
Zhang X, Lu S, Wang SH et al. Diagnosis of COVID-19 pneumonia via a novel deep learning architecture. JOURNAL OF

COMPUTER SCIENCE AND TECHNOLOGY 37(2): 330–343 Mar. 2022. DOI 10.1007/s11390-020-0679-8

Diagnosis of COVID-19 Pneumonia via a Novel Deep Learning
Architecture

Xin Zhang1,] ( ), Siyuan Lu2,] (), Shui-Hua Wang3,4,] (), Xiang Yu2,] ( )
Su-Jing Wang5,6 (), Lun Yao7 ( ), Yi Pan8 ( ), and Yu-Dong Zhang2,9,∗ ()

1Department of Medical Imaging, The Fourth People’s Hospital of Huai’an, Huai’an 223002, China
2School of Informatics, University of Leicester, Leicester, LE1 7RH, U.K.
3School of Architecture Building and Civil Engineering, Loughborough University, Loughborough, LE11 3TU, U.K.
4School of Mathematics and Actuarial Science, University of Leicester, Leicester, LE1 7RH, U.K.
5Key Laboratory of Behavior Sciences, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
6Department of Psychology, University of the Chinese Academy of Sciences, Beijing 100101, China
7Department of Infection Diseases, The Fourth People’s Hospital of Huai’an, Huai’an 223002, China
8Department of Computer Science, Georgia State University, Atlanta 30302-5060, U.S.A.
9Department of Information Systems, Faculty of Computing and Information Technology, King Abdulaziz University

Jeddah 21589, Saudi Arabia

E-mail: hasyzx@njmu.edu.cn; siyuan lu@foxmail.com; shuihuawang@ieee.org; xy144@le.ac.uk
E-mail: wangsujing@psych.ac.cn; jshayl@163.com; yipan@gsu.edu; yudongzhang@ieee.org

Received June 3, 2020; accepted March 30, 2021.

Abstract COVID-19 is a contagious infection that has severe effects on the global economy and our daily life. Accurate

diagnosis of COVID-19 is of importance for consultants, patients, and radiologists. In this study, we use the deep learn-

ing network AlexNet as the backbone, and enhance it with the following two aspects: 1) adding batch normalization to

help accelerate the training, reducing the internal covariance shift; 2) replacing the fully connected layer in AlexNet with

three classifiers: SNN, ELM, and RVFL. Therefore, we have three novel models from the deep COVID network (DC-Net)

framework, which are named DC-Net-S, DC-Net-E, and DC-Net-R, respectively. After comparison, we find the proposed

DC-Net-R achieves an average accuracy of 90.91% on a private dataset (available upon email request) comprising of 296

images while the specificity reaches 96.13%, and has the best performance among all three proposed classifiers. In addition,

we show that our DC-Net-R also performs much better than other existing algorithms in the literature.

Keywords pneumonia, COVID-19, convolutional neural network, AlexNet, deep learning

1 Introduction

Since December 2019, the coronavirus disease 2019

(COVID-19) has become a worldwide public health se-

curity challenge. World Health Organization (WHO)

has confirmed its pathogen and named it 2019-new

coronavirus (2019-nCOV), and the International Com-

mittee on Taxonomy of Viruses (ICTV) has designated
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this novel coronavirus as SARS-CoV-2. 2019-nCoV has

strong adaptability; it can be more effectively trans-

mitted from person to person and may have increased

toxicity compared with influenza [1]. 2019-nCoV can

be detected in human respiratory tract epithelial cells

within roughly 96 hours after infection. The COVID-19

is highly contagious, spreading worldwide at an alarm-

ing rate, and the number of confirmed cases is increas-

ing. Some patients’ disease progresses rapidly, leading

to severe and critical illness, and even death. The iden-

tification of COVID-19 relies on epidemiology, clinical

symptoms, imaging performance, and laboratory tests.

The diagnosis of COVID-19 is proved to be effective

using viral nucleic acid (NA) detection, which has ro-

bust specificity with meagre sensitivity. However, the

diagnosis is greatly affected by the samplers and the

sampling points. There are many false-negative cases

during the viral NA test that are tested positive with

computerized tomography (CT). These include cases

of multiple false-negatives that are diagnosed positive

through repeated sampling [2]. These findings show that

CT preliminary screening is important in some cases.

In addition, viral NA lacks available tests and supplies,

and the feedback of the test results requires a certain

amount of time. These challenges may delay the treat-

ment and isolation of patients, increasing the infection

risk of people around them.

CT is a quick and straightforward technique for

screening infected patients. Some experts recom-

mend using time-saving chest calculations to diagnose

suspicious cases with CT instead of real-time poly-

merase chain reaction (RT-PCR), a viral NA detection

method 1○. The CT function of early COVID-19 de-

tection has not been specially researched, which is cru-

cial for the early detection of suspicious cases, even in

asymptomatic patients. When the NA test result shows

false negatives, the CT test is especially important. It

is one of the most critical approaches for the early dia-

gnosis of pneumonia caused by the novel coronavirus.

CT has a big impact on judging the nature, progression

and prognosis of the lesion, evaluating the severity of

the disease, and guiding clinical classification. In the

face of sudden outbreaks, making full use of CT’s ad-

vantages deserves discussing, thinking and investment.

