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco, “GPUs
and the future of parallel computing,” IEEE Micro, vol. 31, no. 5, pp. 7–17,
2011.

[65] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with deep re-
current neural networks,” in 2013 IEEE international conference on acoustics,
speech and signal processing, pp. 6645–6649, IEEE, 2013.

[66] A. Karpathy and F. Li, “Deep visual-semantic alignments for generating
image descriptions,” in IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015, pp. 3128–3137,
2015.

[67] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification,” in Proceedings of the
2015 IEEE International Conference on Computer Vision (ICCV), ICCV ’15,
(Washington, DC, USA), pp. 1026–1034, IEEE Computer Society, 2015.

[68] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Closing the gap
to human-level performance in face verification,” in Proceedings of the 2014
IEEE Conference on Computer Vision and Pattern Recognition, CVPR ’14,
(Washington, DC, USA), pp. 1701–1708, IEEE Computer Society, 2014.

[69] Q. V. Le, M. Ranzato, R. Monga, M. Devin, G. Corrado, K. Chen, J. Dean,
and A. Y. Ng, “Building high-level features using large scale unsupervised
learning,” in Proceedings of the 29th International Conference on Machine
Learning, ICML 2012, Edinburgh, Scotland, UK, June 26 - July 1, 2012,
2012.

37

	1 Introduction
	1.1 Motivation
	1.2 Our work

	2 The Benchmark Suite
	2.1 Design requirements
	2.2 Benchmarks
	2.2.1 Microbenchmarks
	2.2.2 Macrobenchmarks

	2.3 Benchmark analysis
	2.3.1 Characteristics
	2.3.2 Application perspective
	2.3.3 Architecture perspective

	3 Benchmarking Methodology
	3.1 Guidelines and overview
	3.2 Benchmarking framework

	4 Benchmarking with BenchIP
	4.1 Evaluated IPs
	4.2 Benchmarking with macrobenchmarks
	4.3 Benchmarking with microbenchmarks

	5 Discussion
	6 Related Work
	7 Conclusions

