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DEMC: A Deep Dual-Encoder Network for Denoising Monte Carlo Rendering
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Figure 1. We propose a deep Dual-Encoder network for denoising Monte Carlo rendering to produce high quality images. We train our network to learn

the complicated relationship between noisy images with low sampling rate and corresponding reference with high sampling rate (a). The learned model is

then applied to denoise other rendering result with low sampling rate to predict noise-free results (b).

Abstract

In this paper, we present DEMC, a deep Dual-
Encoder network to remove Monte Carlo noise effi-
ciently while preserving details. Denoising Monte Carlo
rendering is different from natural image denoising
since inexpensive by-products (feature buffers) can be
extracted in the rendering stage. Most of them are noise-
free and can provide sufficient details for image recon-
struction. However, these feature buffers also contain

redundant information, which makes Monte Carlo de-
noising different from natural image denoising. Hence,
the main challenge of this topic is how to extract use-
ful information and reconstruct clean images. To ad-
dress this problem, we propose a novel network struc-
ture, Dual-Encoder network with a feature fusion sub-
network, to fuse feature buffers firstly, then encode the
fused feature buffers and a noisy image simultaneously,
and finally reconstruct a clean image by a decoder net-
work. Compared with the state-of-the-art methods, our



model is more robust on a wide range of scenes, and
is able to generate satisfactory results in a significantly
faster way.

1. Introduction

Producing a photo-realistic image from 3D models needs
complex computation at every pixel of the image. For ex-
ample, a ray tracing algorithm requires computing complex
integral over all the ray paths between light source(s) and
every point on image sensors. Monte Carlo (MC) raytrac-
ing [18] introduces a method to approximate this complex
integral by tracing light path in a multi-dimensional space,
in order to obtain an estimated value of the integral expres-
sion. Although Monte Carlo rendering has been widely ac-
cepted by many movie production studios, it suffers from
noise pollution, which can only be mitigated by increasing
the number of samples exponentially, making the synthesis
of a noise-free and photo-realistic image very time consum-
ing. However, some industry applications, such as real-time
game rendering, virtual/augmented reality, require render-
ing high-quality images in a faster way.

Recently, a variety of methods [28, 19, 7, 2] for acceler-
ating Monte Carlo rendering have been proposed. The core
idea of these methods is to render a noisy image with a few
samples per pixel (SPP) firstly, and then use denoising algo-
rithms to reconstruct a perceptually noise-free image from
the noisy image and auxiliary feature buffers. Here, the aux-
iliary feature buffers are inexpensive by-products generated
in rendering stage, which contain geometry and texture in-
formation extracted from the 3D model. The auxiliary fea-
ture buffers are highly correlated with noisy images, and
can conserve edge information. Most of them are noise-free
and can provide sufficient details for image reconstruction.
However, there is also redundant information mixed in the
auxiliary feature buffers. This makes MC denoising differ-
ent from natural image denoising. Hence, the main chal-
lenge of this problem is how to extract useful information
that correlates with noisy RGB images from the auxiliary
feature buffers to assist the reconstruction of clean images.
To address this problem, Moon et al. [24] applied a linear
model to approximate the ground truth, by weighting the
error of each pixel based on the auxiliary features. Bitterli
et al. [7] constructed collaborative regression using feature
buffers. Kalantari et al. [19] built a network, using feature
buffers, to predict parameters for cross-bilateral filter. Re-
cently, Bako et al. [2] proposed a deep convolutional net-
work, leveraging feature buffers, to predict filter kernels for
each individual pixel.

In this paper, we propose a deep network structure for
denoising Monte Carlo rendering, Dual-Encoder network,
to encode the feature buffers and noisy images with differ-
ent encoders, and then use a decoder network to efficiently

reconstruct clean images directly. Our proposed architec-
ture includes two encoders: a feature buffer encoder for ex-
tracting the detail information in order to enhance image
reconstruction in the decoding stage, and an HDR image
encoder, which can transform the noisy image to a compact
representation of the spatial contexts for the image. Since
our feature buffers contain multiple channels, we introduce
a feature fusion sub-network to merge feature buffers into
three channels, which can extract edges and omit redundant
information. Our network structure is shown in Figure 3.
Compared with the state-of-the-art methods, our model is
more robust on a wide range of scenes, and generates satis-
factory results in a significantly faster way.

