
Gui CY, Zheng L, He BS et al. A survey on graph processing accelerators: Challenges and opportunities. JOURNAL OF

COMPUTER SCIENCE AND TECHNOLOGY

A Survey on Graph Processing Accelerators: Challenges and
Opportunities

Chuang-Yi Gui1, Student Member, CCF, Long Zheng1,∗, Member, CCF, ACM, IEEE
Bing-Sheng He3, Senior Member, IEEE, Member, ACM, Cheng Liu2,3, Xin-Yu Chen3

Xiao-Fei Liao1, Senior Member, CCF, Member, IEEE and Hai Jin1, Fellow, CCF, IEEE, Member, ACM

1National Engineering Research Center for Big Data Technology and System/Services Computing Technology and System
Lab/Cluster and Grid Computing Lab, School of Computer Science and Technology, Huazhong University of Science and
Technology, Wuhan, 430074, China
2Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China
3School of Computing, National University of Singapore, 117418, Singapore

E-mail: {chygui, longzh}@hust.edu.cn; hebs@comp.nus.edu.sg; liucheng@ict.ac.cn; xinyuc@comp.nus.edu.sg;
{xfliao, hjin}@hust.edu.cn

Received July xx, 2018; revised January xx, 2019.

Abstract Graph is a well known data structure to represent the associated relationships in a variety of applications, e.g.,

data science and machine learning. Despite a wealth of existing efforts on developing graph processing systems for improving

the performance and/or energy efficiency on traditional architectures, dedicated hardware solutions, also referred to as graph

processing accelerators, are essential and emerging to provide the benefits significantly beyond those pure software solutions

can offer. In this paper, we conduct a systematical survey regarding the design and implementation of graph processing

accelerator. Specifically, we review the relevant techniques in three core components toward a graph processing accelerator:

preprocessing, parallel graph computation and runtime scheduling. We also examine the benchmarks and results in existing

studies for evaluating a graph processing accelerator. Interestingly, we find that there is not an absolute winner for all three

aspects in graph acceleration due to the diverse characteristics of graph processing and complexity of hardware configurations.

We finially present to discuss several challenges in details, and to further explore the opportunities for the future research.

Keywords graph processing, domain-specific architecture, performance, energy efficiency

1 Introduction

For a wide variety of applications, e.g., date sci-

ence, machine learning, social networks, roadmap and

genomics, graph is expressive to represent the inher-

ent relationships between different entities. Therefore,

graph processing has become a hot topic for solving

many real-world problems in both academia and in-

dustry. With the growing development of Internet of

Things and cloud computing, the size and complexity

of graphs are still expanding. This poses great chal-

lenges for modern graph processing eco-systems in both

performance and energy efficiency.

There are a large number of studies that attempt

to use software solutions to improve the performance

and energy efficiency of graph processing. From dis-

tributed computing environment[1, 2], to single high-

end server[3], to the commodity personal computer[4, 5],

Survey Paper

This work is supported by the National Key Research and Development Program of China under Grant No. 2018YFB1003502,
National Natural Science Foundation of China under Grant Nos. 61825202, 61832006, 61628204 and 61702201, and China Postdoctoral
Science Foundation Grant Nos. 2018T110765 and 2018M630862.

∗Corresponding Author

©2019 Springer Science + Business Media, LLC & Science Press, China

ar
X

iv
:1

90
2.

10
13

0v
1

 [
cs

.D
C

]
 2

6
Fe

b
20

19

2 J. Comput. Sci. & Technol., January 2019, Vol., No.

these systems basically make tremendous efforts on

software optimizations for programmability, high per-

formance and scalability under traditional architec-

tures. In an effort to accelerate graph workloads, multi-

core CPUs and GPUs have been recently adopted to ex-

pose a high degree of parallelism for high perfromance

graph iteration, e.g., Medusa[6], Cusha[7], GunRock[8],

Frog[9], MapGraph[10] and Enterprise[11].

Despite a large number of software solutions, the

potentials of graph processing on performance and en-

ergy efficiency are still bounded to current hardware

architectures. Real-world graphs often follow a power-

law distribution in the sense that most of vertices are

associated with a few edges, leading to the fact that

prohibitive memory access overhead and low efficiency

have occurred on general-purpose processors[12–15]. The

irregularity in graph processing inherently fall short in

exploiting memory- and instruction-level parallelism on

traditional processors. It is also observed in the previ-

ous studies that a wealth of memory bandwidth is ac-

tually under-utilized for graph processing on existing

commodity multi-core architectures[15–18].

Though GPUs have demonstrated compelling per-

formance on graph processing[6–8,19], they still suffer

from key issues in terms of control and memory diver-

gence, load imbalance and superfluous global memory

accesses. More important is that CPUs and GPUs are

known for relatively high energy consumption. With

the end of Moore’s law, using pure software solutions on

traditional architectures is often extremely-difficult to

fill the significant gap between the general-purpose ar-

chitectures and the graph-specific computation for seek-

ing the top performance of graph processing.

Decicated Hardware Resources (ASIC, FPGA, HMC, ReRAM, Flash)

Edge-centric Hybrid

ASIC PIM

Runtime Scheduling

E
v
a
lu

a
tio

n

BFS SSSP PageRank CC

Parallelism Memory Energy

Applications ...

Vertex-centric

FPGA

Sophisticated

Co-design

Hardware

Acceleration

Iterative
Paradigm

Graph Layout

Reorganization

Graph

Partitioning
Graph OrderingPreprocessing

P
a
ra

lle
l
G

ra
p
h

C
o

m
p
u
ta

ti
o
n

Fig.1. Building blocks for graph processing accelerators (with
three major aspects: preprocessing, parallel graph computation
and runtime scheduling)

For graph processing, architectural innovation is im-

perative. Hennessy and Patterson have also identified

the importance, trend and opportunities of Domain-

specific Architecture (DSA) in their recent technical

report[20]. It is pointed out that open sourced archi-

tectural implementationsÀ are the key for the innova-

tions on hardware design[21]. The agile chip develop-

ment can also shorten the development cycle for DSA

prototypes[22]. These guidelines provide one of most

effective means for driving the rapid development of

graph processing-specific accelerators. At this point,

hardware platform templates, e.g., Field Programmable

Gate Array (FPGA) and Application-specific Inte-

grated Circuit (AISC), are in line with the demand of

the times. A large number of industries have already

deployed their services on these beneficial hardware

platforms for top performance and energy efficiency.

For instance, FPGAs have been used in Microsoft dat-

acenter for energy efficiency improvement[23].

Specifically in terms of graph processing, it has been

also witnessed that a large number of relevant stud-

ies build their graph processing accelerators based on

FPGA[24–28] and ASIC[16, 29–31]. Evaluation on these

Àhttp://www.riscv.org, Jan. 2019.

Chuang-Yi Gui et al.: A Survey on Graph Processing Accelerators 3

accelerators has also demonstrated the efficiency and

effectiveness of DSA design[16, 28,32].

It is time to review the past and present of graph

processing accelerators, and further look into their fu-

ture development. In this paper, we conduct a system-

atic review on graph processing accelerators. It aims at

exploring the key issues in the design and implementa-

tion of graph processing accelerators. As summarized in

Fig.1, we have identified a complete set of core compo-

nents for graph processing accelerator, which involves

three major aspects: preprocessing, graph parallel com-

putation and runtime scheduling.

• Preprocessing. Graph processing accelerator often

has the limited storage resources. Graphs are needed

to be partitioned. Preprocessing is an important

component that operates on graph data for trying

to make graph dataset fit into the memory capacity

of graph accelerator. It is also the key to match a

certain processing model and appropriate graph rep-

resentation before the formal processing.

• Parallel Graph Computation. Parallel graph com-

putation component serves as the main execution

part of graph processing accelerator design. Iterative

paradigm is often chosen to define a basic execution

pattern for graph iteration that will be mapped to

a pipelined hardware circuit. The implementation

of this part generally relies on some hardware plat-

form, e.g., FPGA, ASIC, and Processing-In-Memory

(PIM). Different specifications have different con-

cerns on hardware designs and sophisticated software

co-designs for high throughput and energy efficiency.

• Runtime Scheduling. This part aims at how to sched-

ule a large number of graph computational operations

on a finite set of hardware resources of graph pro-

cessing accelerators. The basic metrics for runtime

scheduling are to guarantee the correctness and ef-

ficiency of graph iteration. The runtime scheduling

component often involves data communication, exe-

cution mode and scheduling scheme.

Based on aforementioned three aspects, we carefully

examine the benchmarks and results of existing studies.

We find that there is not a clear winner for all these as-

pects in graph acceleration because of the diverse char-

acteristics of graph processing and the complexity of

hardware configureations. We therefore present and

discuss several challenges in details, and to further ex-

plore the opportunities for the future research. One of

the major challenges in the existing graph processing

accelerators is that the programmability is an impor-

tant issue for users to express their graph applications.

Existing graph processing accelerators typically require

labor-intensive efforts for hardware level modifications.

Great challenges come with great opportunities.

Widespread graph applications have a strong de-

mand for energy-efficient graph processing accelerators.

Emerging memory devices, e.g., Hybrid Memory Cube

(HMC)[33], High Bandwidth Memory (HBM)[34], Resis-

tive Random Access Memory (ReRAM)[35] along with

new processing devices, provide us with great opportu-

nities to explore new schemes for graph processing. We

believe that this survey summarizes those challenges

and opportunities, which can help realize the accelera-

tors with novel hardware-software co-designs.

The rest of this paper is organized as follows: Sec-

tion 2 includes an introduction to basic components

of graph processing, and briefly summarizes the re-

cent progress on CPUs and GPUs. Section 3 presents

some considerations in preprocessing phase. Design and

implementation of parallel graph computation are re-

viewed in Section 4. Section 5 describes the runtime

and scheduler part of graph accelerators. Emerging

4 J. Comput. Sci. & Technol., January 2019, Vol., No.

graph accelerators are reviewed and compared in Sec-

tion 6. Challenges and opportunities are given in Sec-

tion 7. Finally, we conclude our work in Section 8.

2 Preliminaries

In this section, we first give a brief introduction to

the preliminaries of graph processing, including graph

representation and several common graph algorithms.

Next, we summarize some unique characteristics of

graph processing, followed by the related work of graph

processing on commodity general-purpose processors.

The characteristics of graph processing and the related

work further motivate our survey work on graph pro-

cessing accelerators.

2.1 Graph Representation

Graph is a data structure consisting of vertices that

are further associated with edges. A graph can be typ-

ically defined as G = (V,E) where V represents the

vertex set and E indicates the edge set. For a directed

graph, an edge can be represented as e = (vi, vj), in-

dicating that there is an edge pointing from vi to vj .

In particular, vertex and edge can be also attributed

with a single or multiple attributes. Real-world natural

graphs, e.g., social networks, usually have the following

three common features:

• Sparsity. The average number of vertex degrees is

relatively small. The sparsity of graphs can result in

poor locality for data accesses.

• Power-law Distribution. A few vertices have associ-

ated most of the edges. This can lead to severe work-

load imbalance issue with a large number of date con-

flicts when high-degree vertices are being updated.

• Small-world Structure. Two arbitrary vertices in the

graph can be connected with only a small number

of hops. The small-world feature will make it diffi-

cult for partitioning the graph efficiently (as will be

discussed in Subsection 3.3).

2.2 Graph Algorithms

We review several common graph algorithms with

different requirements in computation, communication

and memory access. These graph algorithms are also

widely studied for the exprimental evaluation in the

previous studies[12, 13,17].

Breadth-First Search (BFS) is a basic graph traver-

sal algorithm, which is used as the kernel of Graph500

benchmarks. The neighboring vertices are iteratively

accessed from the root vertex until all vertices of the

graph are visited.

Single Source Shortest Path (SSSP) is another

graph traversal algorithm that computes the shortest

paths from a source vertex to other vertices. Differ-

ent from BFS, it has less number of redundant com-

putations in checking edges. Each vertex may be acti-

vated more than once. Therefore, it needs more mem-

ory space than BFS.

Betweenness Centrality (BC) is widely used to mea-

sure the importance of a vertex in a graph. The be-

tweenness centrality value of a vertex is calculated by

the ratio of shortest paths between any other two ver-

tices. BC algorithm requires to compute the shortest

paths between all pairs of vertices.

PageRank is one of the most popular algorithms,

which calculates the scores of websites[36]. It maintains

a PageRank value for each vertex. All the vertices are

activated in each iteration. It often needs large memory

bandwidth and float point computing ability.

Connected Components (CC) is widely used in im-

age regions analysis and clustering applications. Each

vertex maintains a label. If vertices are in the same

connected region, their labels are set to the same. The

Chuang-Yi Gui et al.: A Survey on Graph Processing Accelerators 5

algorithm updates the labels of all vertices iteratively

until converged.

Triangle Counting (TC) is used to measure the num-

ber of triangle cliques in the graphs. Each vertex main-

tains a list of neighbors, and iteratively checks if there

are shared neighbors between each connected vertices

pair. Number of triangles is calculated by the overlaps.

Graph Coloring (GC) is to assign colors to the ver-

tices of a graph so that any two adjacent vertices have

different colors. GC can be used in many areas, e.g.,

traffic scheduling, register allocation during compiling

and pattern matching. Basic GC algorithm iteratively

colors an active vertex with the color that has not been

assigned on any of its neighbours.

Collaborative Filtering (CF) is an important ma-

chine learning algorithm used for recommendation.

Given a bipartite graph where edge values represent the

ratings and vertices correspond to the users and items,

CF runs iteratively on the bipartite graph to find latent

features for each vertex, with all the vertices active in

each iteration.

K-core Decomposition (kCore) is widely used for

structure analytics for large cloud networks. This algo-

rithm iteratively removes all the vertices with degrees

less than k such that k-core subgraphs in each all ver-

tices have degree at least k are build.

Minimal Spanning Tree (MST) extracts a tree con-

taining all the vertices from an edge-weighted graph

with minimum weight. MST is popular in cable net-

work construction, cluster analysis and circuit design.

Prim’s greedy MST algorithm iteratively chooses the

minimum weight edge between vertices in and out of

the spanning tree to construct the MST.

2.3 Unique Features of Graph Processing

As discussed previously, real-world graphs have the

“power-law” distribution and “small-world” feature.

Besides, graph algorithms differ in computational and

memory access requirements. Graph processing gener-

ally manifests the unique features as follow.

• Intensive Data Access. On the one hand, graph appli-

cations usually lead to a large number of data access

requests. On the other hand, graph processing has a

high data-access-to-computation ratio. That is, most

of the operations in graph processing are related to

data accesses.

• Irregular Computation. Due to the power-law distri-

bution, computation workloads for different vertices

may vary in a large scale. This will cause severe work-

load imbalance issue and communication overhead.

• Poor Locality. Data accesses of graph processing are

usually random because each vertex may connect to

any other random vertices. This feature often leads

to heavy overhead of memory accesses.

• High Data Dependency. The data dependency is

caused by the nature of connections of vertices in

graph. Heavy dependencies make it difficult to ex-

plore the parallelism in graph processing. This may

cause frequent data conflicts.

2.4 Brief Introduction to Graph Processing on
Modern Commodity Processors

Many graph processing systems have been explored

on modern commodity general-purpose processors, e.g.,

CPUs and GPUs. We briefly introduce the related work

to motivate our study, and refer readers to recent sur-

veys for more details[37–39].

Graph Processing on CPUs. There is a large

amount of work that aims at building an efficient sys-

tem for graph applications on CPUs. Basically, they

can be divided into two categories. The first kind is

the distributed systems[40–45], which leverage the clus-

ters to support massive graph data. However, this

6 J. Comput. Sci. & Technol., January 2019, Vol., No.

usually suffers from communication overhead, synchro-

nization overhead, fault tolerance and load imbalance

issues[46–49]. Emerging servers can hold most of the

graph data in the large main memory. Thus, there is

an amount of work that exploits the potential of single

machine[3, 50–52]. There are also many disk-based graph

processing systems[4, 5, 53–56] which can avoid parts of

the challenges in the distributed systems. Recently,

Many Integrated Core (MIC) architecture based pro-

cessors are also explored to improve the performance

and efficiency of graph processing[57].

Graph Processing on GPUs. GPU is adopted to

pursue high performance of graph processing due to

its data parallel capability. A number of graph pro-

cessing systems with GPUs[6–8,58] have been proposed

for high-performance graph processing. Enterprise[11]

is developed to accelerate the performance for BFS

algorithm only. There is also plenty of work on ac-

celerating CC algorithm[59], BC algorithm[60, 61] and

SSSP algorithms[62]. Domain-specific graph pro-

cessing frameworks have been presented to provide

high efficiency for the development on GPUs[63].

To support large-scale of graphs, hybrid CPU-GPU

systems[64, 65], multi-GPUs systems[19, 66] and out-of-

memory systems[67, 68] have been proposed.

Remarks. Despite a significant amount of ef-

fort in improving the graph processing performance

on general-purpose processors, e.g., CPUs and GPUs,

existing graph systems are still far from ideal to

exploit the hardware potential of general-purpose

processors[15, 16]. This is due to a significant gap be-

tween the general-purpose architectures and the unique

features of graph processing. The graph processing ac-

celerator is necessary as an alternative approach that

might be able to fill this gap.

Nevertheless, existing studies on CPUs and GPUs

have a wealth of experiences in designing graph accel-

erators (as discussed in the previous studies[28–30,32]).

Various kinds of software graph processing models have

been proposed to effectively express graph applications

in a generic framework. Partitioning methods, out-of-

memory processing and hybrid architectures schemes

have been explored to support large-scale graphs.

We next illustrate three aspects of core components

of graph accelerators, including preprocessing, parallel

graph computation and runtime scheduling.

3 Graph Preprocessing

The data size of real-world graphs can easily exceed

the on-chip/board memory capacity of graph process-

ing accelerators which is a significant challenge for ac-

celerators. This issue can cause large amounts of I/O

and communication cost. In order to make data access

efficient, preprocessing of graph data is often required

to adapt the data structure onto the target graph ac-

celerators. In this section, we will review the following

major graph preprocessing methods used in the designs

of graph processing accelerators.

• Graph Layout Reorganization. Graph layout is an

important factor to affect the graph processing ef-

ficiency. Most previous studies have attempted to

reorganize the layout to improve data accessing effi-

ciency from many distinct aspects, e.g., data locality,

memory storage, and memory access patterns.