In the meantime, signal processing, artificial intelli-

gence, and deep learning (DL) technologies have suc-

cessfully been applied in biomedical image analysis,

computing, and modelling. Lu [3] proposed radial-

basis-function neural networks (RBFNNs) for classi-

fying pathological brains. Based on extreme learning

machine (ELM), Yang [4] presented a kernel-based ver-

sion (K-ELM) for creating a novel pathological brain

detection system. Their method is robust and effec-

tive. Lu [5] proposed a novel extreme learning machine

trained by the bat algorithm (ELM-BA) approach.

Li and Liu [6] introduced the real-coded biogeography-

based optimization (RCBBO) to detect diseased brains.

Jiang [7] used a six-layer CNN (6L-CNN) to recognize

sign language fingerspelling. Szegedy et al. [8] presented

the GoogleNet, which achieved incredible performance

on ImageNet Large-Scale Visual Recognition Challenge

(ILSVRC) 2014. Yu and Wang [9] suggested the use of

ResNet18 for mammogram abnormality detection.

In all, there are successful reports showing that

computers can help medical image analysis. How-

ever, one common challenging task in the above sys-

tems or models is to improve the performance with-

out introducing overcomplicated structures. To ef-

fectively select good features in high dimensional do-

mains, a method named minimal-redundancy-maximal-

relevance criterion (mRMR) is introduced in [10]. The

authors [10] claimed that superior features can be se-

lected at low cost, justified by extensive experiments

on different datasets with different classifiers.

Nevertheless, a deep neural network (DNN) may

suffer from overfitting, and its accuracy can still be im-

proved using different architectures and algorithms. In

this study, we use classical AlexNet as the backbone,

and we propose two improvements. 1) We add batch

normalization to reduce internal covariance shift and

accelerate the training. 2) We replace the fully con-

nected layer in AlexNet with three classifiers: SNN,

ELM, and RVFL. Therefore, we propose three deep

neural network architectures: DC-Net-SNN, DC-Net-

ELM, and DC-Net-RVFL based on three different ran-

domized neural networks, for the task of detecting

COVID-19. We select the best model among DC-Net-

SNN, DC-Net-ELM, and DC-Net-RVFL as the most

suitable model.

The structure of our paper is as follows. Section 2

and Section 3 present the background and the dataset,

respectively. Section 4 provides the rationale for our

methods. Section 5 configures the experimental set-

tings. Section 6 presents the discussions and results.

Finally, Section 7 concludes the paper.

1○https://enapp.chinadaily.com.cn/a/202002/06/AP5e3be074a3103a24b1106147.html, June 2020.
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2 Background

The chest CT (CCT) images of patients with

COVID-19 show patchy ground-glass (GG) opacity in

the subpleural area of both lungs, as well as pulmonary

consolidation. The typical discoveries of COVID-

19 on CCT are GG opacities of bilateral pulmonary

parenchyma, combined with pulmonary consolidation,

and sometimes round lesions distributed around the

lungs [11].

In the computer science community, Adrian Rose-

brock 2○ presented a guide for using deep learning

(Keras and TensorFlow) to detect COVID-19. This

guide can help readers learn sample diseased and

healthy X-ray images, train CNNs to detect COVID-

19 automatically, and evaluate their results. Magh-

did et al. [12] shared a low-cost technique of using

smartphone embedded sensors to diagnose COVID-19.

This approach is particularly helpful since many peo-

ple are currently holding smartphones every day. Wang

and Wong [13] published a DL framework (COVID-Net)

adapted for detecting COVID-19 patients based on

chest radiography scans. They also used an explain-

able method to acquire more meaningful understand-

ings into vital elements linked with COVID cases. Staff

in the University of Delft developed a software package

called CAD4COVID 3○, an AI software that triages sus-

pected patients with COVID-19 on chest X-rays scans

and indicates those affected lung tissues. More notable

work can be found in [14].

Although the CT performance of detecting COVID-

19 has certain characteristics, similar characteristics

can also be found for pulmonary bacterial infections,

fungal infections, pulmonary haemorrhage, pulmonary

edema, and other viral pneumonia diseases. Therefore,

it is difficult to distinguish them at diagnosis.

Judging from the current situation, the sensitivity of

CT diagnosis is higher than that of NA detection. How-

ever, due to the inherent characteristics of image dia-

gnosis, different lesions can show similar image mani-

festations. These characteristics will result in low speci-

ficity and inevitably overdiagnosis.

A patient can have numerous lung lesions due to

different causes, causing fluctuations in rate of disease

progression, which will require multiple imaging in a

short time, significantly increasing the workload of the

diagnostician. Therefore, the integration of AI into the

diagnosis and treatment process of lung infections or

other infectious diseases is worthy of further study.

Specific questions in this field include: how to pro-

vide doctors with diagnosis and treatment opinions

quickly and accurately, how to alleviate the shortage

of clinical radiologists, and how to increase efficiency in

disease prevention and control.

From the viewpoint of computer science, most cur-

rent AI methods are not comparable to radiology ex-

perts. The data, models, and codes of recently pub-

lished papers in the area of AI for COVID-19 are not

readily available. Therefore, we expect that our study

can contribute to the community greatly. The codes,

the data, and the model will be open to the public upon

the acceptance of this paper 4○.