2. Related Work

After Cook [I1] published their paper “Distribute Ray
Tracing”, lots of researchers devoted to reconstructing the
Monte Carlo rendering, and these works can be divided into
two categories: 1) Traditional algorithms that rely on statis-
tical analysis and process of sampled data in image-space or
enhance MC renderings with information derived from an
analytical analysis of the light transport equations. 2) Ma-
chine learning based methods that leverage machine learn-
ing algorithm to learn complex relationship between noisy
images, feature buffers and references.

2.1. Traditional Algorithms

In 2015, Zwicker et al. [32] summarized non-machine
learning algorithms, and divided them into two general
classes: the priori methods and the posteriori methods. The
priori methods leverage information acquired from an anal-
ysis of the light transport equations to enhance Monte Carlo
samples and then generate adaptive reconstruction filters
based on this information. For example, Ramamoorthi et
al. [26] apply derivative analysis to enhance adaptive sam-
pling and conduct a more comprehensive and thorough first-
order analysis of lighting, shading, and shadows in direct
illumination. Jarosz et al. [17] improved this work by ap-
plying a second-order analysis of indirect illumination. On
the other side, the posteriori methods are used to leverage
a family of reconstruction filters and develop errors estima-
tion for reconstruction results. These approaches migrated
from natural image denoising methods, and treated the ren-
derer as a black box. For instance, Bauszat et al. [5] applied
guided filter for removing MC rendering noise. Rousselle
et al. [28] leveraged NL-mean filter for denoising. Moon et
al. [24] applied a linear model to approximate the ground
truth. Bauszat et al. [4] constructed a robust error estima-
tion method for MC rendering. Bitterli et al. [7] designed
collaborative non-linear regression for reconstructing clean
images. In summary, traditional methods generally need to
select filter models or filter parameters manually, and re-
quire user intervention to empirically pick a suitable result.
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Figure 2. Feature buffers extracted from the Tungsten renderer consist of shading normal (a), world position (b), texture values for the first
and second intersections in RGB format for each sample during rendering (c, d), which are illustrated as RGB format. Then we feed them
to our feature fusion sub-network to generate the fused detail map as shown in (e).

In comparison, our network will predict it automatically.

2.2, Learning-Based Methods

It is worth noting that Kalantari et al. [19] introduced
a machine learning approach to the MC denoising field
for the first time, though learning based methods have ob-
tained great success on natural image denoising. They build
a Multiple layer Perceptron (MLP) to predict parameters
for cross-bilateral filter. Although it can avoid limitations
caused by manually selecting parameters, it still inherits
limits from a fixed filter (cross-bilateral filter or someone
else). Recently, Bako et al. [2] presented a Kernel-Predict
Convolutional Network (KPCN), which uses deep convolu-
tional network, dividing noisy image into two components
and leveraging feature buffers as network inputs, to predict
filter kernels for each individual pixel. KPCN completely
solves the drawback from fixed filter, but the basis of this
method is still a confirmed range filter kernel, its recep-
tive field is highly limited. Yang et al. [30] presented a
deep CNN for Monte Carlo rending reconstruction. They
designed an end-to-end network, feed feature buffers and
noisy image to the network directly. Although their work’s
receptive field could be unlimited, they didn’t consider the
diference between feature and RGB images, which makes
their network hard to converge. Besides denoising MC ren-
dering image, Chaitanya et al. [10] proposed a recurrent au-
toencoder to reconstruct MC image sequence. Compared to
denoising single image, there is temporal consistence priori
could be employed in image sequence denoising. There-
fore, denoising single MC rendering image is more chal-
lenging.

2.3. Convolutional Network for Natural Image Denoising

In addition to methods mentioned above, deep learn-
ing methods, especially deep convolutional neural networks
(CNNs), have also shown great performance for natural im-
age denoising problem. For example, Zhang et al. [31] pro-
posed a deep CNN for removing Gaussian noise, Gharbi et
al. [13] used CNN for demosaicking and denoising. Mao
et al. [23] introduced a U-Net variant autoencoder to per-

form natural image restoration. Although these networks
have obtained good performance in denoising problem, if
we naively concatenate the auxiliary feature buffers with
noisy MC rendering images and feed them into these im-
age denoising networks, they cannot generate satisfactory
results comparing to other MC denoising models. This is
because the auxiliary feature buffers have different natures
with RGB images, and without specifically designed struc-
ture for them the image denoising networks can not deal
well with the auxiliary feature buffers.