• Graph Ordering. Graph ordering aims to change the

order of the vertices or the edges, such that data lo-

cality with less data conflicts can be obtained while

the structure of the graph remains the same[27, 69].

• Graph Partitioning. Graph partitioning is to divide a

large graph into multiple disjoint small subgraphs. It

usually allows parallel processing of the sub graphs.

The processing on each sub graph has most of data

Chuang-Yi Gui et al.: A Survey on Graph Processing Accelerators 7

accesses on the corresponding graph partition. This

is particularly useful for improving the cache locality

or when the memory of the accelerator cannot hold

the entire graph.

3.1 Graph Layout Reorganization

We will introduce the baseline graph layouts first.

There are generally two widely-used categories of base-

line graph layouts, i.e., edge array and compressed adja-

cency list. In graphs based on the edge array, each ele-

ment of the array contains a pair of integers, i.e., source

vertex index and destination vertex index. It is conve-

nient to read the edges sequentially from memory. The

edge array layout remains widely used in many graph

processing systems, especially for the edge-centric pro-

cessing systems. Another improved edge array layout is

Coordinate List (COO). It has been widely adopted in

graph accelerators[27, 28,70]. It has the edge attributes

that are stored along with the edges.

Compressed adjacency list graph originates from the

adjacency matrix. It typically uses three arrays to store

the graphs, i.e., the vertex property array of the graph,

the edge array with the edges’ outgoing/incoming ver-

tex indices only, and the edge array starting indices of

each vertex in the graph. Suppose outgoing edges are

used in the edge array, We name this adjacency list for-

mat Compressed Sparse Row (CSR). If incoming edges

are used in the edge array, this layout is called Com-

pressed Sparse Column (CSC). The compressed adja-

cency list graph is relatively compact and beneficial to

many graph accelerators[29, 71]. Note that the edges of

each vertex are stored sequentially.

Based on the baseline graph layouts, we have also

many novel methods to compress the data size and op-

timize memory access further.

Combining Information. Existing work tends to

combine multiple information in the same file of graph

data layout so that the data locality can be optimized,

and random memory access can be reduced.

For instance, [72] proposes to associate the desti-

nation vertex property with the edge information such

that the vertex property can be sequentially accessed

to edges with a good locality. Authors in [25] opt to

modify the row pointer array representation in a typi-

cal CSR format. They combine the vertex status (1 bit

for BFS only) and the vertex’s neighboring information

in an element of the array. This method improves the

memory access efficiency significantly.

Encoding Index. Using an encoding method can

compress the graph layout to a small size. Thus, large

graphs can be processed on a single accelerator. This

is usually done for the index of vertices and edges.

For example, GraphH[73] proposes to squeeze the

blank vertex indices by re-indexing the vertices of the

graph when the number of vertices is smaller than the

maximum vertex index. The index can also be com-

pressed by grouping them with a coarsen id and using

less bits to represent the same graph as presented in

[16, 28]. It is also possible to reduce the edge informa-

tion with frequency-based encoding[74].

Remarks. The baseline graph layouts are useful

towards graph accelerators, but they can still be im-

proved for different memory system designs in hardware

accelerators. We still have the potential to explore the

graph layouts at the aspects of data locality, memory

access patterns, and memory footprint.

3.2 Graph Ordering

A number of graph ordering methods have been ex-

plored and demonstrated to be effective.

Index-aware Ordering. It typically targets at the

edge array layout. The basic idea is to sort the edges

based on either the source vertex indices or the des-

tination vertex indices. Sorting the edges in an as-

8 J. Comput. Sci. & Technol., January 2019, Vol., No.

cending manner generally improves the data locality

because the neighboring vertex property can be pre-

fetched and probably reused[73]. In the graph process-

ing, source vertex property will be read and destination

vertex property will be updated accordingly. Therefore,

reading overhead can be reduced if the edges are sorted

by source vertices. Similarly, the writing process can

be more efficient if the edges are sorted by the desti-

nation vertices[27]. As demonstrated in [16, 26, 28], a

hybrid index-aware sorting method that balances both

the source vertices and destination vertices can outper-

form the methods that only consider the source vertex

or the destination vertex.

Degree-aware Ordering. This method takes the

vertex degree as the sorting metric. Sorting the ver-

tices based on vertex degree in descending order brings

multiple benefits[74]. As high-degree vertices are more

likely to be accessed, good data locality can be ob-

served if high-degree vertices are placed nearby. In ad-

dition, it balances the workloads as well[75] when the

graph is processed in parallel. The degree-aware order-

ing method applies to both baseline graph layouts[76],

i.e., the edge array and the compressed adjacency list.

Conflict-aware Ordering. This method is to reduce

the data access conflict during parallel graph process-

ing. ForeGraph[28] proposes to interleave the edges such

that memory level parallelism can be explored more

efficiently. Different from the interleaving method,

AccuGraph[15] reorders the edges of the whole graph

such that the destination vertices of the edges read in

each cache line are distributed evenly over the on-chip

memory banks. In this case, the parallel destination

vertex updating has fewer conflicts.

Remarks. Graph ordering methods focus on

changing the order of the graph data organization. The

reordered graph can be directly used by the graph ac-

celerators without any modification. Nevertheless, the

graph ordering usually requires global sorting and the

pre-processing overhead, which can be costly.

3.3 Graph Partitioning

Graph partition makes it possible to fit the graph

into the limited on-chip memory of a graph accelerator.

The major graph partition strategies in graph accelera-

tor designs can be roughly divided into four categories

as shown in Table 1.

Table 1. Partitioning Schemes of Graph Accelerators

Partitioning Schemes Graph Accelerators

Source-Oriented [15,27,69,77–80]

Destination-Oriented [16,26,30,73,81]

Grid [28,70,82]

Heuristic [29,31,32,75,76,83,84]

Source-oriented Partition. The source-oriented

partition methods typically have disjoint source vertices

in each partition. All outgoing edges are associated

with the partition’s source vertices. The destination

vertices will be included in the corresponding parti-

tion. Particularly, the source vertex indices in each

partition are usually continuous to ensure sequential

memory accesses. With the source-oriented partition,

it is convenient to determine the partitions that need

the updated vertex property in the graph processing.

Nevertheless, different partitions may be in conflict

with destination vertex update. To address this prob-

lem, [27] proposes to synchronize through messages

and resolve the data dependency through a specific

computing unit.

Destination-oriented Partition. The destination-

oriented partition is similar to the source-oriented par-

tition. Basically the partitions have disjoint destination

vertices. Therefore, each partition can be updated in-

dependently while reading the source vertex property

for each partition is mostly random. Graphicionado[16]

Chuang-Yi Gui et al.: A Survey on Graph Processing Accelerators 9

adopts this partition method to ensure that each par-

tition can be fitted to the small scratchpad memory.

Low-latency high-bandwidth scratchpad memory can

be fully utilized. GraphP[81] also applies this partition.

They aim at reducing the communication between the

partitions on different accelerators such that the com-

munication among the HMC cubes can be improved.

Grid Partition. The grid partition of graph in

graph processing systems was first introduced in

GridGraph[55] which presented an efficient graph data

layout and was widely absorbed into designs for graph

processing accelerators[28, 70]. Grid partition is essen-

tially a two-dimensional partition method, which can

be considered an extension of the one-dimensional par-

tition, like source-oriented partition and destination-

oriented partition[28, 70]. First, it divides both the

source vertices and the destination vertices into contin-

uous segments. Then it forms a two-dimensional array

of cubes. Each cube includes the source vertex set, the

destination vertex set, and all the edges whose source

vertex and destination vertex belong to the source ver-

tex set and destination set, respectively. The grid par-

tition produces finer grained partitions. The partitions

have both sequential source vertices and destination

vertices. ForeGraph[28] uses this method to make best

use of the limited on-chip memory of FPGAs. In partic-

ular, it optimizes the read order of partitions such that

the partition loading and processing can be overlapped.

This method is also used in GraphR[70] and helps ex-

plore the ReRAM features for both high-performance

low-power graph acceleration.

Heuristic Partition. Unlike the above partition

methods, many heuristic graph partition methods have

been intensively explored, especially for conventional

CPU-based graph processing systems. These partition

methods follow various heuristic metrics to reduce the

communication, to improve locality, or to provide bet-

ter load balance. Some of them are also applied for

the graph accelerator design. For example, a hash-

based partition algorithm is used to achieve partitions

with balanced vertices and edges in [29]. A clustering-

based partition algorithm is adopted for better locality

in [76]. A multi-level partitioning algorithm is adopted

in FASTCF[75] and is also demonstrated to be efficient

for stochastic-gradient-descent-based collaborative fil-

tering.

Remarks. Graph partition brings multiple benefits

to graph accelerator design. In particular, it allows the

graph accelerator to explore the small yet low-latency

high-bandwidth on-chip memory.

Graph preprocessing benefits the graph accelerator

on many aspects including better data locality, more

efficient memory access patterns, higher task-level par-

allelism, and even fewer memory accesses. In general,

it is a critical step to improve the performance of the

graph processing accelerators, and even affects the ac-

celerator design choices. While some preprocessing ap-

proaches are extremely time-consuming, it is still an

open problem on how to achieve a better balance be-

tween the overhead and performance benefits in many

practical scenarios as pointed out in [13].

4 Parallel Graph Computation

The core component of a graph processing acceler-

ator is how to handle the preprocessed graph data in

Section 3 with massive parallellism. Considering inter-

twined data dependencies of graphs, this often requires

non-trivial technical innovation, involving matched par-

allel iterative paradigms, dedicated hardware accelera-

tion and sophisticated co-codesigns. Fig.2 outlines the

taxonomy of parallel graph computation.

• Iterative Paradigm. Iterative paradigm is used to ex-

press the process of how vertices and edges run. It

10 J. Comput. Sci. & Technol., January 2019, Vol., No.

 Parallel Graph Computation

 Vertex­centric
 Edge­centric

 Hybrid

 Dedicated Hardware
 Acceleration

 FPGA­based Designs

 Single Board Processing

 Heterogeneous Processing

 Multi­FPGAs Processing

 HMC­assisted Processing

 ASIC­based Designs
 Computing Units Design

 Memory Hierarchy Design

 PIM­enabled Designs
 HMC­assisted Processing

 ReRAM­assisted Processing

 Sophisticated
Co­designs

 Parallelism Extension

 Pipeline Duplication

 Split Kernel
 Using Dataflow Paradigm

 Energy­efficiency
 Optimization

 Leveraging Emerging Memory

 Power­gating Scheme

 Iterative
 Paradigm

 Memory Access
 Opimization

 Enhancing MLP
 Multiple Banks

 Multiple I/O Ports

 Improving Bandwidth
 Utilization

 Coalescing Method

 Streaming Edges

 Reshaping Cache Architecture

 Scratchpad Memory

 Locality­aware Buffer

 Execution­aware Prefetching

Fig.2. A taxonomy of parallel graph computation.

defines the basic data access and computational pat-

tern of graph program. Typical iterative paradigms

in existing graph accelerators can be categorized

into three approaches: the vertex-centric approach,

the edge-centric approach, and the hybrid approach.

They decouple the associated dependencies within

graphs as much as possible, and further explore the

potential parallelism of graph processing.

• Dedicated Hardware Acceleration. Different kinds of

dedicated hardware platforms can be used to ac-

celerate graph analytics. Existing graph processing

accelerators are basically built upon three types of

hardware platforms: FPGA, ASIC, and PIM. These

emerging architectures can be used to architect ef-

ficient memory hierarchy and computing units for

higher performance and energy efficiency.

• Sophisticated Co-designs. Sophisticated co-designs

usually combine the hardware and software optimiza-

tions to exploit the hardware potentials. They often

focus on three aspects: parallelism extension, mem-

ory access optimization, and energy efficiency opti-

mization. Most of these co-designs can be commonly

used on different kinds of hardware to achieve high

performance and energy efficiency.

4.1 Iterative Paradigm

Graph has complex data dependencies between ver-

tices. Designing efficient iterative paradigms is impor-

tant to decouple these associated dependencies as much

as possible by exploring the common computational

pattern surrounding vertices and/or edges. Existing

iterative paradigms for graph processing can be basi-

cally divided into two subcategories: vertex-centric ap-

proach and the edge-centric approach. The vertex- and

edge-centric approaches not only concern the expres-

siveness and abstraction of graph algorithms but also

impact the design of graph data layout, preprocessing

and computation. A few graph accelerators also have

made a hybrid attempt for embracing the best worlds

Chuang-Yi Gui et al.: A Survey on Graph Processing Accelerators 11

of both modes. Table 2 summarizes the related work

with different iterative paradigms.

Programming Model. Programming model is used

for effectively express the graph algorithms. It ab-

stracts the common operations in various graph al-

gorithms and alleviates the effort for programmers

to write their applications. According to the itera-

tive paradigms, there are vertex-centric programming

model and edge-centric programming model. These two

models can be combined as the hybrid model to take

advantages of both paradigms.

Table 2. Iterative Paradigms of Graph Accelerators

Iterative Paradigm Graph Accelerators

Vertex-Centric [14–16, 25, 26, 29–32, 71, 74, 76,
78,81,83–91]

Edge-Centric [27,28,70,72,73,75,82,92–94]

Hybrid [80]

• Vertex-centric Programming Model. Graph algo-

rithms expressed with this model handle the graphs

by following “Think like a vertex” philosophy[1]. It

describes a graph program for each vertex, including

computational operations and data transmission be-

tween their neighbors via edges. Since each vertex

is processed independently, parallelism can be there-

fore guaranteed by simultaneously scheduling these

vertices without data dependencies.

• Edge-centric Programming Model. X-Stream[5] is

the first work to use edge-centric programming model

to handle graph edges. Unlike the vertex-centric

model, this model describes a graph program for each

edge. An edge is processed with three steps: 1) col-

lect the information of its source vertices, 2) update

its value, and 3) send this value to its destination ver-

tices. It is clear that this model removes the random

accesses to edges via sequential streaming of each

edge to the chips.

• Hybrid Programming Model. Alternative is to use

a hybrid method by switching between vertex- and

edge-centric programming models for the purpose of

taking advantages of both models[80]. The vertex-

centric model is responsible for the situation when

the active vertex ratio is relatively high. In contrast,

the edge-centric model is intended to cope with the

case that active vertex ratio is relatively low. Clearly,

model switching decision can be made according to

the active vertex ratio (among all vertices). The

threshold can be decided by the ratio of bandwidth.

Data Layout Selection. Systems implemented in

vertex-centric approach typically iterate over the ac-

tive vertices and execute the vertex program on them

at each iteration. For each given vertex, its neighbours

are visited to complete the computation. This kind of

implementation usually requires a fast scan for edges of

given vertices. As a consequence, as presented in Sec-

tion 3.1, the compressed adjacency lists (CSR/CSC) are

suitable for vertex-centric model because the assoiated

edges of a vertex can be found easily[4, 29].

Similarly for the edge-centric approach, which iter-

ates over all the edges to implement the edge program

for each of the edge, a fast sequential scan of edges is

demanded. To process an edge, information of the end

vertices also needs to be indexed directly. Therefore,

the edge array presented in Section 3.1 is intuitively fit

for systems in edge-centric approach[5, 27].

Preprocessing Considerations. Initially, the graph

data is usually stored in the disk as edge files where the

edge is represented as a pair of corresponding source

and destination vertices. During preprocessing phase,

edge files are converted into the appropriate data lay-

out according to programming models. As discussed

in Section 3, preprocessing involves graph partitioning,

reorganization and ordering. The complexity of prepro-

cessing also varies for different data layouts.

12 J. Comput. Sci. & Technol., January 2019, Vol., No.

For vertex-centric approach, the edge file is con-

verted into the format of adjacency lists. Typically, the

edges are sorted by source or destination vertex follow-

ing by index creation that maintains the edge position

in the edge array for each vertex. As for edge-centric

approach, the edge array is usually loaded directly with-

out specialized data formatting and conversion[5, 27]. A

detailed research about the cost on preprocessing is pre-

sented in [13]. Generally, the preprocessing cost on

vertex-centric approach is higher than edge-centric one.

Computation Overhead. Vertex- and edge-centric

approaches have different computation patterns as dis-

sucssed before. In vertex-centric approach, the compu-

tation is executed for each vertex which iterates over the

neighbors of a given vertex. In edge-centric approach,

the edges are executed as a stream. At this point, the

workload characteristics and cache (miss-rate) metrics

are significantly different for two approaches[13].

For workload analysis, vertex-centric approach sup-

ports selective scheduling on only a subset of ver-

tices for each iteration while edge-centric approach re-

quires a scan of the whole edges, which means that the

edge-centric approach induces more computations than

vertex-centric approach.

Cache behaviours are also different between these

two approaches. In vertex-centric approach, the pro-

cessed vertices can be (locally) cached while it intro-

duces more random accesses by traversing the frontier.

In edge-centric approach, edges can be prefetched for

better use of cache, but it causes more random accesses

to vertices. Their actual performance may be signif-

icantly different, and largely depends on the inherent

topology of the graph and features of graph algorithms.

Generally, the vertex-centric approach introduces

more random accesses to edges while the edge-centric

approach causes more random accesses to vertices. To

improve the cache behaviours, optimizations can be ap-

plied to these two models, e.g., organizing edge arrays

into grids can improve the cache locality[55].

Discussions. Table 3 compares different

paradigms from multiple aspects. It is difficult to judge

which approach is better because the performance is

usually not the same case when different kinds of graph

applications are introduced. The authors in [13] make

a comprehensive comparison of these two approaches

when different approaches and graph algorithms are in-

cluded.

Vertex-centric paradigm has been widely used to

drive many graph accelerators[16, 26,29,88], because of its

expressive potentials to easily represent various kinds of

graph algorithms, and the high parallelism in the grain

of vertex. However, in the vertex-centric paradigm,

there can be random accesses to edges, resulting in po-

tentially heavy memory access overhead.

Edge-centric paradigm is usually used by exist-

ing graph accelerators for improving the utilization of

their limited memory bandwidth[27, 28,75]. However, the

point is that edge-centric paradigm is lack of flexible

scheduling potential in contrast to the vertex-centric

one. Almost all of edges have to be processed multiple

times to complete the whole process. In addition, this

paradigm may also lead to a large number of random

accesses to vertices. Thus, additional optimizations are

often cooperatively needed, e.g., fined grained parti-

tioning and tailored vertex update strategies[28, 70].