3 Dataset

Using a systematic random sampling method, 66

patients are randomly selected. The new coronavirus

pneumonia is in the observation group: 44 males and

22 females, aged from 23 years to 91 years, with an

average age of (49.48± 14.71) years. The control group

is selected from individuals participating in routine

health checkup: 38 males and 28 females, aged from

25 years to 72 years. The checkup group’s average age

is (38.44± 10.58) years. Criteria for confirmed COVID-

19 include: 1) a positive NA test and 2) a complete CT

image (CTI) data.

During image acquisition, CT scanning configura-

tions are set as follows: Philips Ingenuity 64-row spiral

CT machine, low kilovoltage (KV): 120, milliampere-

seconds (mAs): 240, layer thickness 3 mm, layer spac-

ing 3 mm, screw pitch 1.5: lung window (W: 1500, L:

−500), Mediastinum window (W: 350, L: 60), thin layer

reconstruction according to the lesion display, the layer

thickness and the layer distance are 1 mm lung window

image. The patients are placed in a supine position,

breathing deeply after holding in, and conventionally

scanned from the lung tip to the costal diaphragm an-

gle. Each image is of size 512× 512 pixels.

All images are transmitted to the medical image

PACS for observation, and two radiologists with rich

chest diagnostic experience collectively read the radio-

graphs and record the distribution, size and morphol-

ogy of the CT manifestations of the lesions. Up to 1–4

2○https://www.pyimagesearch.com/2020/03/16/detecting-covid-19-in-x-ray-images-with-keras-tensorflow-and-deep-learning, Ju-
ne 2020.

3○https://www.delft.care/cad4covid, July 2020.
4○https://github.com/SiyuanLuLSY/Diagnosis-of-COVID-19-pneumonia-via-a-novel-deep-learning-architecture, Mar. 2022.
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slices are chosen. When there are disagreements be-

tween the two analyses, a superior doctor is consulted

to reach a consensus. The slice-level selection method

is: for COVID-19 pneumonia patients, the selected slice

showing the largest size and the number of lesions is se-

lected. For normal subjects, any level of the image can

be selected.

Fig.1 shows two example CT images of the COVID-

19 dataset we used in this study. The dataset is availa-

ble upon email request. In total, we collect 296 lung

window images from CCT. For evaluation, we use the

hold-out method. Up to 70% are used for training, and

the remainder 30% are for testing. The summary of the

dataset is presented in Table 1.

(b)(a)

Fig.1. Example images from our COVID-19 dataset. (a) COVID-
19 patient. (b) Healthy. In (a), the patchy GG opacity lesions are
shown in the COVID-19 patients’ CITs. For CTIs from healthy
people, there are no visualizable lesions.

Table 1. Number of Images in Hold-Out Setting

Set COVID-19 Healthy

Training 104 104

Test 44 44

Total 148 148

4 DC-Net

4.1 Using AlexNetas as Backbone

AlexNet is a well-known neural network proposed by

Krizhevsky et al. [15] for ILSVRC-2012. It has achieved

significantly higher accuracy than its competitors in

image classification, leading to the refocus of research

interest in using DNNs as universal approximators.

AlexNet is built upon the concept of multi-layered con-

volutional neural networks, introduced by LeNet, and

fueled by the rapid increase of computational power

with graphics processing units (GPUs). AlexNet has

been applied in multiple fields, including biomedical

analysis, object detection, etc.

The reason why we use AlexNet as the backbone is

that overfitting can be avoided using AlexNet concern-

ing our binary classification task. Also, the compu-

tational cost of AlexNet is efficient compared with net-

works with higher complexity. There are many pieces of

research choosing AlexNet, which out-performed their

state-of-the-art, e.g., Szymak and Gasiorowski [16] used

pre-trained AlexNet for underwater object recognition.

Guo et al. [17] employed the AlexNet model for inver-

sion of PM2.5 atmospheric refractivity profile. Zhao et

al. [18] utilized the AlexNet model to detect surface de-

fects of wind turbine blades. Xiao et al. [19] proposed

an improved AlexNet model that achieved a higher ac-

curacy than the ZFNet model on a 23 categories classi-

fication task. The success of all these methods showed

that AlexNet is excellent in feature extraction.

The integration of convolution into neural networks

is well suited to the image classification, as a strong

assumption of local spatial coherence can be made on

images. As convolutional filters replace the dense con-

nections within the multi-layered perceptron, the num-

ber of connections and trainable parameters can also

be significantly reduced. Apart from the CNN struc-

ture, characteristics of the AlexNet also include lo-

cal response normalization (LRN), rectified linear unit

(ReLU), and dropout regularization [15].

Before the development of AlexNet, the standard

activation function (AF) is either sigmoid

f (ζ) = (1 + e−ζ)
−1
,

or hyperbolic tangent

f (ζ) = tanh (ζ).

These functions suffer from saturation, where outputs

are limited by the asymptotic bounds. Saturation re-

stricts gradient flow during backpropagation and lim-

its the overall capacity of the neural network [20]. The

ReLU activation function used in AlexNet

f (ζ) = max (ζ, 0),

has no upper bound and is therefore non-saturating.