3. Methodology

In this section, we will introduce technical background
and terminology briefly, and then describe the structure of
our Dual-Encoder network.

3.1. Problem Formulation

The goal of MC denoising is to predict noise-free im-
ages from noisy images and auxiliary features. For natural
image denoising, noisy image is the only input. In contrast,
we can get auxiliary features together with noisy images
from the renderer for MC denoising. Specifically, as shown
in Figure 2, the renderer output shading normals (i, j, and
k), the world positions in Cartesian coordinates (x, y, and
z) and texture values for the first and second intersections
in RGB format for each sample as the auxiliary features
(12 channels in total) [19]. Therefore, the per-pixel input
zp = {cp, fp} is a vector of 15 channels, where ¢, is the
tone-mapped color values and f, is the normalized auxil-
iary features. The details of tone mapping and normaliza-
tion methods will be described in Sec. 4.2.

It is noteworthy that shading normals contain most of
the geometry information of the scene, world positions have
spatial location clue of the objects in the scene and texture
values for the first and second intersections include the tex-
ture details information of the scene. They are all very help-
ful for reconstructing noise-free images, since geometry and
spatial location clue are highly correlated with the structure
edges in the images and texture details are corresponding to
the texture edges in the images, besides, they are noise-free



even rendered at very low SPP rate in most cases (except
for using complicated camera models). Therefore, the main
challenge is how to effectively explore the auxiliary features
when reconstructing a clean image from the noisy image.

3.2. Network Structure Design

Denoising Monte Carlo rendering is different from nat-
ural image denoising since feature buffers as inexpensive
by-products can be extracted in the rendering stage. Native
networks for natural image denoising do not have a special
structure to deal with feature buffers. Natural image denois-
ing usually concentrates on color-based filter that exclude
auxiliary buffer. Thus, native networks cannot work well
on this problem. In Sec.4.4, we tested Single Encoder Net-
work (SEMC), which only has one encoder structure. As
shown in Figure 4, our SEMC network structure contains
as many trainable parameters as DEMC, which makes these
two network structures have same trainable parameters to-
tally. In this experiment, our DEMC’s performance is better
than SEMC, since SEMC cannot deal with auxiliary feature
buffers well. Our goal is to predict the noise-free images
from noisy images with the help of auxiliary features. The
auto-encoder architecture [ 16] can be used to transform data
into a corresponding low-dimensional latent representation,
and then reconstruct the original dimension data. Consider-
ing the characteristics of removing Monte Carlo noise with
the rich information in the feature buffers, we extend the
standard auto-encoder network with skip connection. We
design a Dual-Encoder network for encoding feature buffers
and noisy images simultaneously, and reconstructing corre-
sponding clean images. The problem could be formulated
as: X

0= argm@inﬁ(ép,g(a:p,@)), ()

where G(x,, 0) is our DEMC model, ¢ is the trainable pa-
rameters, and £ is a loss function between the reference
value ¢,, which is rendered with extremely high SPP (e.g.,
32K) and predicted value G(x,,6). We propose a Feature
Fusion sub-network to deal with feature buffers. It is worth
noting that edges in different areas of the image could be
drawn from different features. Then, our Feature Fusion
sub-network can merge the edges. As shown in Figure 3,
compared to the reference, the feature fusion result con-
tains more details and edges information. This sub-network
contains four convolutional blocks. The input and output
blocks both contain a convolutional layer, and a rectified
linear unit (ReLU) activation layer, since ReLU can pro-
mote performance in multiple tasks and boosting the model
convergence to the local minimum [3]. For the blocks in
the middle, we add a batch normalization layer inside it for
a better optimization [15]. The output of feature fusion
sub-network contains three channels, which can preserve
more detail and edge information, comparing to the origi-
nal feature buffers, as shown in Figure 2. Since we train this

feature fusion sub-network with our Dual-Encoder network
jointly, the sub-network will automatically extract structure
and texture details, which can be used for the reconstruction
stage from feature buffers.