For graph processing accelerators, the selection and

design of iterative paradigm for graph processing accel-

erator must also ensure that: 1) programming is easy

to use and understand for graph algorithm representa-

tion; 2) parallelism is easy to expose and exploit for

high throughput and fast hardware development. It is

also important to dedicate the accelerators according to

the features of applications. Note that advantages can

be combined by incorporating hybrid approaches into a

Chuang-Yi Gui et al.: A Survey on Graph Processing Accelerators 13

Table 3. Overview of Different Iterative Paradigms

Iterative Paradigm Programming Model Data Layout Preprocessing Computation Overhead

Vertex-centric Iterate over vertices CSR/CSC Partitioning; Ordering;
Reindexing; Higher cost

frontier-based; random
accesses to edges

Edge-centric Iterate over edges Edge array/COO Partitioning; Ordering;
Lower cost

All edges need to be
scanned; random ac-
cesses to vertices

Hybrid A mix of vertex- and
edge-centric model

Mixed data struc-
tures

Sophisticated prepro-
cessing

Model switch

design for better performance.

4.2 Dedicated Hardware Acceleration

Existing graph processing accelerators can be built

upon various kinds of hardware platforms. Typical

hardware accelerators usually adopt only the tradi-

tional customized hardware platforms, i.e., FPGAs and

ASICs, and have made few modifications on exist-

ing computing logic and memory architectures (e.g.,

DRAM). Some accelerators have re-built their archi-

tectures with in-situ computation without excessive

data movement, e.g., HMC and ReRAM devices, which

is also known as PIM-enabled accelerators. Different

hardware configurations have different considerations

for performance acceleration. We next review techni-

cal advances of these state-of-the-art graph processing

accelerators.

4.2.1 FPGA-based Designs

FPGA is an integrated circuit that enables design-

ers to repeatedly configure digital logic in the fields af-

ter manufacturing, also called field-programmable. The

configuration of FPGAs is generally specified via low-

level hardware description languages, e.g., Verilog[95]

and VHDL[96]. FPGAs are mostly adopted in graph

processing accelerators.

Internal Characteristics of FPGAs. There are dif-

ferent kinds of programmable resources on FPGAs, e.g.,

programmable Logic Element (LE), Static Random Ac-

cess Memory (SRAM), Flash and Block RAM (BRAM).

However, the fact is that these resources are usually

limited to a small number. FPGA can offer high paral-

lelism by architecting these resources with a pipelined

Multiple Instructions Single Data (MISD) model. Mul-

tiple data can be processed simultaneously at different

pipeline stages. Multiple pipelines can be easily dupli-

cated for parallel processing.

Existing Efforts on FPGAs. A graph program is

usually designed into a circuit kernel as the basic pro-

cessing unit according to the programming model (as

discussed in Section 4.1), which defines the execution

pattern[75, 87]. These kernels can be easily reconfigured

on FPGAs for different algorithms. For building the

efficient memory subsystem, a wide spectrum of pre-

vious studies make non-trival efforts for the efficient

bandwidth utilization of on-chip BRAMs and the off-

chip memories. BRAMs provide high bandwidth and

low memory latency for randomly accessed vertices.

For improving the locality of vertices on the BRAM,

fine grained partitioning and dedicated data placement

strategies are needed to increase the reuse rate of ver-

tices on the BRAM[26, 28,74]. As for improving the uti-

lization of off-chip bandwidth, edges can be streamed

sequentially from the memory[27].

A number of studies extend to integrate multi-

ple FPGAs into a cluster so as to support large

graphs[25, 71]. FPGAs with integrated soft-cores are

also presented, which can process the graphs in a dis-

tributed manner on a single FPGA board with high

parallelism[84]. Heterogeneous architectures are also

adopted where the FPGA and the CPU are connected

14 J. Comput. Sci. & Technol., January 2019, Vol., No.

through cache-coherent interconnect. FPGA can ac-

cess the host memory without the interruption of CPU.

These two processors can easily cooperate with each

other to process large graphs with higher parallelism

than a single FPGA board[80].

There are also a number of studies that aim at

exploring the out-of-memory execution on FPGAs for

large graphs. The data can be directly streamed from

the disks or flashes to the processing units on the FPGA

board in these scenarios[26, 28]. Recently, Near-Data

Processing (NDP) is cooperatively used to enhance the

power of FPGAs for graph processing by off-loading

workloads to the integrated HMCs. This provides sig-

nificantly high bandwidth and parallelism [71, 76,97].

4.2.2 ASIC-based Designs

ASIC is an integrated circuit composed of electrical

components, e.g., resistors. It is usually fabricated on a

wafer composed of silicon or other semiconductor ma-

terials that are customized for a particular use. ASICs

are very compact, fast, and low power. Compared to

FPGAs, their functions are hard-wired at the time of

manufacture. It is not allowed to change the function-

ality of a small part of the circuit.

ASIC Designs for Graph Analytics. Due to the

fixed circuit limitation, ASIC-based graph processing

usually utilizes the expressive Gather-Apply-Scatter

(GAS) model[40] to form the circuit[29, 30]. Each phase is

implemented as a hardware module, and runs in paral-

lel with wires that connect different modules. In order

to support various graph algorithms, a reconfigurable

block can be integrated for users to define the update

functions for flexibility.

As for the memory hierarchy, these graph acceler-

ators commonly adopt the scratchpad memory to re-

place traditional cache. The scratchpad memory acts

as a content addressable cache and can be controlled

manually. Graphicionado[16] uses the eDRAM as the

scratchpad memory to store graph data that needs fre-

quent random accesses, e.g., the destination vertices.

Dedicated caches of different kinds of graph data are

designed in [29] according to the access features. Since

these memory resources can be tightly connected to the

processing units in an efficient way, ASIC-based graph

accelerators can achieve high throughput on the chip.

4.2.3 PIM-enabled Designs

Different from traditional hardware designs, re-

search on PIM-enabled architectures usually adopts

emerging paradigms for acheiving impressive perfor-

mance results by integrating processing units into the

memory. It can provide the extremely high bandwidth

and low memory access latency with energy saving.

The PIM-enabled acceleration is often implemented by

leveraging emerging memory devices, e.g., HMC and

ReRAM, both of which integrate the in-situ computa-

tion in the memory.

HMC-assisted Graph Processing. The HMC has

multiple DRAM dies stacked on top of a logic layer that

can provide the ability of computation with high mem-

ory access parallelism and sufficient instructions for

supporting graph processing. As in Fig.3, the DRAM

dies are connected via the Through-Silicon-Via (TSV).

Storage space in HMC is organized as vaults. The vault

is a vertically connected stack of multiple partitions

from different DRAM layers. The logic layer is also

distributed to different vaults. With multiple DRAM

channels for each vault, HMC can provide significantly

high memory-level parallelism. HMC can also be easily

scaled to consist of a cluster topology of HMCs[98].

Chuang-Yi Gui et al.: A Survey on Graph Processing Accelerators 15

DRAM

Layers

Logical Layer & Crossbars

Vault

TSVs

Serdes Buffer

Response Links

...

Fig.3. An illustrative example of HMC architecture

The logic layer of each vault can work as a soft-

core with sufficient instruction sets. For better sup-

porting graph processing, instructions have to be re-

constructed. Tesseract[32] integrates common instruc-

tions of graph algorithms and achieves high perfor-

mance through multiple HMCs. GraphPIM[14] deigns

specialized atomic instructions in HMCs. Besides,

graphs are processed in a distributed manner between

HMCs. Vertex-cut partitioning is also used to reduce

the communication cost between HMCs[73, 81].

ReRAM-assisted Graph Processing. ReRAM is a

kind of non-volatile RAM with the enabled comput-

ing ability by changing the resistance across a dielec-

tric solid-state material[35]. A ReRAM cell is with high

density, low read latency and high energy efficiency[99].

The ReRAM cells can be connected as a dense crossbar

architecture to provide high parallelism and memory

capacity. Generally, the graph can be represented as

a matrix which can be naturally mapped to ReRAM

cells. Each cell stores an edge or a vertex. When input

voltages are applied to certain rows of the cells array,

the stored values of each row will multiply the relevant

input value. The stored values of each columns will be

then added together. These features make it possible

to realize efficient graph processing on ReRAM.

The potential of ReRAM for efficient computation

and storage is still under-studied significantly. To our

best knowledge, GraphR[70] is the first work to use

ReRAM to speedup the graph computation. It trans-

fers the vertex program or the edge program in graph

processing to a Sparse Matrix-Vector Multiplication

(SpMV) format. However, graph algorithms need to be

manually justified for mapping the computational pat-

tern of ReRAM. It is worth noting that there is also a

tradeoff between the utilization and throughput due to

the limited ReRAM cell size. An ideal situation is that

every entity within a matrix is useful for computation

for high parallelism. Nevertheless, due to the sparsity

of graph data, in a ReRAM block there may be only

a few useful edges that are non-zero, causing the fact

that a large number of ReRAM cells are underutilized.

Extra efforts are still needed to balance this tradeoff.

Summary. Considering the reconfigurable feature,

FPGA-based designs can handle various kind of graph

algorithms flexibly. FPGA can also provide sufficient

interfaces to process large graphs for scale-out effi-

ciency. Massive parallelism can be easily achieved when

these resources are in good use. Unfortunately, the re-

sources on FPGAs are limited for existing commodity

FPGA boards. The frequency is also relatively low to

maintain correctness of execution. These may influence

the performance of graph processing.

ASIC designs can provide efficient hardware orga-

nizations without the limitation on types and numbers

of hardware resources. ASICs can be designed in a rel-

atively efficient way. For example, dedicated and ac-

curate resources placement in ASCIs can be achieved

while FPGAs usually have redundant and wasted re-

sources on board. Besides, the ASIC can achieve a high

frequency than FPGAs. High performance can be eas-

ily attained. However, once made, the ASIC chip is

unable to be modified. It is usually difficult for ASICs

16 J. Comput. Sci. & Technol., January 2019, Vol., No.

to handle various graph problems. It is also difficult for

ASICs to scale out.

PIM-based accelerators can scale well in both of the

bandwidth and memory capacity. This feature can ben-

efit the graph processing when large graphs are handled.

The emerging memories adopted in PIM-based acceler-

ators usually have lower energy consumption than tra-

ditional DRAM. To handle generic graph analytics, the

HMC provides the computing ability by special instruc-

tion sets executed in the logic layer. ReRAM processes

the graphs in the SpMV format with corssbars. These

supports usually need many manual efforts to realize.

There is still a lot of research space for PIM-based

graph accelerators. For example, the bandwidth can

be underutilized due to the communication overhead in

HMCs.

4.3 Large-Scale Graph Processing Accelera-

tion

Real-world graph data size can easily exceed the on-

chip/board memory capacity of graph processing accel-

erators. Most of existing accelerators only consider the

case that the whole graph fits into the no-chip/board

memory. However, how to deal with larger graphs on

accelerators is a vital issue for practical applications.

There is an amount of work that has taken this issue

into account, and a series of solutions are further pro-

posed[25, 26,28,32,80,94]. These solutions can be typically

divided into three categories: the out-of-core solution,

the multi-accelerators solution, and the heterogeneous

solution.

1) Out-of-Core Solution.

Unlike traditional CPU architectures that involve

large main memory and often develop the out-of-core

solutions based on the disks, graph accelerators typ-

ically have relatively small on-chip/board memory ca-

pacity. Therefore, toward graph accelerators, using any

external storages or memories that can store large real-

world graphs can be considered potentially-useful as

their out-of-core solutions. Graph accelerators can use

disks, flashes or other external storage devices to store

extremely large scale graphs[4, 5, 26,55,94]. However, one

of the most important issues for utilizing these devices

is to reduce the transmission cost of I/Os between the

disk and the DRAM since the bandwidths of these de-

vices is often significantly lower than DRAM. Stream-

lined processing schemes[5, 94] and sophisticated parti-

tioning methods[26, 55] can be explored to effectively re-

duce the overhead of memory accesses to these exter-

nal devices. Recently, utilizing embedded processors

or accelerators in SSDs has been proved to be another

promising way to alleviate the overhead of data trans-

mission and conversion[100–102].

Compared to disk-based solutions, utilizing large

host memory enables graph accelerators to pro-

cess large-scale graphs with better bandwidth-

efficiency[27, 86,97]. Emerging computing platforms of-

fer the great opportunity for graph accelerators to

access the main memory conveniently via special-

ized interconnections[103]. However, it is also vital

to optimize the I/Os between graph accelerator and

main memory, since long memory latency for data

movement often dominates the overall efficiency due

to slow I/O interfaces and extra efforts on memory

management[104]. Existing memory subsystems and

their memory access parallelism are strongly in need

of technological innovation.

There also have emerged some studies regarding

graph processing accelerator designs for large-scale

graph processing. FPGP[26] incorporates the disks to

extend the storage of FPGA and designs a streamlined

vertex-centric graph processing framework to improve

the utilization of the sequential bandwidth of disks.

A dedicated on-chip cache mechanism is used to re-

Chuang-Yi Gui et al.: A Survey on Graph Processing Accelerators 17

duce the accesses to disks. Then the large graph is

specially partitioned in order to fit for the process-

ing scheme. GraFBoost[94] adopts the flash to scale

to much larger graphs and mainly focuses on optimiz-

ing the random accesses. The key component is a sort-

reduce module that converts small random accesses into

large block sequential accesses to the flash storage. It

is mentioned that GraFBoost[94] embeds the accelera-

tor into the flash for better scalability. Similar meth-

ods have been explored to accelerate the processing in

database[105,106]. ExtraV[97] further incorporates the

main memory to improve the graph processing with

SSDs. Note that host processors can be used together

with its self-contained main memory in a heterogeneous

solution to enhance the power of graph accelerators.

2) Multiple Accelerators Extension.

The whole graph needs to be partitioned to dis-

tribute different on-chip/board memories of each graph

processing accelerator. By considering the prohibitive

communication overhead between graph accelerators,

the multi-accelerator solution often needs the high-

bandwidth connection between graph accelerators. The

most important issue for this design is how to achieve

a cost-efficient communication mechanism, and avoid

data conflicts between graph accelerators. As a conse-

quence, the appropriate graph partition methods are

required and are important to reduce the communi-

cation overhead[28, 32,81]. The inter-network design of

graph accelerators is also vital to support the efficient

cooperative computing[25, 73].

CyGraph[25] runs BFS under a high performance re-

configurable computing platform, Convey HC-2, which

constructs a platform with FPGAs connected through

a full crossbar to multiple on-board memories. These

memories are connected as a shared memory that pro-

vides large capacity and high total bandwidth. Cy-

Graph optimizes the CSR representation to reduce the

shared memory accesses and connects the FPGAs using

a ring network to minimize the conflicts. ForeGraph[28]

instead uses separated memories for each FPGA. Thus

it avoids the memory access conflicts among accel-

erators. These FPGAs are connected via dedicated

inter-connections. Grid-like partitioning[55] and dedi-

cated on-chip data replacement schemes are adopted to

achieve better locality for each FPGA board and thus

reduce the communications.

As discussed in Section 4.2, emerging devices like

HMCs not only provide the capability of processing

in memory but also scale well. The cost on commu-

nications among different HMC cubes dominates the

performance[32, 73,81]. GraphP[81] utilizes a source-cut

partitioning method to significantly reduce the com-

munication overhead. Generally, multi-accelerator so-

lutions is similar to distributed processing under tradi-

tional platforms such that many optimizations on dis-

tributed graph processing can be applied to accelera-

tors. Meanwhile, the features of different architectures

need to be considered to provide the best scenario.

3) Heterogeneous Acceleration.

As the rapid development of memory integration

technologies (e.g., 3D stacking), the host memory be-

comes large or even huge with trillions of capacity[3, 50].

As a consequence, leveraging the host-side memory is

alternative to support large-scale graph processing. An

intuitive and important question is how graph process-

ing accelerator can interact with the host machine con-

veniently and efficiently. At present, efficient heteroge-

neous solutions are still open questions. A few studies

propose to use the coherent memory interconnect tech-

nology to accelerate graph workloads with CPU and

FPGA[80]. For supporting efficient cooperation, the

dedicated memory subsystem is needed to alleviate the

transmission overhead between the host and the graph

accelerator. As a result, the data organization of graphs

18 J. Comput. Sci. & Technol., January 2019, Vol., No.

is the key to reduce the communication overhead. In

order to avoid conflicts of computing devices, runtime

scheduling schemes are also important for efficient task

scheduling.

The authors in [80] propose to accelerate graph pro-

cessing under a heterogeneous architecture with CPU

and FPGA. Hybrid vertex- and edge-centric models are

adopted in [80] as discussed in Section 4.1 to fully uti-

lize the processing power of CPUs and FPGAs. Gener-

ally, CPU is better for fast sequential processing while

FPGA can be used to explore massive parallelism. Hy-

brid model can flexibly assign workloads to these two

devices according to the parallelism of vertices in each

iteration. In order to support this scheme, an opti-

mized graph data structure is designed. As for memory

coherency, dedicated on-chip memory buffers are de-

signed on FPGA and the accesses to the host memory

is controlled by a master thread on the CPU. Despite

that the heterogeneous solution can extend the power

of accelerators, the overhead to maintain the memory

coherency might limit the performance. There is still a

lot of research space for heterogeneous solutions.

4.4 Sophisticated Co-designs

Graph processing accelerators often require a series

of optimizations for fully exploiting their hardware po-

tentials. There also emerge a few co-optimization tech-

niques at these aspects for high parallelism, lower mem-

ory access overhead, and better energy efficiency.

4.4.1 Parallelism Extension

The processing units in either ASIC- or FPGA-

based graph processing accelerators are often organized

in the form of pipelines. The instructions of graph al-

gorithms are pipelined to offer high parallelism. PIM-

based graph accelerators integrate the processing units

inside the memory. Their efficiency can be scaled by

simply enlarging the memory capacity. For better scal-

ability, three optimization solutions below can be con-

sidered useful potentially.

Pipeline Duplication. An intuitive method to in-

crease the throughput is to duplicate multiple pipelines

for the parallel processing on more vertices and edges.

This simple method has been widely used in a wide

spectrum of previous work[16, 27,29,30,85,92,107]. Nev-

ertheless, there still remain some potential problems

that might prevent the scalable efficiency of multi-

pipeline from expectation, which is significantly under-

studied. For instance, considerable communication be-

tween pipelines may lead to the additional overhead

via crossbars and controllers[16, 29]. In addition, there

also exists workload balance issue that needs specialized

data partitioning[16, 28].