Local response normalization (LPN) [15] is a tech-

nique used in AlexNet to normalize the unbounded

ReLU activations and promote lateral inhibition, which

enhances local contrasts and aids generalization. One

core challenge in the training of neural networks is over-

fitting, which occurs when the irrelevant fluctuations

in the training data are also captured by the neural

network, resulting in lower generalization. Dropout re-

duces overfitting by freezing neurons in the neural net-

work based on a set probability, equivalent to the gene-

ration of new neural networks during the training pro-

cess. Dropout can effectively limit the co-adaptation of

the neurons, and therefore reduce overfitting.
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The AlexNet structure, shown in Fig.2(a), is highly

versatile and often used in medical imaging, especially

medical image classification. Gertych et al. [21] success-

fully applied ImageNet pre-trained AlexNet to distin-

guish lung cancer growth patterns in histological slides.

To aid the diagnosis of rheumatoid arthritis, Fukae et

al. [22] employed the same neural network in the classi-

fication of virtual images generated from clinical infor-

mation.

We propose the use of a variant of the single GPU

AlexNet structure (Net-0) as the backbone of our ap-

proach, due to the ease of implementation. As exhibited

in Fig.2(b), we retain the general structure of AlexNet:

five convolutional layers and multiple fully connected

layers (FCLs). In the original AlexNet, there are three

FCLs in total: FCL1, FCL2 and FCL3. We replace the

last 1 000-neuron layer (FCL3) of the original AlexNet

with an FCL with 512 neurons (FCL3*) and add an ex-

tra FCL with two neurons (FCL4*) to the top FCL3*,

due to two reasons: 1) the universal approximation

theorem [23]; 2) the fact that two neurons correspond

to the two categories of our classification task. This

AlexNet variant is called “Net-0”.

4.2 Improvements

In order to further improve the backbone AlexNet

proposed in Subsection 4.1, we incorporate batch

normalization into the neural network structure. Batch

normalization (BN) reduces the internal covariance

shift within neural networks and promotes indepen-

dence between layers. This effect is achieved by scal-

ing each mini-batch of previous layer outputs with the

mean and variance of that particular mini-batch. The

process of this scaling adds noises to the mini-batches

and, therefore, also provides regularization. AlexNet

with BN can be trained with higher learning rates as

BN provides bounds to the activation values. As seen

in Fig.2(c), batch normalization is added to each convo-

lutional layer. This modified structure is named Net-1.

We first train Net-1 on the training images to fine-

tune the weights for better feature extraction in this

classification task. The trained network is named Net-

2.

4.3 Proposed Algorithm 1: DC-Net-S

AlexNet has been successfully applied in many

fields. However, AlexNet requires a large dataset for
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Fig.2. Structure comparison of (a) original, (b) adapted AlexNet, i.e., last FCL replaced (Net-0), and (c) BN added (Net-1). Solid
boxes mean layers with learnable weights while no learnable weights are introduced in dotted boxes.



Xin Zhang et al.: Diagnosis of COVID-19 Pneumonia via a Novel Deep Learning Architecture 335

training to obtain good performance. As it is challeng-

ing for us to build a large dataset, we propose to use

AlexNet as a pre-trained model for feature extraction

only. Then, we employ three different randomized neu-

ral network classifiers attached to the trained AlexNet,

including 1) extreme learning machine (ELM) [24]; 2)

Schmidt neural network (SNN) [25]; 3) random vector

functional-link net (RVFL) [26]. These deep COVID

networks are abbreviated as DC-Nets.

We compare these three models and select the best.

The three classifiers are selected because they can pro-

vide a good solution without iterations, and thus save

computation time.

The first proposed model is DC-Net-S, in which the

Schmidt neural network (SNN) [25] is used to replace the

last three layers in Net-2. Let the i-th input sample xi
be xi = (xi1 , · · · , xin)T ∈ Rn, i = 1, · · · , N .

Let yi = (yi1 , yi2 , · · · , yim)T ∈ Rm mean the i-th

output information, and the structure of SNN is shown

in Fig.3(a). For the SNN, we have N̂ hidden nodes.

The model can be expressed as:

N̂∑
j=1

(λjg (αjxi + βj)) + γ = Oi, i = 1, · · · , N,

in which g (·) is the sigmoid function. αj and βj are

randomly initialized and kept the same during train-

ing. γ = (γ1, γ2, γ3, · · · , γm)
T

denotes the output bi-

ases. λj can be calculated by pseudo-inverse. Oi =

(oi1, oi2, oi3, · · · oim)
T

is the output of the model for the

i-th sample.

4.4 Proposed Algorithm 2: DC-Net-E

We propose the second model: DC-Net-E, by

substituting the last three layers in Net-2 with the

ELM layers. ELMs are feedforward neural networks

for regression, clustering, and classification and fea-

ture learning with a single layer [27]. Compared with

the backpropagation-based networks, ELM excels in

generalization performance as the parameters are more

likely to achieve a better global best solution and less

computation time as it does not depend on the gradi-

ent descent. The parameters of the hidden nodes do

not need to be tuned. The structure of ELM is shown

in Fig.3(b).