In the encoder network, there are three convolutional lay-
ers followed by a max-pooling layer. Each of these four
layers constitutes a down-sampling unit. We employ two
encoders to extract the information from RGB values and
feature values separately, since the information represen-
tations of noisy images and feature buffers are different.
Each encoder contains five down-sampling units, encod-
ing the input images and feature buffers respectively in a
W /32 x H/32 x 512 latent representation, where W and
H indicate the width and height of the input data. We can
obtain two latent representations through the Dual-Encoder
network, with one corresponding to noisy image, and the
other corresponding to the low-dimensional representation
of the features. The representation of the noisy images will
be used to feed into decoder network and reconstruct the fi-
nal result since the information of the features can be trans-
ferred by the skip-connection structure.

In the decoder network, we use deconvolutional layers
with 4 x 4 kernel to up-sample images into 2WW x 2W scales.
After five up-sampling layers, we can get the final results
with the same resolution as the noisy images. All the con-
volutional layers and deconvolutional layers in our Dual-
Encoder network use ReLLU activation functions, which can
promote network performance in multiple tasks and boost-
ing the model convergence to the local minimum [3]. We
use skip-connection to transfer each level of two encoders to
the corresponding level of the decoder side simultaneously,
since some information may be lost during the encoding
stage and this information can be used by skip-connection
to enhance the decoding stage. Skip-connection will con-
catenate the outputs of the layers from the two encoders and
the corresponding decoder layer along the third dimension.
To be more specific, given the outputs of two layers, whose
dimensions are both W x H x K, the concatenated result
will be W x H x 3K. Then we use a convolutional layer
with kernel size of 1 x 1 to fuse the concatenated layers into
the output with K channels. The skip-connection is defined
as
; hy
hP =a(W |hET| +b). 2)

hER
3

The vector hP, hE¥ and hE" denote the ith layer tensors
from the corresponding decoder layer, feature encoder layer
and HDR encoder layer, respectively. Meanwhile, hP is the
decoder feature fused from skip-connection. W' is a weight
matrix, b denotes the bias of feature fusion, and o is the
ReLU activation function. For instance, h? , hiEf and hiEi
are k x 1 vectors and W will be a K x 3K weight matrix,
fusing three vectors into K dimensions. For this purpose,
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Figure 3. A deep Dual-Encoder network, used for denoising Monte Carlo renderings. The feature buffers and noisy image are generated
from renderer. The feature buffers are firstly fused by a feature fusion sub-network to get a detail map, and then the detail map and noisy
image are encoded by the feature encoder and HDR encoder respectively. Finally, the latent representation is decoded to reconstruct a clean

image with skip connection from the Dual-Encoder.

we set the weights as

w=I[ 1 1I], €)
where I is the kth identity matrix and b is set to 0.
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Figure 4. Network structure of Single Encoder Network (SEMC), which
only has one encoder structure and contains as many trainable parameters
as our Dual-Encoder Network (DEMC).
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4. Experiments and Results

4.1. Data

A sufficiently large and effective dataset is needed to
train a robust model for denoising MC renderings in a va-
riety of distributed effects such as depth of field, area light-
ing, glossy reflections, and global illumination. We pick up
some scenes from Blender-Swap and [0], clean up the ge-
ometry, then manually set up PBR materials, lighting and
camera, and finally make them available for the Tungsten
renderer. The ground truth images are rendered at 32k or
higher SPP rate for production-level quality, while input
noisy images are rendered at a fixed 4 SPP. For the train-
ing set, we select 97 scenes that cover different distributed
effects to expand the generalization capability of our model.
We cannot use KPCN’s training set to train our model, since
the training dataset of KPCN is not public. Meanwhile, our
test set contains 36 scenes, which can represent different
scene types. Our testing dataset and training dataset contain
no similar images. Example images of the training set are



shown in Figure 5.

Figure 5. Examples of the training set. The left column is input noisy
images rendered with low SPP (e.g. 4 SPP), the right column is referenced
images rendered with high SPP (32K SPP or higher).
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Figure 6. We plot the training and validation loss against the number of
iterations during the training stage. The data has been smoothed and is
plotted in log domain for better visualization.