Split Kernel. Alternative is to split a big, whole

processing stream into many small kernels that can be

then considered being executed in parallel. This is of-

ten done by decoupling the modules of data access and

computation, and then making them executed in par-

allel. In this way the data access module is responsible

for accessing graph data. The computation module uses

the data to conduct user-defined computations. For ex-

ample, by using GAS model, [25, 29, 30] create special-

ized execution circuits. Each module is thus enabled

to process a large number of vertices and edges concur-

rently. The SpMV-based accelerator[107] also decouples

the matrix access from the computation. This method

explores the task-level parallelism but extra scheduling

mechanism are needed to ensure the correctness.

Using Dataflow Paradigm. Vertex dependencies of

graph can stall the pipelines and decrease the instruc-

tion level parallelism. How to reduce the impact aris-

ing from data dependencies remains an open problem

for increasing the number of Instructions per Cycle

(IPC). One viable solution for solving this problem

Chuang-Yi Gui et al.: A Survey on Graph Processing Accelerators 19

is to leverage the dataflow paradigm[72, 91,108], which

forms a directed graph of the operations according

to the data dependency between two adjacent oper-

ations. The output dependency and control depen-

dency in graph processing can be then significantly

eliminated[91]. GraphOps[72] uses dataflow model to

form the data path of different processing blocks. Their

overhead of controlling feedback can be therefore alle-

viated.

4.4.2 Memory Access Optimization

For graph processing, memory accesses often dom-

inate overall execution time. Designing an effi-

cient memory subsystem is crucial for the graph pro-

cessing accelerator, particularly for memory access

efficiency[16, 29].

1) Enhancing Memory-Level Parallelism (MLP).

The MLP can be represented as the number of out-

standing memory requests supported at the same time.

Higher MLP can reduce the total memory access time

for data-intensive applications as graph processing. It

usually needs the memory devices to support enough

concurrent memory requests. There are two ways to

enhance the MLP.

Multiple Banks. One method to increase the MLP

is using multiple banks. DRAM is composed of

many independent banks. Utilizing the parallelism of

these banks can significantly improve the memory level

parallelism[85–87]. The memory banks are connected to

the processing units directly through crossbars. They

can be accessed concurrently.

Multiple I/O Ports. Another method is to design

multiple I/O ports for a memory block[27, 88,92]. By in-

creasing the I/O ports, multiple memory requests can

run concurrently. Usually the number of ports can be

manually organized on the scratchpad memory. High

MLP can be attained when the number of ports are

equal to the number of processing units[16]. BRAMs on

FPGAs can also be manually controlled to achieve this

goal[27]. These BRAMs are usually combined together

to form a memory block with multiple I/O ports.

2) Improving Bandwidth Utilization.

The memory bandwidth utilization here means the

valid values ratio per transfer. Random accesses in

graph processing usually cause low ratio of valid val-

ues and result in much wasted bandwidth. Improving

the memory bandwidth utilization can reduce the to-

tal number of memory accesses. There are mainly two

effective methods for improving the bandwidth utiliza-

tion.

Coalescing Method. Coalescing means combin-

ing multiple transfers of small items into fewer large

ones. This method is widely adopted in graph

accelerators[27, 71,88,92,93]. For example, if the mem-

ory requests are adjacent in a vertex or edge list, these

requests can be coalesced as one request for a block.

Otherwise there may exist several random accesses that

lead to the wasting of bandwidth[88].

Streaming Edges. Streaming edges means that the

edges are sequentially accessed from the memory to

accelerator[27]. Random accesses of edges can be re-

duced. In a vertex-centric model, the edges of a vertex

can be streamed to the chip[16]. This method can fully

utilize the bandwidth in the edge-centric model. How-

ever, the edges may need to be reordered so as to run

in a more efficient fashion[27, 28].

3) Reshaping Cache Hierarchy.

Poor locality of graph processing makes the current

cache hierarchy lack of efficiency. High cache miss rate

will increase the memory access latency, which would

cause the under-utilization of computing resources. Re-

shaping the cache hierarchy means designing new cache

architectures and mechanisms for graph processing fea-

tures.

20 J. Comput. Sci. & Technol., January 2019, Vol., No.

Scratchpad Memory. Scratchpad memory is used

as an addressable cache that can be explicitly con-

trolled. The scratchpad memory is closed to the graph

engines. It can provide high performance for data

access[73, 109,110]. Graphicionado[16] uses scratchpad

memory to store the temporary vertex property array

and edge offset to optimize the random data accesses.

Similarly, [29] also designs different kind of caches for

vertices, edges, and other graph information according

to their access behaviors.

Locality-aware Buffer. Locality-aware buffer is a

kind of specialized cache for graph data with relatively

good locality, e.g., the high degree vertices. High de-

gree vertices in a power-law graph have higher proba-

bility to be accessed many times. These vertices can

be cached to improve performance[30]. FPGP[26] and

ForeGraph[28] improve the locality of vertices using

grid-like partitioning methods, and design special on-

chip buffers for vertex subsets, which can be thus ac-

cessed fast in reuse.

Execution-aware Prefetching. This method

prefetches the graph data according to the execution

requirements. It avoids the inefficiency of fixed tradi-

tional cache prefetching mechanism. For example, in

vertex-centric model, the source vertex list and its cor-

responding edge list can be prefetched sequentially[32].

The key is to exploit the access patterns of different

kinds of graph data during the execution, and further

design appropriate prefeching mechanism to reduce the

memory latency.

4.4.3 Energy efficiency Optimization

The performance of graph accelerators can be mea-

sured as Traversed Edges per Second (TEPS). Energy

efficiency can be further defined as TEPS per Watt

(TEPS/W). Existing graph processing accelerators can

provide significantly high performance by dedicated cir-

cuits with inherent low-energy consumption. However,

most of graph programs have a high memory-access-

to-computation ratio. For example, the energy results

show that PageRank consumes over 60% energy on

memory[111]. Optimizations on memory consumption

can further improve the energy efficiency. Nowadays,

there are two simple yet effective ways to improve the

memory energy consumption.

Leveraging Emerging Memory Technologies. A

number of emerging memory technologies inte-

grate the computing logic inside the memory, e.g.,

HMC[14, 32,73,81] and ReRAM[70, 82] as described previ-

ously. This architectural reformation can conduct the

in-situ computation along side the data. It naturally

avoids the frequent data movement for energy saving.

At this point, we can easily replace traditional DRAM

by leveraging these emerging memory devices.

Power-gating Schemes. Power-gating is a widely

used technology that powers off the idle logic circuits to

save the energy. This scheme is suitable for memories

that can be manually controlled[27, 82]. For example, it

can be applied to BRAMs on FPGAs, which are the

key for improving the overall FPGA energy consump-

tion in graph processing accelerators[27]. The BRAM

is selectively activated and deactivated via the enabled

ports. A BRAM module is only activated when the re-

quired data is stored. When the edges of a vertex are

stored in the same BRAM module, BRAM only needs

to be activated once to traverse these edges[27]. Similar

strategies can be used for ReRAM[82] to save the energy

for edge access by controlling the activation of ReRAM

banks in a flexible way.

5 Runtime Scheduling

As discussed in Section 4.2, customized hardware

circuits for graph processing generally involve special-

ized designs. This often enforces to design the tai-

Chuang-Yi Gui et al.: A Survey on Graph Processing Accelerators 21

lored runtime scheduling to appropriately assign work-

loads and coordinate the processing units for provid-

ing the correct and efficient execution. Unlike existing

runtime schedulers on traditional processors, the run-

time scheduling for graph accelerators may be necssar-

ily needed to be implemented in the form of hardware

circuits. This process usually needs to be transparent

to users. Runtime scheduling usually involve three as-

pects of core components: the communication models,

the execution modes, and the scheduling schemes.

• Communication Model. Communications commonly

exist in graph processing accelerators among process-

ing units. Communication models provides efficient

ways for these processing units to communicate and

cooperate with each other. Graph accelerators usu-

ally adopt two kinds of communication models: the

message-based pattern and the shared memory pat-

tern. These models present different features and can

benefit from the optimization of information flows.

• Execution Mode. The execution mode determines the

scheduling order of operations. There are two kinds

of execution modes that have been widely used for

existing graph processing accelerators: synchronous

execution and asynchronous execution.

• Scheduling Schemes. Scheduling schemes defines the

granularity and processing order of graph data. Ex-

isting work adopts three kinds of scheduling schemes:

block-based scheduling, frontier-based scheduling,

and priority-based scheduling. Flexibly using these

scheduling schemes can help reduce the conflicts and

improve the utilization of hardware resources.

5.1 Runtime Considerations

For preserving the correctness and efficiency, run-

time scheduling for graph processing accelerator needs

to consider the following two major aspects.

• Data Conflicts. A specific vertex of a graph may be

often associated with a large number of edges, partic-

ularly true for skewed graphs. There is the common

case that some vertices may be updated in conflict

by many vertices simultaneously. For preserving the

correctness of vertex updating, the specialized mech-

anisms are presented to enforce the atomicity. For

example, for a read-modify-write update of a des-

tination vertex, [16, 27] propose to use the Content

Addressable Memory (CAM) like hardware structure

to support finer-granularity memory access, but ex-

tra pipeline stalls occur. Similar conflicts can also

exist between multiple pipelines. An effective run-

time scheduling is expected to avoid these conflicts

of vertex updating for high throughput.

• Workload Balance. Natural graphs in the real world

often manifest the power-law distribution[112]. This

can result in severe load imbalance issue in the sense

that a few vertices have extremely high degrees.

Workload imbalance may lead to the fact that the

loads of some computational logic is overly assigned

while other light processing units are stalled. More

serious is that the loads of the graph computation are

often difficult to predict due to the complex data de-

pendencies. An effective runtime scheduling scheme

for graph processing accelerators should be also ex-

pected to dynamically balance hardware resources

with even loads for every processing unit as much

as possible[29].

5.2 Communication Model

The communication model is a well-known pattern

that exists commonly to propagate the information be-

tween different processing units. We next survey sev-

eral patterns that have been used in off-the-shelf graph

accelerators.

22 J. Comput. Sci. & Technol., January 2019, Vol., No.

Message-based Pattern. Message-based communi-

cation model is widely used in distributed environ-

ments. In message-based communication model, com-

munication is realized by sending messages among dif-

ferent processing units. These massages can carry the

updated data or computation commands that will be

execute locally. This model is widely used in HMC-

assisted graph processing accelerators[32, 81]. As men-

tioned previously, the vaults in HMCs communicate

with each other via messages.

Tesseract[32] designs the remote function call mecha-

nism via message passing to indicate the running of des-

tination processing cores. The message passing can be

used to avoid the cache coherence issues of the process-

ing cores. It can also reduce the atomic operations for

shared data. However, a large number of messages come

with a high cost of communication time and bandwidth.

Partitioning methods and coalescing methods are usu-

ally needed to reduce the number of messages[81]. Be-

sides, extra memory copying operations and buffers are

also needed.

Shared Memory-based Pattern. The shared mem-

ory model is suited for the communication between pro-

cessing units on a single accelerator. The same location

of a memory can be accessed and updated by multiple

processing units simultaneously. When multiple accel-

erators are adopted, it is also possible to have a dis-

tributed shared memory.

FPGP[26] adopts this model based on FPGAs. It

maintains a global shared vertex memory for mul-

tiple FPGA boards and each board keeps a vertex

cache for multiple processing units. Synchronization

between iterations is needed to maintain memory con-

sistency. Constrained by limited bandwidth, the global

shared vertex memory can limit the scalability of FP-

GAs. ForeGraph[28] uses a distributed shared memory.

Shared memory model can usually avoid the redundant

copies of graph data and extra storage space in message

passing model. It is also easy to implement and design.

However, there may exist many data races on the same

memory location if some vertices are updated by many

neighboring vertices.

5.3 Execution Model

The execution model typically has two major con-

cerns: 1) scheduling timing, and 2) scheduling order.

The scheduling timing indicates when to execute the

vertex programs, which can be often synchronous or

asynchronous. The scheduling order indicates the in-

formation flow for a vertex program to decide how to

update the vertex. They are often used to co-determine

when and how a vertex can execute an update if it is

active.

Synchronous Mode. In the synchronous execution

mode, all the vertices in a graph are processed in cer-

tain order during each iteration. Between two consec-

utive iterations, there is a global barrier to ensure that

all the newly updated vertices in current iteration are

visible at the same time in the next iteration for all

processors[113]. In graph accelerators, the graph is usu-

ally partitioned into subgraphs that are processed by

different processing units. When a processing unit fin-

ishes its work, it has to wait for other processing units

finished. Then the values of different subgraphs are

synchronized[25]. During each iteration, only the local

values of graph data can be accessed and updated[26].

The synchronous execution is easy to realize on

graph accelerators and suits for memory-bound graph

algorithms. It can utilize the memory bandwidth better

because the data is updated in a bulk synchronous way.

Many memory accesses can be combined and sequen-

tial. However, as discussed before, synchronous mode

may require more storage space for local data in each

iteration when workloads are unbalanced.

Chuang-Yi Gui et al.: A Survey on Graph Processing Accelerators 23

Asynchronous Mode. In asynchronous execution

mode, each processing unit can start the next itera-

tion immediately when it finishes current workloads.

There is no global barrier to synchronize these pro-

cessing units. Asynchronous mode can be used to bal-

ance the loads because the processing units are kept

busy nearly all the time. This mode suits for the al-

gorithms that converge faster than synchronous execu-

tion. Some graph algorithms can only converge under

asynchronous execution, e.g., the graph coloring algo-

rithm. It also supports dynamic scheduling, e.g., the

priority-based scheduling mechanism[29] to achieve high

performance. However, the disappointing point is that

the asynchronous mode requires tremendous efforts to

implement on graph accelerators for the sophisticated

hardware design[114].

Information Flow Directions. For executing a ver-

tex program, it is important to decide how to update

the value of vertices. The information flow between

vertices typically has two kinds of direction: the push-

based mode and the pull-based mode. For an active

vertex, the information is propagated from the active

vertex to its neighbors in the push mode, while in the

pull mode the information is flowed from its neighbors

to the active vertex. For BFS algorithm, in the push

mode, the values of out-degree neighbors are updated

according to active vertices. In the pull mode, the ac-

tive vertex gets information from its in-degree neighbors

to update itself.

Usually, the push mode can explicitly select the up-

date vertices but it may cause redundant random ac-

cesses when seeking the next frontier. Locks might be

needed to ensure the consistency since a vertex may

be updated by multiple active vertices. The pull mode

presents better locality for updated vertices and has

natural consistency because the vertices just update

themselves. However, it may result in additional over-

head for checking whether the updating of neighboring

vertices are necessarily executed.

Push and pull modes can be also combined to-

gether and switched at runtime to alleviate the syn-

chronization and communication overhead[115]. Ligra[3]

first adopts this method into shared memory graph

processing system and Gemini[45] is the first to ap-

ply this hybrid mode to a distributed memory setting

which achieves extremely high performance. This hy-

brid method has also been used in some graph acceler-

ators for performance improvement[74, 87]. The switch-

ing time is based on the number of active vertices in

the frontier and associated unexplored edges. We can

switch to the pull mode if the frontier has a high ratio

of the unexplored edges for better performance[74].

5.4 Scheduling Schemes

There are many runtime scheduling schemes that

can be adopted in graph processing accelerators.

Block-based Scheduling. In block-based scheduling,

the whole graphs are evenly partitioned into blocks and

are distributed to multiple processors. There is no strict

order for these partitions to be processed. This schedul-

ing method is widely used for graph processing inte-

grated with multiple accelerators.

For example, Tesseract[32] distributes the graphs

to multiple vaults on HMCs to process in parallel.

ForeGraph[28] partitions the graph into a grid and dis-

tributes the grid blocks to different FPGA boards.

These executions of subgraphs are usually synchronized

after each iteration. The batch-based scheduling can

easily help achieve massive parallelism among multiple

accelerators in a synchronous fashion. However, the

workloads of each batch should be balanced to achieve

better resources utilization.

Frontier-based Scheduling. This kind of scheduling

is suitable for those graph algorithms in which only

24 J. Comput. Sci. & Technol., January 2019, Vol., No.

a subset of data needs to be processed in each itera-

tion. A frontier is needed to contain the active data

that is to be scheduled. For example, in the vertex-

centric model, the frontier contains the active vertices

that need to be executed for each iteration. The sched-

uler gets a vertex from the frontier and checks the state

array to decide the data path of the vertex[30, 86,114].

The frontier-based scheduling can help process most of

graph algorithms. However, the frontier might be mod-

ified frequently by multiple vertices which contend for

updating the same vertex with serious race conditions.

The specialized hardware circuit design may be a viable

solution for efficiently supporting multiple simultaneous

updates.

Priority-based Scheduling. In the priority-based

scheduling, the scheduled items are assigned a priority

flag which represents the execution order. This kind of

scheduling is usually combined with the frontier-based

approach where the active vertices are ranked. It can

also be used to schedule the order of messages to be

processed[32]. Prioritiy-based scheduling can help some

graph algorithms converge faster in a asynchronous ex-

ecution model, e.g., the PageRank algorithm[29].

For example, a specialized synchronization unit is

designed in [29] to rank and schedule the active vertex.

These active vertices are maintained in an active list,

and they are then executed according to the ranking

value. However, the newly created dependencies based

on the priorities may bring extra synchronization over-

head. Fortunately, the latency can usually be compen-

sated by the gains because of the fast convergence.

Remarks. A single graph processing accelerator

may have limited hardware resources and memory ca-

pacity. For mobilizing the potentials of these resources,

in addition to the effective resource layout, an efficient

runtime scheduling scheme is the key, which decides

when and where a specified data is supposed to be pro-

cessed. Considering the complexity of the hardware cir-

cuit layouts, unlike the pure software implementations,

the runtime scheduling on a graph accelerator has to

be co-designed with the necessary hardware supports

in many cases for better efficiency.

For instance, software-assisted runtime scheduling

for ensuring the sequential consistency can use lock-

ing mechanisms that are easy to implement. How-

ever, these mechanisms can be also error-prone and

even suffer from significant performance degradation in

hardware implementation. The specialized hardware

supports with CAM structure[109] or more advanced

designs[15] make the scheduling for sequential consis-

tency easy. Runtime scheduler can therefore focus more

on the parallelism exploitation[114]. In addition, this

also greatly mitigates the atomicity overhead. Com-

bined with irregular accesses and large sizes of graphs,

more extra efforts still have to be done for runtime

scheduling.