Given the training set as defined in Subsection 4.3,

the mapping function of ELM can be expressed as

N̂∑
j=1

λjg (αjxi + βj) = Oi, i = 1, · · · , N,

(b)

(a)

(c)

xi
αj

λj

βj
oi

oim

xi

xin

γ...

...

...

αj

λ

βj

oi

oim

xi

xi

xin

...

...

..
.

αj λj

βj

oi

oim

xi

xi

xin

...

...

...

Fig.3. Structure of three randomized neural networks. (a) SNN.
(b) ELM. (c) RVFL. (The black square boxes denote the input,
and the circles filled in blue are hidden neurons in the hidden
layer while the red square boxes are the output.)

where N̂ means the number of hidden neurons. αi =

(αi1αi2 , · · · , αin)T stands for the input weight, and βi
denotes the bias. Oi = (oi1, oi2, oi3, · · · , oim)

T
is the

output of the model for the i-th sample. This model is

trained to achieve that

N̂∑
j=1

λjg (αjxi + βj) = yi, i = 1, · · · , N.

We rewrite the equation as

Mλ = Y ,
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where

M
(
α1, · · · ,αN̂ , β1, · · · , βN̂ ,x1, · · · ,xN

)
=

 g (α1x1 + β1) · · · g
(
αN̂x1 + βN̂

)
...

. . .
...

g (α1xN + β1) · · · g
(
αN̂xN + βN̂

)

N×N̂

, (1)

λ =

 λ
T
1
...
λT
N̂


N̂×m

, Y =

 y
T
1
...
yT
N


N×m

.

It has been proved that any single hidden layer net-

work can asymptotically approximate the training sam-

ples based on the universal approximation theorem [28].

However, it is a big challenge to find the optimal αj , βj
and λj . ELM is one method that can provide a solution

for the above model. The pseudocode is explained in

Algorithm 1.

Algorithm 1. ELM

Input: (xi,yi)

Step 1: randomly initialize values of input weight αj and bias
βj

Step 2: calculate output matrix M using (1)

Step 3: compute output weight λ by pseudo inverse in (2)

Output: the trained ELM structure

Pseudo inverse:

λ = M †Y , (2)

in which M† represents the Moore-Penrose of M .

4.5 Proposed Algorithm 3: DC-Net-R

The third proposed model is named DC-Net-R.

For this model, the last three layers in Net-2 are re-

placed with RVFL layers [26], whose structure is shown

in Fig.3(c).

Different from traditional Single-Layer Feedforward

Neural-network (SLFN) that successively maps its in-

puts to the outputs until the known mapping achieves

the required accuracy, RVFL first maps the input to

the enhancement nodes as expressed in (3), and then

the feature vector is formed by concatenating the two

spaces [29]. Finally, the output nodes and the con-

catenated feature space are linked by another mapping

function. αj , βj and λ stand for weights, bias and out-

put weight respectively. In Fig.3(c), the input weights

are in blue and the output layer weights are in yellow.

For the enhancement layer, we have an AF. Then,

input weights and bias values are both randomly as-

signed values, and the output weights could be attained

via pseudo-inverse.

V =

N̂∑
j=1

g(ajx+ βj), (3)

where x = (x1, · · · ,xN )T. The loss function of RVFL

is expressed as

E =
1

2N

N∑
n=1

(
y(n) − λW(n)

)2
,

where λ means the output weight values. V is the en-

hanced pattern vector, and n is the pattern index. W
is the concatenation of x and V .

W = concat(x,V ).

4.6 Implementation

Algorithm 2 shows the pseudocode of the proposed

three DC-Net models, and Fig.4 provides the flowchart

of the proposed three DC-Net models.

Algorithm 2. Applying Proposed DC-Net Models to Detect
COVID-19

Input: the training set and test set

Step 1: AlexNet pre-trained on ImageNet is loaded;

Step 2: Remove last FCL, add two new FCLs, and we get “Net-
0”;

Step 3: Based on Net-0, we add BN Layers, and get “Net-1”;

Step 4: Fine-tuning Net-1 with COVID training set, output
“Net-2”;

Step 5: Generate training features via NET-2 from training im-
ages;

Step 6: For k = 1 : 10

Step 6.1: Set the seed randomly;

Step 6.2: Train SNN, ELM, and RVFL using training fea-
tures and training labels;

Step 6.3: Combine Net-2 and trained SNN, ELM, and
RVFL;

Step 6.4: Create three DC-Nets: DC-Net-S, DC-Net-E,
and DC-Net-R;

Step 6.5: Input test images to three proposed models;

Step 6.6: Generate the performance at the k-th run by the

predicted labels and the actual test labels;

End

Step 7: Output the average performances of three proposed DC-
Net models;

Step 8: Select the optimal DC-Net model in terms of classifica-
tion performances.