4.2. Training

Different from LDR (Low Dynamic Range) images, the
noisy input HDR (High Dynamic Range) images have a
large pixel value range. This make the training extremely

unstable. Hence, we employ Gamma transformation on
HDR images to compress pixel values. Similar technique
has been used for training a neural network to inverse LDR
image to HDR domain [12]. The concrete transforming
equation for the noisy HDR image ¢, is:

& = ()7, )

where -y is set to 2.2 in our experiments. Similarly, auxiliary
features also have a large value range. For instance, world
position values are always large while shading normal val-
ues are small. But we do not need them in their original do-
main, we normalize them using common Z-score method.

Since the input noisy images are compressed with the
Gamma transformation while the ground truth images are
still in the HDR domain, we apply the inverse of Eq. 4 to the
output of our network to transfer the predicted images back
to the HDR domain. Then, we compute the loss between
the constructed images and ground truth as follows:

Z Z cpq Jcr10€t1)27 (5)

qé{rg b} p=1

where N is the total number of pixels, ¢, 4 and ¢, , are
the gth color channel of the reconstructed and ground truth
pixels, respectively, and € is a small number (0.001 in our
implementation) to avoid division by zero. This metric is
ReIMSE [27], which can give higher weights to the regions
where the ground truth images is darker, since the human
visual system is more sensitive to color variations in darker
regions [19]. We minimize the loss function in the HDR
domain directly. By doing so, we can train the model to
converge to the final optimal solution in HDR domain.

We initialize the weights of our DEMC network with dif-
ferent strategies for different parts. For the convolutional
layers of the encoder network and latent representation, we
use the Xavier method [14] to initialize them. For the de-
convolutions of the decoder network, we initialize them us-
ing a bilinear up-sampling matrix. The skip-connections are
initialized as Eq. 3.

We implemented our DEMC using Tensorflow [1] on
Ubuntu with GPU acceleration. We set patch size as
128128 and stride as 80. Finally, we get about 57k patches
for training. In the training stage, our DEMC is optimized
with ADAM [20], and the learning rate range is set from
104 to 5 x 1076, Our experiments are executed on a PC
with Intel Core 17 7700k, NVIDIA GTX 1080Ti and 32G
memory. The network is trained for approximately 250K
iterations over the course of about 2 days. The training and
validation loss log are shown as Figure 6.

4.3. Comparison Against State-of-the-art

We compare our proposed method, DEMC, against
the state-of-the-art approaches, NFOR [7], KPCN [2] and



DEMC 4 SPP KPCN NFOR Ours Reference
O

Bathroom Time: 3.1265 75.1s 0.568s
RelMSE: 10.1e-3 26.3e3 7.70e-3

SSIM: 0.8697 0.8289 0.8797

Living Room Time: 3.236s 71.7s 0.580s
RelMSE: 8.59¢-3 15.3e-3 5.66e-3

SSIM: 0.9093 0.8854 0.9363

Tea Set Time: 2.143s 43.1s 0.3665s
RelMSE: 3.14e-3 3.43e3 2.72e-3

SSIM: 0.9749 0.9623 0.9799

House Time: 3.128s 98.65 1.584s
RelMSE: 19.0e-3 15.7e-3 10.3e-3

SSIM: 0.9171 0.9277 0.9434

Figure 7. We compare our DEMC against the state-of-the-art methods, NFOR [7] and KPCN [2]. Our method is faster than all the other
methods while preserving more details. The ReIMSE (relative MSE) and SSIM [29] index values are listed below each close-up result
(for ReIMSE lower is better, for SSIM higher is better). Tone mapping of the insets has been adjusted equally for all algorithms for best
visibility. The full results in the test set can be found in the supplementary materials.
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Figure 8. We compare our DEMC against LBF [19] on the PBRT?2 renderer [25] to show our DEMC has high flexibility with different

rendering systems.