6 Graph Accelerator Evaluation

The key issues of the design and implementation of

graph accelerators have been summarized in previous

sections. These designs differ in preprocessing meth-

ods, programming models, and hardware architectures.

Here we summarize the key metrics in existing work

and make a detailed discussion from following aspects.

• Evaluation Metrics. Evaluation metrics presented

in this paper include the typical design techniques,

hardware platform parameters, performance metrics,

and energy efficiency metrics. These metrics provide

an overall view of different graph accelerators.

• Summary of Results. Based on the evaluation met-

rics, we analyze these results and make a discus-

sion from five aspects: graph benchmarks, platform

Chuang-Yi Gui et al.: A Survey on Graph Processing Accelerators 25

parameters, preprocessing, graph processing frame-

works and programming models. Various kinds of

graph benchmarks and platforms make it difficult for

a fair comparison of different accelerators. Different

kinds of design methods can also influence the per-

formance. We argue that it demands standard graph

accelerator benchmarks for efficient evaluations.

• A Case Study. In the review, we find that there is

no absolute winner among existing graph processing

accelerators in terms of performance and energy ef-

ficiency. In this section, we choose another angle to

study the design and implementation of a state-of-

the-art accelerator[15] in more depth so that readers

can have a more in-depth understanding on the three

core components.

6.1 Evaluation Metrics

In order to assess the graph accelerators, existing

work typically uses TEPS as the performance metric,

TEPS/W or power consumption (watt, or joule per

read/write) as energy efficiency metric, respectively.

These metrics basically give an overall evaluation of the

graph acceleration system.

Key parameters of existing graph accelerators for

evaluation are divided into three aspects. Table 4 gives

an overview of a graph processing accelerator includ-

ing the pre-processing, programming models, and com-

pared systems. Note that each study is assigned with

a unique ID which is also used for the same accelera-

tor. Table 5 summarizes the hardware parameters of

graph accelerators. Table 6 summarizes the compar-

ison of performance and energy efficiency reported in

the related work.

For fidelity, the label “M” and “S” are used to dis-

tinguish the measurement-based results and simulation-

based results respectively in Table 5. We try to pro-

vide the actual performance/energy metrics, but some

related work has only the relative performance/energy

over the compared systems. We thus cannot infer the

actual accelerator performance according to their orig-

inal results. In this case, the performance/energy is la-

beled as “SP” (Speedup) in Table 6. Some accelerators

support only a single graph algorithm or a few graph

algorithms. The corresponding performance will be la-

beled as “-”. In addition, we use abbreviations for some

long terminologies because of the limited space. In pro-

gramming model category, we use “V”, “E” to repre-

sent the vertex-centric model and edge-centric model,

respectively. When the model is not clearly named, we

use “-” instead. Similarly, we use “Sync”, “Async” to

represent the synchronous execution and asynchronous

execution, respectively. Block-, frontier- and priority-

based scheduling methods are represented by “B”, “F”,

and “P”, respectively.

6.2 Summary of Results

We analyze the summary in the following aspects,

including graph benchmark, platform parameter, pre-

processing, graph processing framework, programming

models and runtime scheduling.

1) Graph Benchmark. When comparing the accel-

erators, the benchmark is of vital importance to under-

stand the effectiveness of the design and implementa-

tion of a graph processing accelerator. A graph bench-

mark consists of at least four aspects including graph

layouts, types of input graphs, size of the graphs, and

graph algorithms. As shown in Table 4, graph layouts

are different across the existing studies on graph pro-

cessing accelerators. Thus, in fact it requires further

research for developing a fair and practical benchmark

for evaluating different graph processing accelerators.

Particularly, we have the following observations for fur-

ther research.

First, existing studies use different storage layouts.

26 J. Comput. Sci. & Technol., January 2019, Vol., No.

Table 4. Overview of Graph Processing Accelerators

Year System Architecture Data
Layout

Prepro-
cessing

Programming
Model

Generality Sche-
duling

Compared
System

ID

2016 Graphicionado[16] ASIC COO Y V/Sync Various F GraphMat[51] 1

2016 EEA[29] ASIC CSR Y V/Async Various P Host 2

2017 TuNao[30] ASIC COO Y V/Async Various F Cusha[7] 3

2017 GAA[83] ASIC CSR Y V/Async Various P Host 4

2018 Ozdal et al.[31] ASIC CSR Y V/Async Various P GAP[116] 5

2015 Tesseract[32] PIM - Y V/Sync Various B Host 6

2017 GraphPIM[14] PIM CSR N V/Sync Various F GraphBIG[17] 7

2017 RPBFS[69] PIM CSR Y -/Sync BFS B Enterprise[11] 8

2018 GraphR[70] PIM COO Y E/Sync Various B GridGraph[55] 9

2018 RPBFS[77] PIM CSR Y -/Sync BFS B Enterprise[11] 10

2018 GraphP[81] PIM - Y V/Sync Various B Tesseract[32] 11

2018 GraphH[73] PIM COO Y E/Sync Various B Tesseract[32] 12

2010 Wang et al.[78] FPGA+SoC CSR Y V/Sync BFS F Cell BE[117] 13

2011 Betkaoui
et al.[85]

FPGA CSR N V/Sync GC B GraphCrunch[118] 14

2012 Betkaoui
et al.[86]

FPGA CSR N V/Sync BFS B PACT11[119] 15

2012 Betkaoui
et al.[87]

FPGA CSR N V/Sync APSP B HPCC11[120] 16

2014 GraphGen[88] FPGA COO Y V/Sync Various F Host 17

2014 CyGraph[25] FPGA CUST Y V/Sync BFS F ASAP12[86] 18

2015 Attia et al.[89] FPGA CUST Y V/Sync APSP F BGL[121] 19

2015 Umuroglu
et al.[79]

FPGA+SoC CSC Y -/Sync BFS F Host 20

2015 Zhou et al.[92] FPGA COO Y E/Sync SSSP B CyGraph[25] 21

2015 Zhou et al.[93] FPGA COO Y E/Sync PageRank B Host 22

2015 GraphSoC[84] FPGA+SoC - Y V/Sync Various B Host 23

2016 FPGP[26] FPGA COO Y V/Sync BFS B GraphChi[4] 24

2016 GraVF[90] FPGA - Y V/Sync various B - 25

2016 GraphOps[72] FPGA CUST Y V/Sync Various F X-Stream[5] 26

2016 Zhou et al.[27] FPGA COO Y E/Sync various B X-Stream[5] 27

2016 SpMV[107] FPGA - N -/Sync SpMV B Host 28

2017 ForeGraph[28] FPGA COO Y E/Sync various B FPGP[26] 29

2017 Ma et al.[122] FPGA - N -/Async various B Host 30

2017 Zhang et al.[71] FPGA CSR Y V/Sync BFS F FPGP[26] 31

2017 Zhou et al.[80] FPGA+CPU CUST Y Hybrid/Sync Various F GraphMat[51] 32

2018 Zhang et al.[74] FPGA CSR Y V/Sync BFS F FPGA17[71] 33

2018 Khoram
et al.[76]

FPGA+HMC CSR Y V/Sync BFS F FPGA17[71] 34

2018 FASTCF[75] FPGA COO Y E/Sync CF B SIGMOD14[18] 35

2018 Yao et al.[15] FPGA CSR/CSC Y V/Sync Various F ForeGraph[28] 36

2018 GraFBoost[94] FPGA+Flash CSR Y E/Sync Various B FlashGraph[123] 37

Some of them adopt the edge list, some of them use

CSR/CSC, and some of them utilize the customized lay-

out (CUST). They affect the memory access patterns

dramatically and the performance accordingly.

Second, according to Table 6, the types of the

graphs used in the accelerators are not totally the

same. Types of graphs used in prior work including

real-world graph, i.e., social network graph, road net-

work graph, and functional magnetic resonance imag-

ing (fMRI) graphs. There are also synthetic graphs,

Chuang-Yi Gui et al.: A Survey on Graph Processing Accelerators 27

Table 5. Parameters of Graph Accelerator Platforms

ID Compute Device Frequency On-chip Memory Off-chip Memory Bandwidth Method

1 Streams*8 1GHz eDRAM 64MB DDR4*4 68GB/s S

2 AU*4 1GHz Cache 34.8KB DDR4 12.8GB/s S

3 ECGRA 300MHz Cache 2.4MB - 288GB/s M

4 AU*4 1GHz - DDR4 12.8GB/s S

5 AU*4 1GHz - DDR4 12.8GB/s S

6 HMC (512cores) 2GHz Cache 16MB HMC1.0*16 8TB/s S

7 CPU (16cores) 2GHz Cache 16MB HMC2.0 480GB/s S

8 ReRAM (1024*1024) 1.2GHz eDRAM 4MB ReRAM 50GB/s S

9 ReRAM (32*64) - ReRAM Disk - S

10 ReRAM (1024*1024) 1.2GHz eDRAM 4MB ReRAM 50GB/s S

11 HMC (512cores) 1GHz Cache 49MB HMC2.1*16 5TB/s S

12 HMC (512cores) 1GHz SRAM 576MB HMC2.1*16 5TB/s S

13 Virtex-5 FPGA 100MHz BRAM 1.29MB DDR3 0.1GB/s S

14 Virtex-5 FPGA*4 75MHz BRAM 5.18MB - 80GB/s M

15 Virtex-5 FPGA*4 75MHz BRAM 5.18MB - 80GB/s M

16 Virtex-5 FPGA*4 75MHz BRAM 5.18MB - 80GB/s M

17 Virtex-6 FPGA 100MHz BRAM 1.87MB DDR2 6.4GB/s M

18 Virtex-5 FPGA*4 75MHz BRAM 5.18MB - 80GB/s M

19 Virtex-5 FPGA*4 75MHz BRAM 5.18MB - 80GB/s M

20 FPGA/ARM 150/666MHz BRAM 0.56MB DDR3 3.2GB/s M

21 Virtex-7 FPGA 200MHz BRAM 4.5MB DDR3 20GB/s M

22 Virtex-7 FPGA 200MHz BRAM 8.375MB DDR3 20GB/s S

23 ZC706 FPGA/SoC 250MHz BRAM 70KB DDR3 - M

24 Virtex-7 FPGA 100MHz BRAM 4.76MB DDR3 12.8GB/s M

25 Virtex-7 FPGA 150MHz BRAM 6.6MB DDR3 - M

26 Virtex-6 FPGA 150MHz BRAM 4.76MB DDR3 38.4GB/s M

27 Virtex UltraScale FPGA 250MHz BRAM 12.8MB DDR4 19.2GB/s S

28 FPGA*4 - - DDR3*8 102.4GB/S M

29 Virtex UltraScale FPGA 200MHz BRAM 16.61MB DDR4 19.2GB/s S

30 Virtex UltraScale 440 FPGA*2 200MHz BRAM 22MB DDR3 51.2GB/s S

31 AC-510 FPGA 125MHz BRAM 4.75MB HMC2.0 60GB/s M/S

32 Arria10 FPGA/ Xeon-cores*14 - BRAM 6.6MB DDR3 12.8GB/s M

33 AC-510 FPGA 125MHz BRAM 4.75MB HMC2.0 60GB/s M/S

34 AC-510 FPGA 125MHz BRAM 4.75MB HMC2.0 60GB/s M

35 Virtex UltraScale+ FPGA 150MHz RAM 43.3MB DDR4*2 38.4GB/s M

36 Virtex Ultrascale+ FPGA 250MHz BRAM 9.49MB DDR4 19.2GB/s S

37 VC707 FPGA/Flash 125MHz BRAM 4MB DDR3 10GB/s M

i.e., the recursive matrix (RMAT) graph, the Kronecker

graph, the graphs generated by the Linked Data Bench-

mark Council (LDBC), and the graphs generated by

the Library of Efficient Data Types and Algorithms

(LEDA). Different combinations lead to diverse results.

Third, graph algorithms used in different graph ac-

celerator designs are also usually different. If the al-

gorithms used are different, comparing the metrics of

performance and energy efficiency needs to be improv-

able and justified.

Fourth, graph size is another key graph parame-

ter, but it is not sufficiently considered in previous

work. The graph size used in different graph accelera-

tors varies in a large range as the maximum number of

vertices and edges presented in Table 6. Some graphs

have less than a million vertices while some of them

28 J. Comput. Sci. & Technol., January 2019, Vol., No.

Table 6. Comparison of Performance and Energy Efficiency

ID BFS SSSP PageRank SpMV Energy |V |max |E|max Datasets

(GTEPS) (GTEPS) (GTEPS) (GTEPS) Efficiency (Million) (Million) Type

1 0.125∼2.6 0.25∼2.3 4.5∼4.75 - 7W 61.57 1468.36 Social/RMAT

2 - SP SP - 3.375W 67 1000 Social/Kronecker

3 SP SP SP SP 9.6W 7.4 192 Social

4 - SP SP - SP 67 1000 Social/Kronecker

5 - SP SP - SP 16.8 268 Social/Kronecker

6 - SP SP - 94
mW/mm2

7.4 194 Social

7 SP SP SP - - 1 28.8 LDBC

8 0.2∼1.2 - - - - 2.39 7.6 Social

9 SP SP SP SP 1.08pJ(r)
3.91nJ(w)

4.8 106 Social

10 0.2∼1.2 - - - 1.59pJ(r)
5.53nJ(w)

1.96 5.53 Social

11 SP SP SP - SP 4.8 6.9 Social

12 SP - 320∼350 - 133
mW/mm2

41.7 6640 Social

13 0.16∼0.79 - - - - 0.064 1.024 Synthetic

14 - - - - - 0.3 3 LEDA

15 0.25∼2.6 - - - - 16 1024 RMAT

16 - - - - - 0.038 - fMRI

17 - - - - - 0.11 0.34 Image

18 1.68∼2.2 - - - - 8 512 RMAT

19 - - - - - 0.065 4.19 RMAT

20 0.09∼0.255 - - - - 2 67 RMAT

21 - 1.6 - - - 1 - RMAT

22 - - 0.27∼0.38 - - 2.39 7.6 Social

23 - - - 0.015 - 0.017 0.126 SpMV

24 0.01∼0.012 - - - - 1400 6600 Social

25 3.5 - 3 - - 0.0025 0.01 Synthetic

26 - - 0.035∼0.115 0.2∼0.75 - 2.39 30.6 Social

27 - 0.657∼0.872 - - 19.06∼24.22W 4.7 65.8 Social

28 - - - 0.316 2
MTEPS/W

- - -

29 0.897∼1.458 - 0.997∼1.856 - - 1410 6640 Social

30 SP SP - - 5∼8W 24 64 Synthetic

31 0.13∼0.166 - - - - 33.5 536.8 RMAT

32 0.33∼0.67 0.063∼0.075 - - - 10 160 RMAT

33 0.4∼152.6 - - - 43.6W 23.9 577.1 Social/RMAT

34 0.1∼0.65 - - - - 16 252.8 Social

35 - - - - 13.8W 1.3 460 Bipartite

36 1.5∼3.5 - 1.25∼2.5 - - 3.07 117 Social

37 0.057∼0.075 - SP - 50W 3000 128000 Social/Kronecker

have more than a billion. Given even the same type of

graph algorithms, the graphs can involve different sizes,

especially the RMAT graphs. The number of vertices

or edges may vary according to the configuration of the

graph generator. As a result, different average degrees

of graphs can result in distinct parallelism and data lo-

cality of vertices. Therefore, this may lead to different

performance in the end.

2) Platform Parameter. We find that, even with the

same hardware component design, existing graph pro-

Chuang-Yi Gui et al.: A Survey on Graph Processing Accelerators 29

3 3

1 0

2 7 3 5

1 1
3

3 7

3 0

9

6

21

1 2

 B F S - M B F S - S
 S S S P - M S S S P - S
 C F - M C F - S
 A V G - M A V G - S

Po
we

r C
on

su
mp

tio
n (

Wa
tt)

N u m b e r o f E d g e s (| E |)
(a) Relationship of energy efficiency and graph size

2 5

2 0
3 2 3 4

1 8

3 1
3 3

1 5

2 4
3 7

2 1

3 2

2 5

2 6

1 3
1 0 8

3 6

1
2 9

2 7

12 2

3 6

1

2 9

 B F S - M B F S - S
 S S S P - M S S S P - S
 P a g e R a n k - M P a g e R a n k - S

Pe
rfo

rm
an

ce
 (G

TE
PS

)

N u m b e r o f E d g e s (| E |)
(b) Relationship of performance and graph size

Fig.4. The relative development trend of (energy efficiency and/or performance) results for existing state-of-the-art graph processing
accelerators, and explicit results can refer to Table 6 for details.“-M” represents the measurement-based results and“-S” represents the
simulation-based results.

cessing accelerators have different parameter settings.

According to Table 5, it is clear that the platforms,

i.e., ASIC, PIM and FPGA used in different accelerator

designs, make a big difference on the resulting perfor-

mance and energy efficiency. This is expected since the

implementation frequency may already be different in

an order of magnitude.

However, the parameters of the same kind of plat-

form also vary dramatically. For instance, the largest

FPGA on-chip memory is around 44MB while the

smallest one is only 0.25MB. Similarly, the memory

bandwidths of the same type of platforms also differ

significantly. Large memory bandwidth allows more

parallel processing. Large on-chip memory improves

the memory access efficiency. The platform parameters

can have considerable influence on performance and en-

ergy efficiency.

3) Preprocessing. As discussed in Section 3, prepro-

cessing is usually beneficial to graph processing as it

improves the data locality or memory access patterns.

While we notice that some graph processing acceler-

ators do not involve preprocessing at all, it is unfair

to make an end-to-end comparison to the ones with

preprocessing. In addition, the accelerators with pre-

processing can also have diverse preprocessing efforts.

When the preprocessing efforts are different, it is also

tricky to compare the accelerators. In some of the oc-

casions, when the preprocessing cost can be fully amor-

tized, we may just ignore the preprocessing overhead.

It may not be the case when the application is sensitive

to preprocessing cost as suggested in [13].

4) Graph Processing Framework. According to the

“Generality” column in Table 4, most of the graph pro-

cessing accelerators target a set of typical graph pro-

cessing algorithms, while the other accelerators may fo-

cus on optimizing a specific graph processing algorithm.

It is essentially a trade-off between generality and per-

formance. It is not fair to compare these accelerators

when the “Generality” is different.