Output: the optimal DC-Net model and its classification statis-
tics



Xin Zhang et al.: Diagnosis of COVID-19 Pneumonia via a Novel Deep Learning Architecture 337

Training 

Features

Net-2

Three DC-Net Models 

Trained 

RVFL

Trained 

ELM

Trained 

SNN

Healty
(Predicted)

Test 
Image

Test
Label

Performances

Training 

Set
Net-1

DC-Net-S

Training 

Images

Training 

Label

Average Performances

RVFL

ELM

SNN

Repeat 10 Times As
Default to Remove

Randomness  

 

Test 

Set

Add BN Remove Old FCL3

Add New FCL3&4

Net-0 Pre-

Trained 
AlexNet

DC-Net-E

k-th (k/↪ ↪ ...↪ )

DC-Net-R

COVID-19
(Predicted)

Fig.4. Flowchart of applying the three DC-Net models to detect COVID-19.

The first step is to input the training set and the

test set and generate features via Net-1 and Net-2.

Note that original images in the dataset are RGB im-

ages with the size of 512× 512 pixels. Therefore, they

are resized to 227× 227 pixels to meet the input re-

quirement of AlexNet. Then, extracted features are fed

into the three classifiers for training until stopping cri-

teria are met. Then we select the classifier with the

best performance. We finally get the trained DC-Net

and predicted labels. The performance is evaluated by

comparing the predicted labels with the ground truth

labels.

5 Experiment Settings

The training parameters are shown in Table 2. We

set the MiniBatchSize as 20, MaxEpochs as 20 and Ini-

tialLearnRate as 10−4. We select stochastic gradient

descent with momentum (SGDM) [30] to be the train-

ing algorithm. All above hyperparameters are selected

by the trial-and-error method.

Table 2. Training Parameters

Parameter Value

Training algorithm SGDM

MiniBatchSize 20

MaxEpochs 20

InitialLearnRate 10−4

To assess the performance of the three proposed DC-

Nets, we split the dataset: 70% of the samples are in-

cluded in the training set, and the other 30% are the

testing set. The reason why we use hold-out validation

is that our model can be better evaluated using hold-

out validation than using cross-validation because the

number of images is relatively small. Numerous studies

are also evaluated based on the hold-out testing set due

to the small size of the dataset [31].

The AlexNet variant in Subsection 4.2 is first
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trained with the training set and parameters shown in

Table 2. Using Net-2, we can extract the input to the

final FCL layer, i.e., activations of FCL3, for each sam-

ple. These activations represent the extracted features

from the baseline model and are used as input for the

proposed algorithms. Each algorithm is trained with

the training features and then evaluated on the test

set. This process of the hold-out validation is repeated

10 times, where each run initializes with a new set of

random weights. The average of 10 runs is the final re-

sult. This process can effectively limit the effect of indi-

vidual stochastic weight initialization on performance.

The reason why we set the number of runs to 10 is that

it is a default setting in many other machine learning

studies.

In each evaluation, the predictions of all the three

DC-Nets are compared with the ground truth. We de-

note the number of patients accurately classified as TP

and misclassified as FN, and the number of healthy con-

trols accurately classified as TN and misclassified as FP.

The metrics used to evaluate performance include:

1) sensitivity: the percentage of patients accurately

classified

Sensitivity =
TP

TP + FN
,

2) specificity: the percentage of healthy controls ac-

curately classified

Specificity =
TN

TN + FP
,

3) precision: the percentage of predicted patients

that are actual patients

Precision =
TP

TP + FP
,

4) accuracy: the percentage of correct classification

Accuracy =
TP + TN

TP + FP + TN + FN
,

5) F1 score: the measure of classification ability

F1 = 2× Precision× Sensitivity
Precision+ Sensitivity

.

6 Results and Discussion

6.1 Effect of BN

In order to justify the integration of batch normali-

zation into AlexNet, we train and evaluate both Net-0

and Net-1. The iteration-wise plot of training accuracy

and losses of Net-0 and Net-1 are shown in Figs.5(a)

and 5(b) respectively. At the same learning rate, we

can observe that the loss of Net-1 is significantly lower

than that of Net-0 in the first few iterations.

Net-1 also shows a lower variation in the decline

of loss than Net-0, indicating faster convergence and

higher stability. This effect is consistent with BN’s

characteristic described in Subsection 4.2 and is further

validated by the test results shown in Table 3.
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Table 3. Comparison of Net-0 and Net-1

Measure CM Accuracy

Net-0
 30 14

3 41

 0.806 8

Net-1
 39 5

4 40

 0.880 0

Note: CM: Confusion Matrix.

6.2 Comparison Among Three DC-Net Models

We can see from Table 4 the mean accuracy of DC-

Net-R is 90.91%. Comparative results of DC-Net-E and

DC-Net-S show their mean accuracies are 90.34% and

90.23% respectively. DC-Net-R shows the best preci-

sion and specificity amongst these algorithms in testing.

A possible explanation for the result is the existence of

a direct connection between input and output in DC-

Net-R, as shown in Fig.3(c). A possible explanation

for DC-Net-E to show a higher testing accuracy than

DC-Net-S is the higher number of trainable parameters.

DC-Net-E has a bias for each corresponding weight. In

contrast, DC-Net-S only has a single bias value for all

weights.

6.3 Comparison with Other Methods

To validate the efficacy of our DC-Net models, we

also compare our methods (i.e., previous models) with

seven other methods. With no specification, we use

the aforementioned parameters in Table 2 when train-

ing all of the models. To provide a fair comparison, we

adapt all referred methods correspondingly to the clas-

sification task here. CTIs are resized to meet the input

requirements of different networks. The comparison re-

sults are given in Table 5.