LBF [19]. For NFOR, we use the authors’ open source
implementation, which is plugged into the Tungsten ren-
derer. For KPCN, we use the model trained by the author
for Tungsten renderer. For LBF, we use the authors’ orig-
inal implement on the well-known renderer, PBRT2 [25].
We retrain our model on the scenes of PBRT2 to com-
pare our model against LBF on some test scenes that is not
intersected with the training set. The reason why we do
not retrain LBF on Tungsten renderer scenes is that aux-
iliary feature buffers extracted from Tungsten and PBRT2
are slightly different, especially for texture values for the
second intersection and visibility, and the LBF model we
trained on Tungsten scenes does not performs as well as
the original one trained on PBRT2 scenes. Therefore, we
compare our model against NFOR and KPCN in Tungsten
renderer while against LBF in PBRT2 renderer.

In this paper we focus on the applications that require
rendering high-quality images in a fast way, e.g., game ren-
dering, virtual/augmented reality and prototype design as
stated in the introduction. For such applications, rendering

speed is very important, while high samples per pixel (SPP),
e.g. 32 SPP, will greatly slow down the rendering. There-
fore, all these methods are tested with noisy images and
feature buffers rendered at 4 SPP, while reference images
are rendered at 32K SPP or higher to make sure they are
perceptually noise-free. To assess the performance of these
methods, we use 2 metrics, ReIMSE (Relative MSE) and
SSIM (Structural Similarity Index) whose values are from
0 to 1, where 1 indicates perfect quality with respect to the
ground truth image. The reported time shown in Figure 7
means the denoising time, exclude the time for rendering
the noisy images, since all of these methods take the similar
time to generate them.

In Figure 7, we show a subset of the comparison re-
sults in our test set, and our DEMC performs better than
the state-of-the-art methods both perceptually and quantita-
tively. The full results in the test set can be found in the
supplementary materials. For instance, in the Bathroom
scene, our method could reconstruct both object structure
and high-light reflection due to the helpful auxiliary fea-



DEMC 4 SPP SEMC DEMC Reference
Time: 0.288s 0.349s
RelMSE: 3.10e-3 2.44e-3
SSIM: 0.9840 0.9901
Time: 0.301s 0.352s
RelMSE: 1.56e-3 2.30e-3
SSIM: 0.9801 0.9862

Figure 9. We compare our DEMC against Single Encoder Network (SEMC) to show the strong representation capability of our DEMC.
They are all executed on noisy images and auxiliary features rendered at 4 SPP. Tonemapping of the insets has been adjusted equally for

all the algorithms for best visibility.

tures and the strong representation capability of our DEMC,
while KPCN generates residual noise in high-light regions
and NFOR suffers from noisy edges in complex geometry
regions. In the 7ea Set scene, KPCN and NFOR are both
blurred in teapot handle region, which contains the refrac-
tion and reflection of rays. In contrast, our method can rep-
resent the teapot handle region more accurately compared
to the reference. In the House scene with global illumina-
tion, compared with KPCN and NFOR, our method could
reconstruct a cleaner result while preserving more details.
In terms of speed, for an image of 1280 x 720, our DEMC
takes about 0.6 seconds to evaluate and output a fully de-
noised image, while the GPU based method, KPCN, needs
more than 3.0 seconds for the same image'.

!Note that, the noisy image and auxiliary features rendered time is not
included here, since all of the methods takes the same time to generate
them approximately.
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Figure 10. Average performance of NFOR [7], KPCN [2], Single Encoder
Network (SEMC) and our DEMC model across our test scenes on 4spp.
In order to demonstrate that feature fusion sub-network structure is benefit
to the final performance, we also test our DEMC model without feature
fusion sub-network structure (DEMCnoSN). (a) shows the performance in
the metric of SSIM, higher SSIM meaning better performance. (b) shows
the performance in the metric of relative MSE, which is also our loss func-
tion, shown in Equation 5, lower ReIMSE meaning better performance.