5) Programming Model. From the tables, it can be

found that different programming models are used in

the graph processing accelerators. The accelerators can

be implemented in either the synchronous model or the

asynchronous model. Also, some accelerators follow a

vertex-centric processing model while others choose the

edge-centric model. Note that there is also one graph

30 J. Comput. Sci. & Technol., January 2019, Vol., No.

accelerator based on the hybrid model. Different mod-

els may also influence the performance of graph accel-

erators. Nevertheless, there is no clear difference in

terms of the ease of programming. Different from the

above parameters, accelerators with different program-

ming models remain comparable.

6) Development Trend. For further exploration of

the results, Fig.4 make a qualitative analysis of the rel-

ative development trend. These two charts only present

the relative position of the results for a quick evalua-

tion. More explicit details can refer to Table 6.

Fig.4(a) depicts the relative energy efficiency (rep-

resented in power consumption) of investigated graph

processing accelerators as the graph size increases.

Fig.4(b) illustrates the relative performance of the in-

vestigated graph processing accelerators for BFS, SSSP

and PageRank with different graph sizes. The graph

size is measured by the largest number of edges in re-

spective literature because the number of edges is usu-

ally much larger than the number of vertices in the

datasets. Edge numbers are depicted in the format

of offset reciporcal. The power consumption and per-

formance are depicted in a logit format for qualitative

comparison. The ID number of each graph processing

accelerator is labeled besides correspond accelerator’s

data point in Fig.4. Note that all the data are based

on the explicit descriptions in relevant literatures, and

the measurement-based results are distinguished from

simulation-based results for the fidelity.

Power consumption is an important metric to mea-

sure the energy efficiency[29]. The power consumption

in Fig.4(a) presents an increasing trend as the graph

size increases. This is because that it generally de-

mands more computing and storage resources to han-

dle large graphs. Besides, different kinds of hardware

designs can contribute to various energy behaviours.

The accelerator with the lowest power consumption

adopts the emerging ReRAM which has intuitive high

energy efficiency[70]. In order to process larger graphs,

the hosts may be involved and result in higher power

consumption[94]. In Fig.4(a), accelerators with IDs by

1[16] and 2[29] can handle large graphs with good en-

ergy efficiency, which are both ASIC-based accelera-

tors. This is because of the dedicated circuit designs

and memory subsystems.

As for performance analysis, in spite that the re-

sults vary in different accelerators, the results show

that the performance acts in a descend trend with

graph size increasing. This is obvious for the BFS al-

gorithm. Note that for the SSSP and PageRank al-

gorithms, there is a lack of explicit evaluation results

in existing literatures and only limited data points are

depicted in Fig.4(b). Most of the results with high per-

formance are based on small graph size that the graph

can fit into the on-chip/board memories. However, with

graph size increasing, performance based on single ac-

celerator decreases because external storages are often

required[26, 94]. Some designs based on multiple accel-

erators can maintain high performance when deal with

large graphs[28, 86] because the graphs can still be held

in on-chip/board memory.

Remarks. It gets clear that comparing different

graph accelerators is extremely challenging due to the

distinct evaluation parameters. To resolve this prob-

lem, the common practice in prior work is to compare

the accelerator with some known systems as shown in

Table 4. However, the compared systems used in differ-

ent accelerators are still not comparable. For example,

different accelerators adopt various strategies in prepro-

cessing, parallel graph computation models and run-

time scheduling schemes. As a result, the accelerator

evaluation and peer comparison are still trapped into a

deadlock. We conjecture that the lack of graph accel-

erator benchmarks and reference designs is the root of

Chuang-Yi Gui et al.: A Survey on Graph Processing Accelerators 31

0

1

4

7

11

2

6

12

9

0

4

2

12

6

1

7

11

9

0

12

6

11

9
0

4

2

1

7

Graph Reordering Graph Partition

Graph Preprocessing

Execution Scheduling

Runtime Scheduling

Parallel Accumulation Efficient Synchronization

Parallel Graph Computation

Partitioned by the vertex ID

Address Generator

1 L
R 9 L

R ...
Vertex Pipeline 1...

8 L
R 16 L

R ...
Vertex Pipeline 8

Memory

ϵ?

ϵ?
M
em

or
y
In
te
rf
ac
e

Sh
uf
fle

Request
FIFO1

Request
FIFO2

Request
FIFON

Token
FIFO

On‐chip
MemoryRe

or
de

r

...

To Com
putation

Vertex Access Scheduling

⊕ ⊕ ⊕ ⊕

⊕⊕

⊕⊕⊕⊕

⊕ ⊕

Cr
os
sb
ar
 S
w
itc
h

C
om

pa
ra

to
r

ID

R
eg

A
cc

um
ul

ao
r

D
at

a
R

eg

 W
rit
e
Ba

ck
Fig.5. The workflow decomposition of AccuGraph in accordance with three major components (described in Fig.1) of preprocessing,
parallel graph computation and runtime scheduling

this problem. To this point, developing an open-sourced

benchmark as well as an easy-to-port reference design

can be a potential solution to make a fair evaluation.

6.3 A Case Study: AccuGraph[15]

As a representative state-of-the-art FPGA-based

graph processing accelerator, AccuGraph[15] has

achieved impressive performance results with the ded-

icated hardware design for parallelizing the vertex up-

dates that involve conflicts. For better understanding

this survey, Fig.5 re-decomposes the original workflow

of AccuGraph as a case study according to different

stages that we have identified previously.

Preprocessing. For saving the space of on-chip

memories, AccuGraph follows to use the compact graph

representation with CSR. In an effort to balance the

number of vertex accesses, AccuGraph presents an

index-aware ordering to reorder the edges of each vertex

by following a simple hash function of MOD(n) where n

is up to the number of on-chip subgraph partitions. As

for graph partition, considering that AccuGraph uses a

pull-based model for high-throughput pipeline design,

a vertex-cut graph partitioning method is used to en-

sure the sequential access of the in-degree edges of each

vertex.

Parallel Graph Computation. AccuGraph is built

upon a Xilinx Virtex Ultrascale+ FPGA board. In

order to avoid the half-bandwidth wasting problem of

edge-centric programming model that simultaneously

accesses both source and destination vertices, Accu-

32 J. Comput. Sci. & Technol., January 2019, Vol., No.

Graph uses the vertex-centric programming model to

access source vertices only for ensuring the sequential

access of edges.

The core design of AccuGraph lies in a parallel ac-

cumulator with dedicated hardware circuits that can

support the simultaneous update of conflicting vertices.

The key insight is that the atomic operations of many

graph algorithms manifest incremental and simplex fea-

tures, which enables to execute massive conflicting ver-

tex updates in an accumulative fashion. By handling

atomic operations simultaneously and merging their re-

sults in parallel, the update operations for the same ver-

tex can be therefore parallelized while preserving the

correctness of final results.

It is also observed that a significant amount of lo-

cality exists for accessing associated edges of a par-

ticular active vertex. In order to further reduce the

synchronization overhead of high-degree vertices, Accu-

Graph follows to use Copy-on-Write philosophy[124] to

delay the writeback of vertex data. All intermediately-

updated vertex data is stored into a specially designed

scratchpad memory. If and only if all associated edges

are finished, the updated value of a given vertex can be

written into the main memory.

Runtime Scheduling. To better leverage the lim-

ited number of pins of parallel accumulator, AccuGraph

uses an improved frontier-based scheduling. In the as-

pect of computational scheduling, it separately handles

the pipelines of vertices and edges for reducing the out-

of-order memory accesses. The edge pipelines access

each edge sequentially while each edge pipeline dynam-

ically adjusts the number of vertices to be processed via

a degree-aware scheduling mechanism. As for memory

access scheduling, the sparsity of graph often leads to

the imbalance of accessing vertices. AccuGraph signifi-

cantly enhances the throughput of on-chip computation

by presenting an out-of-order approach for accessing the

value of vertex.

7 Challenges and Opportunities

With the recent efforts, graph processing acceler-

ators have experienced a series of significant technical

advances for achieving high throughput and energy effi-

ciency. Nevertheless, there still has a long way for graph

accelerators in practical use for many challenges. As

emerging architectural technologies arise, we would also

have great opportunities for to make significant pro-

gresses in not only performance and energy efficiency

but also supporting technologies for easy use, evalua-

tion and maintenance.

7.1 Challenges

Programmability. The development and execution

of graph algorithms on existing accelerators rely deeply

on the low-level programming with hardware descrip-

tion languages. This enforces that developers have to

know the underlying hardware details. Programming

for graph programs is non-trivial with a long develop-

ment cycle. Though high-level programming languages,

e.g., C/C++, make this relatively easy, there still lack

the effective transformation and mapping of the high-

level programming languages to the low-level hardware

description languages. The general-purpose high level

synthesis (HLS) offers a viable solution, which is, how-

ever, potentially inefficient due to no full consideration

of graph characteristics. It is of great importance to

build easy-to-use programming environments for graph

processing accelerators.

Supporting Large Graphs. The scale of the graph

size is still exploding, which can be easily beyond the

available capacity of on-chip memories of a single graph

accelerator. For supporting large graphs, an intuitive

method is to extend to use larger memory for storing

the whole graph. For example, we can use a cluster

Chuang-Yi Gui et al.: A Survey on Graph Processing Accelerators 33

network of HMCs. However, this may cost a high price

at routing the requisite data. An alternative approach

is to use the heterogeneous graph processing. By us-

ing the host memory with more than Terabyte capac-

ity, we can thus have sufficient memory space to store

large graphs[26, 28]. Also, a similar design is to connect

multiple graph accelerators together and manage them

uniformly[28, 29]. Nevertheless, the problem is that a sig-

nificant amount of communication overhead may occur

between different graph accelerators.

Time-evolving Graphs. Existing studies are mostly

limited to static graph structures. The graph data may

easily change in structure over times. Dynamic graph

processing is a hot research topic[125–127]. For example,

users of Twitter may update and delete a post at any-

time. They can also add and delete comments on this

post. The complex and changeable graph data struc-

ture has a high requirement for the latency of graph

accelerators. Some methods based on the incremental

variation of the subgraph have achieved relatively good

results under small scale increments[126], but the effi-

cient processing of the large-scale time-evolving graph

is still an open problem.

Complex Attributes of Graphs. Different areas have

different requirements for the attributes of graphs. For

example, two nodes may involve a large number of as-

sociated edges that can be handled in parallel. This

is common for the server links and road connections.

In addition, a number of values can be also associated

to a vertex or edge[128]. More complex is that the at-

tributes of a graph in the Graph Network (GN) can

be a vector, set or even another graph[129]. These com-

plex attributes of the graphs can result in totally differ-

ent computing and memory requirements that existing

graph processing research can neither fit nor be handled

efficiently, let alone hardware circuit designs.

Machine Learning on Graphs. Deep learning or ma-

chine learning algorithms are also emerging on graphs.

There are some research advances on how to represent

graph structures into matrics[130,131]. This gives a new

dimension of two emerging fields: machine learning and

graph processing.

Hardware Interfaces. Almost all of existing graph

processing accelerators are used solely. They work un-

der the premise that the graph data is placed in its on-

chip memory. For supporting large graphs as described

previously, requisite external connections to either an-

other accelerators or host processor are needed. This

hence requires some extra interfaces for the connection

and extension. Unfortunately, few customized graph

processing accelerators have such kind of effective in-

terfaces (instead of slow PCI Express lane connection)

to support better communication and energy efficiency

for graph processing.

Tool Chains. So far, there are also no convenient

tools for programmers to develop and use these graph

accelerators easily. Particularly, if the graph programs

come across the concurrency and performance bugs,

programmers have to rebuild and re-wire the hardware

circuit, which is notoriously costly. There still lacks of a

chain of utility tools for helping understand, diagnose or

even fix these low-level problems during development.

Compiler Support. Compiler supporting is an effec-

tive way to fill the gap between high-level programming

and low-level graph iteration. Symbolic execution is

used to parallelize the dependent computations of ver-

tices for achieving compelling performance results on

general-purpose processors[132]. Execution parallelism

can be also explored for irregular applications by ag-

gressively scheduling execution dependencies at com-

pile time[133]. However, more non-trivial efforts are

still needed for graph processing accelerators to inte-

grate these advanced compilation features due to the

fact that existing (hardware and software) ecosystem

34 J. Comput. Sci. & Technol., January 2019, Vol., No.

surrounding graph accelerators are far from mature.

7.2 Opportunities

Widespread Adoption. To the best of our knowl-

edge, graph processing has been used in many fields,

e.g., social network, literature network, traffic network

and knowledge atlas. The earlier work focuses on ad-

dressing typical problems regarding graph searching,

random walking and graph clustering. Although there

emerge a few latest advances that are attempting to

solve the large, complex problems by leveraging graph

processing[134], the application of graph processing still

needs to expand. It is a series of open questions re-

garding how to leverage graph processing and further

renovate its hardware acceleration to solve wider prac-

tical problems.

Emerging Technologies. As discussed before, a few

recent studies have used emerging memory technologies

(e.g., HMC and ReRAM) to accelerate graph process-

ing, and made the good results in both performance and

energy. Nevertheless, the potentials of these emerging

technologies are still being under-utilized. For instance,

GraphR[70] uses just one layer ReRAM only, but the

fact is that the future ReRAM is often stacked. It is an

interesting question on how to use the stacked ReRAM

for graph processing acceleration in a more significant

way in practice. To this point, more effective and ef-

ficient techniques for better supporting emerging tech-

nologies have to be settled.

FPGA on the Cloud. FPGAs have been widely

adopted in industries to accelerate the datacenter[23]

for the high energy efficiency and performance. FPGA

providers such as Amazon, Baidu, and Tencent have

also offered an easy and flexible programming environ-

ment for FPGA development on the cloud. Users can

directly program FPGA on the cloud with convenient

GUI and sufficient open-source instancesÁ. The abun-

dant available FPGA resources and integrated develop-

ment tools provide the opportunities for agile develop-

ment of FPGA graph processing accelerators[22].

The Rise of Specialized Architectures in Artificial

Intelligence. There has emerged a number of AI spe-

cialized hardware accelerators in recent years[135,136].

These hardware accelerators have been used to acceler-

ate mechaine learning applications in the cloudÂ. The

abundant experience of existing AI accelerators can

help us understand the underlying architecture design.

Besides, a large number of educating resources and de-

veloping tools for AI accelerator development can pro-

mote the procedure of architecture designs. These op-

portunities brought by artificial intelligence accelera-

tors can significantly improve the efficiency of graph

processing accelerator development.

8 Conclusions

With the widely spreading graph applications, and

gradually increasing data size and the complexity in

big data analytics, the performance and energy effi-

ciency of graph processing have brought severe chal-

lenges to modern data processing eco-systems. There

has emerged a large amount of work that aims at ex-

ploring software optimizations to improve the perfor-

mance and energy efficiency of graph processing under

general-purpose architectures, e.g., multi-core CPUs[52]

and GPUs[6, 8].

However, the significant gap between the unique

feature of graph processing and the hardware features

of general-purpose architectures limits the further im-

provement of performance and energy efficiency. Mem-

ory access efficiency suffers signficantly from traditional

Áhttp://www.plunify.com/en/plunify-cloud/, Jan. 2019.
Âhttp://cloud.google.com/tpu/, Jan. 2019.

Chuang-Yi Gui et al.: A Survey on Graph Processing Accelerators 35

memory hierarchy when facing the challenges of the in-

tuitive features in graph processing, e.g., the irregular-

ity and strong dependency[15, 16]. GPUs also face the

drawbacks, e.g., control and memory divergence, load

imbalance and global memory access overhead[6]. That

motivates the recent research efforts on developing new

hardware architectures for graph processing.

With the trend and opportunities in domain-specific

architectures[20], e.g., open-source implementations and

agile chip development technics[22], customized graph

processing accelerators have emerged as a promising

solution to achieve both high performance and energy

efficiency.

In this paper, we investigated a wide spectrum of

studies on graph processing accelerators, and provided

a systematic view on their design and implementation.

Existing techniques have been categorized into three

core aspects: preprocessing, parallel graph computation

and runtime scheduling. For each aspect, we reviewed

the state-of-the-art techniques and made our remarks

on identifying the open problems for future research.

We also made a careful comparison of these studies,

and highlighted the importance of evaluation bench-

marks for graph processing accelerators. At last, we

summarized the challenges and opportunities of graph

processing accelerators, which, we believe, can help ar-

chitect efficient graph processing accelerators. In sum-

mary, graph processing accelerators are still a hot re-

search topic with many technical challenges and oppor-

tunities. We call for actions in this survey from dif-

ferent communities, including computer architectures,

software systems, and databases, to respond these chal-

lenges cooperatively.

References

[1] Malewicz G, Austern M H, Bik A J, Dehnert J C, Horn

I, Leiser N, Czajkowski G. Pregel: A system for large-

scale graph processing. In Proc. ACM SIGMOD Int. Conf.

Management of Data, June 2010, pp.135-146.

[2] Low Y, Bickson D, Gonzalez J, Guestrin C, Kyrola A,

Hellerstein J M. Distributed GraphLab: A framework for

machine learning and data mining in the cloud. Proceed-

ings of the VLDB Endowment, 2012, 5(8): 716-727.

[3] Shun J, Blelloch G E. Ligra: A lightweight graph process-

ing framework for shared memory. In Proc. the 18th ACM

SIGPLAN Symp. Principles and Practice of Parallel Pro-

gramming, February 2013, pp.135-146.

[4] Kyrola A, Blelloch G E, Guestrin C. GraphChi: Large-

scale graph computation on just a PC. In Proc. the 10th

USENIX Conf. Operating Systems Design and Implemen-

tation, October 2012, pp.31-46.

[5] Roy A, Mihailovic I, Zwaenepoel W. X-Stream: Edge-

centric graph processing using streaming partitions. In

Proc. the 24th ACM Symp. Operating Systems Principles,

November 2013, pp.472-488.

[6] Zhong J, He B. Medusa: A parallel graph processing sys-

tem on graphics processors. ACM SIGMOD Record, 2014,

43(2): 35-40.

[7] Khorasani F, Vora K, Gupta R, Bhuyan L N. CuSha:

Vertex-centric graph processing on GPUs. In Proc. the

23rd Int. Symp. High-performance Parallel and Dis-

tributed Computing, June 2014, pp.239-252.

[8] Wang Y, Davidson A, Pan Y, Wu Y, Riffel A, Owens J D.

Gunrock: A high-performance graph processing library on

the GPU. In Proc. the 21st ACM SIGPLAN Symp. Prin-

ciples and Practice of Parallel Programming, March 2016,

Article No. 11.