Our proposed DC-Nets show the best performance

in every aspect compared with other methods, espe-

cially when compared with the hand-crafted features

based methods [3–5]. There are two main reasons why

our methods perform best. One is that activation layers

extract more representative high-level features in Net-

2. The other is the structural superiority of RVFL that

allows resilient updates of parameters.

For each method in Table 5, images are adjusted

accordingly to meet the input requirements. For Net-

2-RF (Random Forest) and Net-2-SVM (Support Vec-

tor Machine), both features are extracted from Net-2

through FCL3 while there are five decision trees in the

forest. SVM gives identical results during each running

Table 4. Test Performance Comparison of Three Classifiers: DC-Net-E, DC-Net-S, and DC-Net-R

Algorithm Sensitivity Specificity Precision Accuracy F1

DC-Net-E 0.8864± 0.0240 0.920 4± 0.045 8 0.920 0± 0.043 8 0.903 4± 0.019 5 0.902 0± 0.018 2

DC-Net-S 0.881 8± 0.025 8 0.922 7± 0.035 8 0.920 7± 0.034 7 0.902 3± 0.020 2 0.900 4± 0.020 1

DC-Net-R 0.856 8± 0.015 3 0.961 3± 0.011 0 0.957 0± 0.011 9 0.909 1± 0.009 3 0.904 1± 0.010 1

Note: The best performance is in bold.

Table 5. Comparison of Proposed Methods with Other Methods

Method Sensitivity Specificity Precision Accuracy F1

RBFNN [3] 0.659 1 0.750 0 0.725 0 0.704 5 0.690 5

K-ELM [4] 0.568 2 0.613 6 0.595 2 0.590 9 0.581 4

ELM-BA [5] 0.550 0± 0.025 8 0.763 6± 0.024 4 0.699 7± 0.024 4 0.656 8± 0.019 2 0.615 6± 0.022 5

RCBBO [6] 0.763 6± 0.046 8 0.777 3± 0.036 4 0.774 9± 0.031 9 0.770 5± 0.030 8 0.768 5± 0.033 5

6L-CNN [7] 0.831 8± 0.023 2 0.829 5± 0.023 3 0.830 7± 0.017 2 0.830 7± 0.010 7 0.830 8± 0.011 3

GoogLeNet [8] 0.775 0± 0.037 8 0.843 2± 0.065 6 0.836 5± 0.052 5 0.809 1± 0.021 3 0.802 6± 0.016 5

ResNet18 [9] 0.750 0± 0.056 7 0.936 4± 0.027 9 0.923 8± 0.029 5 0.843 2± 0.022 0 0.826 1± 0.030 9

Net-2-RF 0.881 8± 0.031 8 0.870 5± 0.066 1 0.875 6± 0.057 7 0.876 1± 0.033 2 0.877 4± 0.030 4

Net-2-SVM 0.909 1 0.840 9 0.851 1 0.875 0 0.879 1

DC-Net-E 0.8864± 0.0240 0.920 4± 0.0458 0.920 0± 0.0438 0.903 4± 0.0195 0.902 0± 0.0182

DC-Net-S 0.881 8± 0.025 8 0.922 7± 0.035 8 0.920 7± 0.034 7 0.902 3± 0.020 2 0.900 4± 0.020 1

DC-Net-R (Ours) 0.856 8± 0.015 3 0.961 3± 0.011 0 0.957 0± 0.011 9 0.909 1± 0.009 3 0.904 1± 0.010 1

Note: The best performance is in bold.
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so that there is no variation of results. From the view-

point of radiologists, spiral CCT is still a reliable and

rapid technique for diagnosing and screening COVID-

19. Nevertheless, due to a large number of patients

and the need for multiple reviews in a short time, the

huge number of CTIs significantly increases the work-

load of the radiologists. Furthermore, different radiol-

ogists have various skill levels and may be affected by

subjective factors and external pressure. Misdiagnosis

and missed diagnosis may delay diagnosis and patient

isolation, which facilitates the spread of disease, and

eventually alters the overall control of the COVID-19

epidemic. Therefore, there is an urgent need to de-

velop a precise computer-aided method to assist clini-

cians in identifying patients with COVID-19 infection

from CTIs.

DL is a critical innovation in the arena of artifi-

cial intelligence (AI). It has achieved excellent results

in the field of radiology. Existing researches have effi-

caciously applied DL approaches to detect pneumonia

in pediatric chest X-rays (PCXRs). They further dis-

tinguished viral pneumonia from bacterial pneumonia

using two-dimensional PCXRs [32]. On low-dose CCT,

Ardila et al. [33] accomplished an end-to-end model to

detect lung cancer. The AUC of their method achieves

almost 95%. Chae et al. [34] employed CNNs to classify

trivial objects (6 2 cm) as lung nodules within CT scan

images. However, there are few reports on COVID-19

in deep learning. We use DL to detect CTIs of COVID-

19 pneumonia in this research.

Typical CT of COVID-19 patients shows sub-pleural

GG-like patterns, which can 1) affect both lungs and 2)

be multiple and peripheral and diffusely distributed.