Figure 10 shows a comparison of the average perfor-
mance of our DEMC model and KPCN [2] and NFOR [7],
on the Tungsten renderer. Our DEMC model outperforms
the other two methods, in both the error metrics, namely



SSIM and relative MSE. In order to demonstrate the effec-
tiveness of feature fusion sub-network, we evaluated our
DEMC model without it (DEMCnoSN in 10). For DEM-
CnoSN, we directly feed the auxiliary feature buffers to the
feature encoder and noisy images to another encoder and
reconstruct the clean images as DEMC do. As shown in
Figure 10, the feature fusion sub-network structure obvi-
ously promoted the performance of DEMC model. We did
not include PSNR as one of the error metrics, since there is
a parameter in PSNR’s definition, which indicates the max-
imum value of images. But as we mentioned above, the
values in HDR images can be positive infinity theoretically.
Therefore, the PSNR metric is not suitable for evaluating
HDR images.

We retrained our DEMC on a training set of PBRT2
scenes, including 50 different scenes, to compare with LBF.
The example results in test set is shown in Figure 8, wich
contain scenes with both high frequency features such as
vegetation and low frequency features such as the surface of
the car. We can see that, the results generated from LBF will
over-smooth the scene, therefore some slight object struc-
tures will be erased while our results are more accurate and
realistic. Our DEMC network outperforms LBF in SSIM
metric, and generates result much faster than LBF.

4.4, Dual-Encoder Network vs. Single Encoder Network

We conduct an experiment to show our Dual-Encoder
network’s performance, comparing against single encoder.
We design a Single-Encoder network (named SEMC for
convenience), which has the same feature fusion sub-
network and the same input as DEMC. To be more spe-
cific, the auxiliary features are fused by the feature fusion
sub-network firstly, then the fused detail map is concate-
nated together with the noisy image, and finally the con-
catenated data is flowed into a standard auto-encoder and
decoder network with skip connection. We train the SEMC
using the same training set and hyper parameters as DEMC.
As shown in Figure 9, we show the qualitative and quanti-
tative comparison results of DEMC and SEMC for Silver-
Material and Low-Design scenes. Compared to SEMC,
DEMC can preserve more structure and shadow details.
In Figure 10, we show quantitative comparison between
DEMC and SEMC on our test set, which shows that the
DEMC performs better than SEMC on the SSIM metrics.
This shows that the Dual-Encoder network structure can
more effectively extract useful information that correlates
with noisy RGB images from the auxiliary feature buffers
to assist the reconstruction of clean images than Single-
Encoder network structure in MC denoising.

5. Limitations and Future Work

Our method belongs to auxiliary feature buffers based
methods, which is the same as LBF [19], KPCN [2] and

NFOR [7]. This kind of methods assume the features are
highly correlated to noisy image, but such assumption is not
always correct, such as the strong specular reflection scenes
where the auxiliary features are less relevant to the noisy
image. As shown in Figure 11, there are two glass balls
on the ground, and the ball reflects texture and pattern of
the ground. However, this detail is not shown in the feature
texturel world position and shading normal. Since this kind
of scenes are very different from the other scenes, our model
cannot deal with them well and the specular region will be
blurred, which is also common among the auxiliary feature
buffers based methods [9].

Scene: Spheres-differentials-texfilt
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Figure 11. We visualized a scene named spheres-differentials-texfilt, and
its corresponding feature buffers. Since the material of balls are glass,
there are lots of specular reflection effect. Our model cannot work well on
this kind of scenes.

Since our method is designed for single MC rendered
image denoising, if directly applying it to an animated se-
quence in a frame-by-frame manner, the results may not be
temporal coherent. A practical solution is using a video
temporal consistency filter, such as Lang et al. [22], Bon-
neel et al. [8], Lai et al. [21] and so on, to post process the
denoised frames to get temporal coherent results. However,
a better solution may be taking into account temporal coher-
ence in the neural network by adding recurrent connections



between previous frames and current one. We leave the in-
vestigation of such methods for future work.

6. Conclusions

In this paper, we have presented a novel Dual-Encoder
network (DEMC) for denoising Monte Carlo renderings.
We also proposed a feature fusion sub-network, which can
be trained jointly with the Dual-Encoder network to extract
structure and texture details from auxiliary features. Ben-
efited from the strong representation capacity of the Dual-
Encoder and feature fusion sub-network, our method can ef-
fectively explore the auxiliary features to help denoise MC
renderings. In contrast to the state-of-the-art MC denoising
approaches that based on either machine learning or not,
our model is capable of reconstructing MC renderings both
effectively and efficiently.
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