[9] Shi X, Luo X, Liang J, Zhao P, Di S, He B, Jin H. Frog:

Asynchronous graph processing on GPU with hybrid col-

oring model. IEEE Trans. Knowledge and Data Engineer-

ing, 2018, 30(1): 29-42.

[10] Fu Z, Personick M, Thompson B. MapGraph: A high level

API for fast development of high performance graph ana-

lytics on GPUs. In Proc. Workshop on GRAph Data Man-

agement Experiences and Systems, June 2014, pp.1-6.

[11] Liu H, Huang H H. Enterprise: Breadth-first graph traver-

sal on GPUs. In Proc. Int. Conf. High Performance Com-

puting, Networking, Storage and Analysis, Novemer 2015,

pp.1-12.

[12] Beamer S, Asanovic K, Patterson D. Locality exists in

graph processing: Workload characterization on an ivy

bridge server. In Proc. IEEE Int. Symp. Workload Char-

acterization, November 2015, pp.56-65.

[13] Malicevic J, Lepers B, Zwaenepoel W. Everything you al-

ways wanted to know about multicore graph processing

but were afraid to ask. In Proc. USENIX Annual Techni-

cal Conf., July 2017, pp.631-643.

[14] Nai L, Hadidi R, Sim J, Kim H, Kumar P, Kim H.

GraphPIM: Enabling instruction-level PIM offloading in

graph computing frameworks In Proc. IEEE Int. Symp.

High Performance Computer Architecture, February 2017,

pp.457-468.

36 J. Comput. Sci. & Technol., January 2019, Vol., No.

[15] Yao P, Zheng L, Liao X, Jin H, He B. An efficient graph ac-

celerator with parallel data conflict management. In Proc.

Int. Conf. Parallel Architectures and Compilation Tech-

niques, November 2018, Article No. 8.

[16] Ham T J, Wu L, Sundaram N, Satish N, Martonosi

M. Graphicionado: A high-performance and energy-

efficient accelerator for graph analytics. In Proc. the 49th

IEEE/ACM Int. Symp. Microarchitecture, October 2016,

pp.1-13.

[17] Nai L, Xia Y, Tanase I G, Kim H, Lin C Y. GraphBIG: Un-

derstanding graph computing in the context of industrial

solutions. In Proc. Int. Conf. High Performance Comput-

ing, Networking, Storage and Analysis, November 2015,

pp.1-12.

[18] Satish N, Sundaram N, Patwary M M, Seo J, Park J, Has-

saan M A, Sengupta S, Yin Z, Dubey P. Navigating the

maze of graph analytics frameworks using massive graph

datasets. In Proc. ACM SIGMOD Int. Conf. Management

of Data, June 2014, pp.979-990.

[19] Ben-Nun T, Sutton M, Pai S, Pingali K. Groute: An

asynchronous multi-GPU programming model for irregu-

lar computations. In Proc. ACM SIGPLAN Symp. Prin-

ciples and Practice of Parallel Programming, February

2017, pp.235-248.

[20] Hennessy J, Patterson D. Domain Specific Architectures.

In Computer Architecture: A Quantitative Approach (6th

edition), Merken S, McFadden N (eds.), Elsevier, 2017,

pp.540-606.

[21] Ceze L, Hill M D, Sankaralingam K, Wenisch T F.

Democratizing design for future computing platforms.

arXiv:1706.08597, 2017. http://arxiv.org/abs/1706.08597,

Jun. 2017.

[22] Lee Y, Waterman A, Cook H, Zimmer B, Keller B,

Puggelli A, Kwak J, Jevtic R, Bailey S, Blagojevic M,

Chiu P F. An agile approach to building RISC-V micro-

processors. IEEE Micro, 2016, 36(2): 8-20.

[23] Caulfield A M, Chung E S, Putnam A, Angepat H, Fowers

J, Haselman M, Heil S, Humphrey M, Kaur P, Kim J Y,

Lo D. A cloud-scale acceleration architecture. In Proc. the

49th IEEE/ACM Int. Symp. Microarchitecture, October

2016, Article No. 7.

[24] Kapre N, Mehta N, Rizzo D, Eslick I, Rubin R, Uribe

TE, Thomas Jr F, DeHon A. GraphStep: A system

architecture for sparse-graph algorithms. In Proc. the

14th IEEE Symp. Field-Programmable Custom Comput-

ing Machines, April 2006, pp.143-151.

[25] Attia O G, Johnson T, Townsend K, Jones P, Zambreno

J. CyGraph: A reconfigurable architecture for parallel

breadth-first search. In Proc. Int. Parallel and Distributed

Processing Symp. Workshops, May 2014, pp.228-235.

[26] Dai G, Chi Y, Wang Y, Yang H. FPGP: Graph processing

framework on FPGA a case study of breadth-first search.

In Proc. ACM/SIGDA Int. Symp. Field-Programmable

Gate Arrays, February 2016, pp.105-110.

[27] Zhou S, Chelmis C, Prasanna V K. High-throughput and

energy-efficient graph processing on FPGA. In Proc. the

24th Int. Symp. Field-Programmable Custom Computing

Machines, May 2016, pp.103-110.

[28] Dai G, Huang T, Chi Y, Xu N, Wang Y, Yang H. Fore-

Graph: Exploring large-scale graph processing on multi-

FPGA architecture. In Proc. ACM/SIGDA Int. Symp.

Field-Programmable Gate Arrays, February 2017, pp.217-

226.

[29] Ozdal M M, Yesil S, Kim T, Ayupov A, Greth J, Burns S,

Ozturk O. Energy efficient architecture for graph analyt-

ics accelerators. In Proc. the 23rd ACM/IEEE Annual Int.

Symp. Computer Architecture, June 2016, pp.166-177.

[30] Zhou J, Liu S, Guo Q, Zhou X, Zhi T, Liu D, Wang C,

Zhou X, Chen Y, Chen T. TuNao: A high-performance

and energy-efficient reconfigurable accelerator for graph

processing. In Proc. the 17th IEEE/ACM Int. Symp. Clus-

ter, Cloud and Grid Computing, May 2017, pp.713-734.

[31] Ayupov A, Yesil S, Ozdal M M, Kim T, Burns S, Oz-

turk O. A template-based design methodology for graph-

parallel hardware accelerators. IEEE Trans. Computer-

Aided Design of Integrated Circuits and Systems, 2018,

37(2): 420-430.

[32] Ahn J, Hong S, Yoo S, Mutlu O, Choi K. A scalable

processing-in-memory accelerator for parallel graph pro-

cessing. In Proc. the 42nd ACM/IEEE Annual Int. Symp.

Computer Architecture, June 2015, pp.105-117.

[33] Pawlowski J T. Hybrid memory cube (HMC). In Proc. the

23th IEEE Hot Chips Symp., August 2011, pp.1-24.

[34] Kim J, Kim Y. HBM: Memory solution for bandwidth-

hungry processors. In Proc. the 26th IEEE Hot Chips

Symp., August 2014, pp.1-24.

[35] Wong H S, Lee H Y, Yu S, Chen Y S, Wu Y, Chen P S, Lee

B, Chen F T, Tsai M J. Metal-oxide RRAM. Proceedings

of the IEEE, 2012, 100(6): 1951-1970.

[36] Page L, Brin S, Motwani R, Winograd T. The

PageRank citation ranking: Bringing order to the

web. Technical Report, Stanford InfoLab, 1999.

http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf, Jan.

2019.

[37] McCune RR, Weninger T, Madey G. Thinking like a

vertex: A survey of vertex-centric frameworks for large-

scale distributed graph processing. ACM Trans. Comput-

ing Surveys, 2015, 48(2): Ariticle No. 25.

[38] Shi X, Zheng Z, Zhou Y, Jin H, He L, Liu B, Hua Q. Graph

processing on GPUs: A survey. ACM Trans. Computing

Surveys, 2018, 50(6): Article No. 81.

[39] Heidari S, Simmhan Y, Calheiros RN, Buyya R. Scalable

graph processing frameworks: A taxonomy and open chal-

lenges. ACM Trans. Computing Surveys, 2018, 51(3): Ar-

ticle No. 60.

[40] Gonzalez J E, Low Y, Gu H, Bickson D, Guestrin C.

PowerGraph: Distributed graph-parallel computation on

natural graphs. In Proc. the 10th USENIX Conf. Operat-

ing Systems Design and Implementation, October 2012,

pp.17-30.

http://arxiv.org/abs/1706.08597
http://arxiv.org/abs/1-706.08597

Chuang-Yi Gui et al.: A Survey on Graph Processing Accelerators 37

[41] Avery C. Giraph: Large-scale graph processing infrastruc-

ture on Hadoop. Proceedings of the Hadoop Summit, 2011,

11(3): 5-9.

[42] Gonzalez J E, Xin R S, Dave A, Crankshaw D, Franklin

M J, Stoica I. GraphX: Graph processing in a distributed

dataflow framework. In Proc. the 11th USENIX Conf.

Operating Systems Design and Implementation, October

2014, pp.599-613.

[43] Teixeira CH, Fonseca A J, Serafini M, Siganos G, Zaki

M J, Aboulnaga A. Arabesque: A system for distributed

graph mining. In Proc. the 25th Symp. Operating Systems

Principles, October 2015, pp.425-440.

[44] Chen R, Shi J, Chen Y, Chen H. Powerlyra: Differentiated

graph computation and partitioning on skewed graphs. In

Proc. the 10th European Conf. Computer Systems, April

2015, Article No. 1.

[45] Zhu X, Chen W, Zheng W, Ma X. Gemini: A

computation-centric distributed graph processing system.

In Proc. the 12th USENIX Conf. Operating Systems De-

sign and Implementation, November 2016, pp.301-316.

[46] Khayyat Z, Awara K, Alonazi A, Jamjoom H, Williams

D, Kalnis P. Mizan: A system for dynamic load balancing

in large-scale graph processing. In Proc. the 8th ACM Eu-

ropean Conf. Computer Systems, April 2013, pp.169-182.

[47] Randles M, Lamb D, Taleb-Bendiab A. A comparative

study into distributed load balancing algorithms for cloud

computing. In Proc. the 24th Int. Conf. Advanced Infor-

mation Networking and Applications Workshops, April

2010, pp.551-556.

[48] Zhao Y, Yoshigoe K, Xie M, Zhou S, Seker R, Bian J.

Lightgraph: Lighten communication in distributed graph-

parallel processing. In Proc. IEEE Int. Congress on Big

Data, June 2014, pp.717-724.

[49] Wang P, Zhang K, Chen R, Chen H, Guan H. Replication-

based fault-tolerance for large-scale graph processing. In

Proc. the 44th IEEE/IFIP Int. Conf. Dependable Systems

and Networks, June 2014, pp.562-573.

[50] Nguyen D, Lenharth A, Pingali K. A lightweight infras-

tructure for graph analytics. In Proc. the 24th ACM Symp.

Operating Systems Principles, November 2013, pp.456-

471.

[51] Sundaram N, Satish N, Patwary M M, Dulloor S R, An-

derson M J, Vadlamudi S G, Das D, Dubey P. Graph-

Mat: High performance graph analytics made productive.

Proceedings of the VLDB Endowment, 2015, 8(11): 1214-

1225.

[52] Zhang K, Chen R, Chen H. NUMA-aware graph-

structured analytics. In Proc. the 20th ACM SIGPLAN

Symp. Principles and Practice of Parallel Programming,

February 2015, pp.183-193.

[53] Han WS, Lee S, Park K, Lee J H, Kim M S, Kim J, Yu

H. TurboGraph: A fast parallel graph engine handling

billion-scale graphs in a single PC. In Proc. the 19th ACM

SIGKDD Int. Conf. Knowledge Discovery and Data Min-

ing, August 2013, pp.77-85.

[54] Yuan P, Zhang W, Xie C, Jin H, Liu L, Lee K. Fast it-

erative graph computation: A path centric approach. In

Proc. Int. Conf. High Performance Computing, Network-

ing, Storage and Analysis, November 2014, pp.401-412.

[55] Zhu X, Han W, Chen W. GridGraph: Large-scale graph

processing on a single machine using 2-level hierarchical

partitioning. In Proc. Conf. USENIX Annual Technical

Conf., July 2015, pp.375-386.

[56] Chi Y, Dai G, Wang Y, Sun G, Li G, Yang H. NXgraph:

An efficient graph processing system on a single machine.

In Proc. the 32nd Int. Conf. Data Engineering, May 2016,

pp.409-420.

[57] Maass S, Min C, Kashyap S, Kang W, Kumar M, Kim T.

Mosaic: Processing a trillion-edge graph on a single ma-

chine. In Proc. the 12th European Conf. Computer Sys-

tems, April 2017, pp.527-543.

[58] Seo H, Kim J, Kim M S. GStream: A graph streaming pro-

cessing method for large-scale graphs on GPUs. In Proc.

the 20th ACM SIGPLAN Symp. Principles and Practice

of Parallel Programming, February 2015, pp.253-254.

[59] Soman J, Kishore K, Narayanan P J. A fast GPU algo-

rithm for graph connectivity. In Proc. Int. Symp. Paral-

lel & Distributed Processing, Workshops and Phd Forum,

April 2010, pp.1-8.

[60] McLaughlin A, Bader D A. Scalable and high performance

betweenness centrality on the GPU. In Proc. Int. Conf.

High Performance Computing, Networking, Storage and

Analysis, November 2014, pp.572-583.

[61] Sariyüce AE, Kaya K, Saule E, Çatalyürek Ü V. Between-

ness centrality on GPUs and heterogeneous architectures.

In Proc. the 6th Workshop on General Purpose Processor

Using Graphics Processing Units, March 2013, pp.76-85.

[62] Davidson A A, Baxter S, Garland M, Owens J D. Work-

efficient parallel GPU methods for single-source shortest

paths. In Proc. the 28th Int. Parallel and Distributed Pro-

cessing Symp., May 2014, pp.349-359.

[63] Hong S, Chafi H, Sedlar E, Olukotun K. Green-Marl: A

DSL for easy and efficient graph analysis. In Proc. the 17th

Int. Conf. Architectural Support for Programming Lan-

guages and Operating Systems, March 2012, pp.349-362.

[64] Gharaibeh A, Reza T, Santos-Neto E, Costa LB, Salli-

nen S, Ripeanu M. Efficient large-scale graph processing

on hybrid CPU and GPU systems. arXiv:1312.3018, 2013.

http://arxiv.org/abs/1312.3018, Dec. 2014.

[65] Zhang T, Zhang J, Shu W, Wu M Y, Liang X. Efficient

graph computation on hybrid CPU and GPU systems. The

Journal of Supercomputing, 2015, 71(4): 1563-1586.

[66] Liu H, Huang H H, Hu Y. iBFS: Concurrent breadth-first

search on GPUs. In Proc. Int. Conf. Management of Data,

June 2016, pp.403-416.

[67] Sengupta D, Song S L, Agarwal K, Schwan K. GraphRe-

duce: Processing large-scale graphs on accelerator-based

systems. In Proc. Int. Conf. High Performance Comput-

ing, Networking, Storage and Analysis, November 2015,

Article No. 28.

http://arxiv.org/abs/1312.3018
http://arxiv.org/abs/1312.3018

38 J. Comput. Sci. & Technol., January 2019, Vol., No.

[68] Kim MS, An K, Park H, Seo H, Kim J. GTS: A fast

and scalable graph processing method based on stream-

ing topology to GPUs. In Proc. Int. Conf. Management

of Data, June 2016, pp.447-461.

[69] Han L, Shen Z, Shao Z, Huang H H, Li T. A novel ReRAM-

based processing-in-memory architecture for graph com-

puting. In Proc. the 6th Non-Volatile Memory Systems

and Applications Symp., August 2017, pp.1-6.

[70] Song L, Zhuo Y, Qian X, Li H, Chen Y. GraphR: Acceler-

ating graph processing using ReRAM. In Proc. Int. Symp.

High Performance Computer Architecture, February 2018,

pp.531-543.

[71] Zhang J, Khoram S, Li J. Boosting the performance of

FPGA-based graph processor using hybrid memory cube:

A case for breadth first search. In Proc. ACM/SIGDA Int.

Symp. Field-Programmable Gate Arrays, February 2017,

pp.207-216.

[72] Oguntebi T, Olukotun K. GraphOps: A dataflow library

for graph analytics acceleration. In Proc. ACM/SIGDA

Int. Symp. Field-Programmable Gate Arrays, February

2016, pp.111-117.

[73] Dai G, Huang T, Chi Y, Zhao J, Sun G, Liu Y, Wang

Y, Xie Y, Yang H. GraphH: A processing-in-memory ar-

chitecture for large-scale graph processing. IEEE Trans.

Computer-Aided Design of Integrated Circuits and Sys-

tems. doi:10.1109/TCAD.2018.2821565. (preprint)

[74] Zhang J, Li J. Degree-aware hybrid graph traversal on

FPGA-HMC platform. In Proc. ACM/SIGDA Int. Symp.

Field-Programmable Gate Arrays, February 2018, pp.229-

238.

[75] Zhou S, Kannan R, Min Y, Prasanna VK. FASTCF:

FPGA-based accelerator for stochastic-gradient-descent-

based collaborative filtering. In Proc. ACM/SIGDA Int.

Symp. Field-Programmable Gate Arrays, February 2018,

pp.259-268.

[76] Khoram S, Zhang J, Strange M, Li J. Accelerating graph

analytics by co-optimizing storage and access on an

FPGA-HMC platform. In Proc. ACM/SIGDA Int. Symp.

Field-Programmable Gate Arrays, February 2018, pp.239-

248.

[77] Han L, Shen Z, Liu D, Shao Z, Huang H H, Li T. A

novel ReRAM-based processing-in-memory architecture

for graph traversal. ACM Trans. Storage, 2018, 14(1): Ar-

ticle No. 9.

[78] Wang Q, Jiang W, Xia Y, Prasanna V. A message-

passing multi-softcore architecture on FPGA for breadth-

first search. In Proc. Int. Conf. Field-Programmable Tech-

nology, December 2010, pp.70-77.

[79] Umuroglu Y, Morrison D, Jahre M. Hybrid breadth-first

search on a single-chip FPGA-CPU heterogeneous plat-

form. In Proc. the 25th Int. Conf. Field Programmable

Logic and Applications, September 2015, pp.1-8.