According to the imaging mode, there are many char-

acteristics that can identify viral pathogens. These

features are related to their specific pathogenesis [35],

which prove that the deep learning method can be used

to extract the image features for COVID-19 diagnosis.

The GG in CTI may be one of the most key character-

istics for identifying lesions. For that reason, we apply

the deep learning model in the GG sample in the CTIs.

We develop a DL-based lung CT diagnostic framework

DC-Net to diagnose COVID-19 cases. The system can

automatically extract GG samples of COVID-19 new

pneumonia from image pictures and other radiological

characteristics.

We invent and evaluate the DL framework used for

detection from the CTIs of the chests of COVID-19

patients. The study gathers 66 COVID-19 confirmed

patients from the Huai’an Infectious Disease Hospital

in China and 66 healthy patients. As a result of the

CT scan of the human chest, we collect 148 CTIs of

confirmed COVID-19 cases and CITs of normal people

for comparison and modelling. This is a retrospective,

multi-cohort, diagnostic study. Our results show that

the model has high sensitivity (0.856 8), high specificity

(0.961 3), high precision (0.957 0), and high accuracy

(0.909 1). Due to the powerful function of detail ex-

traction, the performance of RVFL is better than that

of ELM and SNN. The high performance of those DL

models shows that the CTIs of both COVID-19 cases

and normal subjects can be satisfactorily distinguished.

The results show that the use of deep learning methods

to extract imaging graphics features is of vast value for

the diagnosis of COVID-19.

6.4 Time Analysis

The time comparison of manual diagnosis and our

DC-Net models is presented in Table 6. It can be ob-

served that a senior radiologist requires 76.590 9 sec-

onds to make a diagnosis on average, which is appro-

priately half of the time for the junior radiologist of

142.590 9 seconds.

Table 6. Time Comparison of Image Interpreting (s)

Image JR SR DC-Net-E DC-Net-S DC-Net-R

1 150.000 0 52.000 0 0.006 3 0.005 1 0.005 4

2 140.000 0 57.000 0 0.006 0 0.004 7 0.005 3

3 130.000 0 52.000 0 0.005 4 0.005 3 0.004 9

4 142.000 0 70.000 0 0.005 1 0.005 5 0.005 1

5 169.000 0 64.000 0 0.006 4 0.004 9 0.005 4

6 140.000 0 70.000 0 0.005 8 0.005 0 0.004 9

7 150.000 0 68.000 0 0.006 0 0.006 2 0.005 1

8 145.000 0 80.000 0 0.006 5 0.005 5 0.005 6

9 170.000 0 60.000 0 0.005 5 0.005 2 0.005 1

10 140.000 0 82.000 0 0.005 7 0.004 8 0.005 3

11 150.000 0 72.000 0 0.005 3 0.005 1 0.005 0

12 146.000 0 67.000 0 0.005 2 0.004 8 0.005 3

13 129.000 0 94.000 0 0.005 2 0.005 5 0.005 5

14 139.000 0 89.000 0 0.0054 0.0049 0.0058

15 148.000 0 69.000 0 0.005 3 0.005 0 0.005 1

16 130.000 0 102.000 0 0.005 3 0.004 8 0.005 5

17 129.000 0 84.000 0 0.005 4 0.005 8 0.005 2

18 136.000 0 95.000 0 0.005 5 0.004 6 0.005 1

19 142.000 0 88.000 0 0.005 7 0.005 3 0.005 3

20 139.000 0 101.000 0 0.005 2 0.004 7 0.005 5

21 130.000 0 85.000 0 0.005 0 0.004 8 0.004 9

22 143.000 0 84.000 0 0.004 9 0.004 8 0.005 0

Mean 142.590 9 76.590 9 0.005 6 0.005 1 0.005 2

Note: JR: junior radiologist; SR: senior radiologist.
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However, our three DC-Nets can deliver the dia-

gnosis result within about half of a millisecond, which

is over 10 000 times faster than a senior radiologist.

Therefore, the proposed models can be used in real-

world situations without long-time endurance.

7 Conclusions

In this study, we proposed three DC-Net models

(DC-Net-S, DC-Net-E, and DC-Net-R) for the classi-

fication of new coronavirus pneumonia in CTIs. The

DC-Net-R structure uses batch normalization incorpo-

rated AlexNet variant with the RVFL algorithm. The

comparative study among DC-Net-S, DC-Net-E, and

DC-Net-R shows the last DC-Net-R as a viable and po-

tential choice for neural networks in this classification

task.

Our research proved that the deep learning method

can automatically identify lesions from CTIs and detect

COVID-19 patients effectively for doctors. Artificial in-

telligence can be used as a preliminary screening tool

to reduce the pressure on front-line radiologists and re-

duced misdiagnosis rate of COVID-19 patients. AI can

also accelerate the diagnosis of radiation and has great

potential to recuperate early diagnosis, treatment, and

isolation, thereby helping to contain epidemics.

This study has one limitation. The training dataset

is relatively small and is collected from a single hospital,

thereby it cannot form a representative distribution for

the general population. In the future we shall collect

more CT examinations from other hospitals to evaluate

the detection efficiency of our model.
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