[80] Zhou S, Prasanna V K. Accelerating graph analytics on

CPU-FPGA heterogeneous platform. In Proc. the 29th

Int. Symp. Computer Architecture and High Performance

Computing, October 2017, pp.137-144.

[81] Zhang M, Zhuo Y, Wang C, Gao M, Wu Y, Chen K,

Kozyrakis C, Qian X. GraphP: Reducing communication

for PIM-based graph processing with efficient data par-

tition. In Proc. Int. Symp. High Performance Computer

Architecture, February 2018, pp.544-557.

[82] Huang T, Dai G, Wang Y, Yang H. HyVE: Hybrid vertex-

edge memory hierarchy for energy-efficient graph process-

ing. In Proc. Design, Automation and Test in Europe

Conference and Exhibition, March 2018, pp.973-978.

[83] Ozdal M M, Yesil S, Kim T, Ayupov A, Greth J, Burns

S, Ozturk O. Graph analytics accelerators for cognitive

systems. IEEE Micro, 2017, 37(1): 42-51.

[84] Kapre N. Custom FPGA-based soft-processors for

sparse graph acceleration. In Proc. the 26th Int. Conf.

Application-specific Systems, Architectures and Proces-

sors, July 2015, pp.9-16.

[85] Betkaoui B, Thomas D B, Luk W, Przulj N. A frame-

work for FPGA acceleration of large graph problems:

Graphlet counting case study. In Proc. Int. Conf. Field-

Programmable Technology, December 2011, pp.1-8.

[86] Betkaoui B, Wang Y, Thomas D B, Luk W. A recon-

figurable computing approach for efficient and scalable

parallel graph exploration. In Proc. the 23rd Int. Conf.

Application-Specific Systems, Architectures and Proces-

sors, July 2012, pp.8-15.

[87] Betkaoui B, Wang Y, Thomas D B, Luk W. Parallel

FPGA-based all pairs shortest paths for sparse networks:

A human brain connectome case study. In Proc. the 22nd

Int. Conf. Field Programmable Logic and Applications,

August 2012, pp.99-104.

[88] Nurvitadhi E, Weisz G, Wang Y, Hurkat S, Nguyen M,

Hoe J C, Mart́ınez J F, Guestrin C. GraphGen: An FPGA

framework for vertex-centric graph computation. In Proc.

the 22nd Int. Symp. Field-Programmable Custom Com-

puting Machines, May 2014, pp.25-28.

[89] Attia O G, Grieve A, Townsend K R, Jones P, Zambreno

J. Accelerating all-pairs shortest path using a message-

passing reconfigurable architecture. In Proc. Int. Conf.

Reconfigurable Computing and FPGAs, December 2015,

pp.1-6.

[90] Engelhardt N, So H K. GraVF: A vertex-centric dis-

tributed graph processing framework on FPGAs. In Proc.

the 26th Int. Conf. Field Programmable Logic and Appli-

cations, August 2016, pp.1-4.

[91] Jin H, Yao P, Liao X, Zheng L, Li X. Towards dataflow-

based graph accelerator. In Proc. the 37th Int. Conf. Dis-

tributed Computing Systems, June 2017, pp.1981-1992.

[92] Zhou S, Chelmis C, Prasanna V K. Accelerating large-

scale single-source shortest path on FPGA. In Proc. Int.

Parallel and Distributed Processing Symposium Work-

shop, May 2015, pp.129-136.

Chuang-Yi Gui et al.: A Survey on Graph Processing Accelerators 39

[93] Zhou S, Chelmis C, Prasanna V K. Optimizing memory

performance for FPGA implementation of pagerank. In

Proc. Int. Conf. Reconfigurable Computing and FPGAs,

December 2015, pp.1-6.

[94] Jun S W, Wright A, Zhang S, Xu S, Arvind. GraFBoost:

Using accelerated flash storage for external graph analyt-

ics. In Proc. the 45th ACM/IEEE Int. Symp. Computer

Architecture, June 2018, pp.411-424.

[95] Thomas D, Moorby P. The Verilog Hardware Description

Langua, 5th Edition, Springer Science and Business Me-

dia, 2008.

[96] Ashenden P J. The Designer’s Guide to VHDL (3rd edi-

tion), Wolf W (eds.), Elsevier, 2008.

[97] Lee J, Kim H, Yoo S, Choi K, Hofstee H P, Nam G J,

Nutter M R, Jamsek D. ExtraV: Boosting graph process-

ing near storage with a coherent accelerator. Proceedings

of the VLDB Endowment, 2017, 10(12): 1706-1717.

[98] Kim G, Kim J, Ahn JH, Kim J. Memory-centric system

interconnect design with hybrid memory cubes. In Proc.

the 22nd Int. Conf. Parallel Architectures and Compila-

tion Techniques, October 2013, pp.145-156.

[99] Xu C, Niu D, Muralimanohar N, Balasubramonian R,

Zhang T, Yu S, Xie Y. Overcoming the challenges of cross-

bar resistive memory architectures. In Proc. the 21st Int.

Symp. High Performance Computer Architecture, Febru-

ary 2015, pp.476-488.

[100] Do J, Kee YS, Patel JM, Park C, Park K, DeWitt DJ.

Query processing on smart SSDs: Opportunities and chal-

lenges. In Proc. the ACM SIGMOD Int. Conf. Manage-

ment of Data, June 2013, pp.1221-1230.

[101] Jun SW, Liu M, Lee S, Hicks J, Ankcorn J, King M, Xu S.

BlueDBM: An appliance for big data analytics. In Proc.

the 42nd ACM/IEEE Int. Symp. Computer Architecture,

October 2015, pp.1-13.

[102] Zhang J, Jung M. Flashabacus: A self-governing flash-

based accelerator for low-power systems. In Proc. the 13th

EuroSys Conf., April 2018, Article No. 15.

[103] Ozdal M M. Emerging accelerator platforms for data cen-

ters. IEEE Design & Test, 2018, 35(1): 47-54.

[104] Weisz G, Melber J, Wang Y, Fleming K, Nurvitadhi E,

Hoe J C. A study of pointer-chasing performance on

shared-memory processor-FPGA systems. In Proc. the

ACM/SIGDA Int. Symp. Field-Programmable Gate Ar-

rays, February 2016, pp.264-273.

[105] Gu B, Yoon AS, Bae DH, Jo I, Lee J, Yoon J, Kang JU,

Kwon M, Yoon C, Cho S, Jeong J. Biscuit: A framework

for near-data processing of big data workloads. In Proc.

the 43rd Int. Symp. Computer Architecture, June 2016,

pp.153-165.

[106] Son Y, Choi J, Jeon J, Min C, Kim S, Yeom HY, Han H.

SSD-assisted backup and recovery for database systems. In

Proc. the 33rd IEEE Int. Conf. Data Engineering, April

2017, pp.285-296.

[107] Song W S, Gleyzer V, Lomakin A, Kepner J. Novel graph

processor architecture, prototype system, and results. In

Proc. High Performance Extreme Computing Conference,

September 2016, pp.1-7.

[108] Jin H, Yao P, Liao X. Towards dataflow based graph

processing. Science China Information Sciences, 2017,

60(12): 1-3.

[109] Windh S, Budhkar P, Najjar W A. CAMs as synchronizing

caches for multithreaded irregular applications on FPGAs.

In Proc. Int. Conf. Computer-Aided Design, November

2015, pp.331-336.

[110] Wang L, Yang X, Dai H. Scratchpad memory allocation

for arrays in permutation graphs. Science China Informa-

tion Sciences, 2013, 56(5): 1-13.

[111] Gao M, Ayers G, Kozyrakis C. Practical near-data pro-

cessing for in-memory analytics frameworks. In Proc. Int.

Conf. Parallel Architecture and Compilation, October

2015, pp.113-124.

[112] Faloutsos M, Faloutsos P, Faloutsos C. On power-law rela-

tionships of the Internet topology. ACM SIGCOMM Com-

puter Communication Review, 1999, 29(4): 251-262.

[113] Xie C, Chen R, Guan H, Zang B, Chen H. Sync or async:

Time to fuse for distributed graph-parallel computation.

In Proc. the 20th ACM SIGPLAN Symp. Principles and

Practice of Parallel Programming, February 2015, pp.194-

204.

[114] Ozdal M M, Yesil S, Kim T, Ayupov A, Burns S,

Ozturk O. Architectural requirements for energy effi-

cient execution of graph analytics applications. In Proc.

IEEE/ACM Int. Conf. Computer-Aided Design, Novem-

ber 2015, pp.676-681.

[115] Beamer S, Asanović K, Patterson D. Direction-optimizing

breadth-first search. In Proc. Int. Conf. High Performance

Computing, Networking, Storage and Analysis, November

2012, Article No. 12.

[116] Beamer S, Asanović K, Patterson D. The GAP benchmark

suite. arXiv:1508.03619, 2015. http://arxiv.org/abs/1-

508.03619, May. 2017.

[117] Scarpazza D P, Villa O, Petrini F. Efficient breadth-first

search on the cell/be processor. IEEE Trans. Parallel and

Distributed Systems, 2008, 19(10): 1381-95.

[118] Milenković T, Lai J, Pržulj N. GraphCrunch: A tool for

large network analyses. BMC bioinformatics, 2008, 9(1):

Article No. 70.

[119] Hong S, Oguntebi T, Olukotun K. Efficient parallel graph

exploration on multi-core CPU and GPU. In Proc. Int.

Conf. Parallel Architectures and Compilation Techniques,

October 2011, pp.78-88.

[120] Matsumoto K, Nakasato N, Sedukhin S G. Blocked all-

pairs shortest paths algorithm for hybrid CPU-GPU sys-

tem. In Proc. Int. Conf. High Performance Computing

and Communications, September 2011, pp.145-152.

[121] Siek J G, Lee L Q, Lumsdaine A. Boost Graph Library:

User Guide and Reference Manual. Pearson Education,

2001.

http://arxiv.org/abs/1508.03619
http://arxiv.org/abs/1-508.03619
http://arxiv.org/abs/1-508.03619

40 J. Comput. Sci. & Technol., January 2019, Vol., No.

[122] Ma X, Zhang D, Chiou D. FPGA-accelerated trans-

actional execution of graph workloads. In Proc.

ACM/SIGDA Int. Symp. Field-Programmable Gate

Arrays, February 2017, pp.227-236.

[123] Da Zheng D M, Burns R, Vogelstein J, Priebe C E, Szalay

A S. FlashGraph: Processing billion-node graphs on an ar-

ray of commodity SSDs. In Proc. the 13th USENIX Conf.

File and Storage Technologies, February 2015, pp.45-58.

[124] Rodeh O. B-trees, shadowing, and clones. ACM Transac-

tions on Storage, 2008, 3(4): Article No. 2.

[125] Sha M, Li Y, He B, Tan K L. Accelerating dynamic graph

analytics on GPUs. Proceedings of the VLDB Endowment,

2017, 11(1): 107-120.

[126] Shi X, Cui B, Shao Y, Tong Y. Tornado: A system for

real-time iterative analysis over evolving data. In Proc.

Int. Conf. Management of Data, June 2016, pp.417-430.

[127] Chen H, Sun Z, Yi F, Su J. Bufferbank storage: An eco-

nomic, scalable and universally usable in-network storage

model for streaming data applications. Science China In-

formation Sciences, 2016, 59(1): 1-15.

[128] Zhang M, Wu Y, Chen K, Qian X, Li X, Zheng W. Explor-

ing the hidden dimension in graph processing. In Proc. the

12th USENIX Conf. Operating Systems Design and Im-

plementation, November 2016, pp.285-300.

[129] Battaglia P W, Hamrick J B, Bapst V, Sanchez-Gonzalez

A, Zambaldi V, Malinowski M, Tacchetti A, Raposo

D, Santoro A, Faulkner R, Gulcehre C. Relational

inductive biases, deep learning, and graph networks.

arXiv:1806.01261, 2018. http://arxiv.org/abs/1806.01261,

Jun. 2018.

[130] Narayanan A, Chandramohan M, Venkatesan R, Chen L,

Liu Y, Jaiswal S. Graph2vec: Learning distributed repre-

sentations of graphs. In Proc. the 13th Int. Workshop on

Mining and Learning with Graphs, August 2017.

[131] Ribeiro L F, Saverese P H, Figueiredo D R. Struc2vec:

Learning node representations from structural identity. In

Proc. the 23rd ACM SIGKDD Int. Conf. Knowledge Dis-

covery and Data Mining, August 2017, pp.385-394.

[132] Zheng L, Liao X, Jin H. Efficient and scalable graph paral-

lel processing with symbolic execution. ACM Trans. Ar-

chitecture and Code Optimization, 2018, 15(1): Ariticle

No. 3.

[133] Li Z, Liu L, Deng Y, Yin S, Wang Y, Wei S. Aggressive

pipelining of irregular applications on reconfigurable hard-

ware. In Proc. the 44th ACM/IEEE Int. Symp. Computer

Architecture, June 2017, pp.575-586.

[134] Zheng L, Liao X, Jin H, Zhao J, Wang Q. Scalable con-

currency debugging with distributed graph processing.

In Proc. Int. Symp. Code Generation and Optimization,

February 2018, pp.188-199.

[135] Jouppi NP, Young C, Patil N, Patterson D, Agrawal G,

Bajwa R, Bates S, Bhatia S, Boden N, Borchers A, Boyle

R. In-datacenter performance analysis of a tensor process-

ing unit. In Proc. ACM/IEEE Int. Symp. Computer Ar-

chitecture, June 2017, pp.1-12.

[136] Chen T, Du Z, Sun N, Wang J, Wu C, Chen Y, Temam

O. Diannao: A small-footprint high-throughput accelera-

tor for ubiquitous machine-learning. In Proc. the 19th Int.

Conf. Architectural Support for Programming Languages

and Operating Systems, March 2014, pp.269-284.

Chuang-Yi Gui is currently a Ph.D.

candidate in the School of Computer

Science and Technology at Huazhong

University of Science and Technology

(HUST), Wuhan, China. He received

his B.E. degree at HUST in 2017.

His current research interests include

graph processing and reconfigurable

computing.

Long Zheng is now a postdoctoral

researcher in the school of Computer

Science and Technology at Huazhong

University of Science and Technology

(HUST), Wuhan, China. He received

his Ph.D. degree at HUST in 2016.

His current research interests include

program analysis, runtime systems, and

configurable computer architecture with a particular focus

on graph processing.

Bing-Sheng He is currently an

Associate Professor at Department of

Computer Science, National University

of Singapore (NUS). Before joining

NUS in May 2016, he held a research

position in the System Research group

of Microsoft Research Asia (2008-2010)

and a faculty position in Nanyang

Technological university, Singapore. He got the Bachelor

degree in Shanghai Jiao Tong University (1999-2003), and

the Ph.D. degree in Hong Kong University of Science &

Technology (2003-2008). His current research interests

include Big data management systems (with special inter-

ests in cloud computing and emerging hardware systems),

Parallel and distributed systems and Cloud Computing.

http://arxiv.org/abs/1806.01261
http://arxiv.org/abs/1806.01261

Chuang-Yi Gui et al.: A Survey on Graph Processing Accelerators 41

Cheng Liu is an associate professor

of Institute of Computing Technology

(ICT), Chinese Academy of Sciences

(CAS), Beijing, China. He received

his B.E. and M.E. degree in Micro-

electronic engineering from Harbin

Institute of Technology in 2009 and his

Ph.D. degree in computer engineering

from The University of Hong Kong in 2016. His research

focuses on FPGA based reconfigurable computing and

domain-specific computing.

Xin-Yu Chen is now a Ph.D.

candidate of Computer Science in

the National University of Singapore,

Singapore. He received his B.E. degree

in Electronic Science and Technology

from Harbin Institute of Technology,

Weihai, China, in 2016. His current

research interests include FPGA-based

heterogeneous computing and database systems.

Xiao-Fei Liao received his Ph.D

degree in computer science and en-

gineering from Huazhong University

of Science and Technology (HUST),

Wuhan, China, in 2005. He is now the

vice dean in the school of Computer

Science and Technology at HUST.

He has served as a reviewer for many

conferences and journal papers. His research interests

are in the areas of system software, P2P system, cluster

computing and streaming services. He is a member of the

IEEE and the IEEE Computer Society.

Hai Jin is a Cheung Kung Scholars

Chair Professor of computer science and

engineering at Huazhong University

of Science and Technology (HUST),

Wuhan, China. Jin received his PhD

in computer engineering from HUST

in 1994. In 1996, he was awarded a

German Academic Exchange Service

fellowship to visit the Technical University of Chemnitz

in Germany. Jin worked at The University of Hong Kong

between 1998 and 2000, and as a visiting scholar at the

University of Southern California between 1999 and 2000.

He was awarded Excellent Youth Award from the National

Science Foundation of China in 2001. Jin is the chief

scientist of ChinaGrid, the largest grid computing project

in China, and the chief scientists of National 973 Basic

Research Program Project of Virtualization Technology of

Computing System, and Cloud Security. Jin is an IEEE

Fellow and a member of the ACM. He has co-authored 15

books and published over 600 research papers. His research

interests include computer architecture, virtualization

technology, cluster computing and cloud computing,

peer-to-peer computing, network storage, and network

security.

	1 Introduction
	2 Preliminaries
	2.1 Graph Representation
	2.2 Graph Algorithms
	2.3 Unique Features of Graph Processing
	2.4 blackBrief Introduction to Graph Processing on Modern Commodity Processors

	3 Graph Preprocessing
	3.1 Graph Layout Reorganization
	3.2 Graph Ordering
	3.3 Graph Partitioning

	4 Parallel Graph Computation
	4.1 Iterative Paradigm
	4.2 Dedicated Hardware Acceleration
	4.2.1 FPGA-based Designs
	4.2.2 ASIC-based Designs
	4.2.3 PIM-enabled Designs

	4.3 Large-Scale Graph Processing Acceleration
	4.4 Sophisticated Co-designs
	4.4.1 Parallelism Extension
	4.4.2 Memory Access Optimization
	4.4.3 Energy efficiency Optimization

	5 Runtime Scheduling
	5.1 Runtime Considerations
	5.2 Communication Model
	5.3 Execution Model
	5.4 Scheduling Schemes

	6 Graph Accelerator Evaluation
	6.1 Evaluation Metrics
	6.2 Summary of Results
	6.3 A Case Study: AccuGraph40-YaoPACT

	7 Challenges and Opportunities
	7.1 Challenges
	7.2 Opportunities

	8 Conclusions

