Xie T, Qin S, Zhang W. Special section on software systems 2021—Theme: Dependable software engineering. JOURNAL
OF COMPUTER SCIENCE AND TECHNOLOGY 36(6): 1229-1230 Nov. 2021. DOI 10.1007/s11390-021-0008-x

Preface

As a continuation of previous years’ special section on software systems, this special section encourages and
promotes research to address challenges from the perspective of software systems. The goal of this special section
is to present state-of-the-art and high-quality original research in the area of software systems.

The theme of this special section is Dependable Software Engineering. This theme encompasses all the
research challenges that concern software quality achieved through formal methods, software testing and analysis
techniques that contribute to the development of dependable software. The ever increasing diversity, ubiquity, and
dynamism of modern software systems are making the development of dependable software more challenging.

The special section received 14 submissions. Many of them are of highly competitive quality. After the thorough
review and revision process, we had to make very difficult decisions to accept 10 submissions, of which eight are
included in this special section and two are planned to be included in an upcoming issue.

The article “A Multi-Agent Spatial Logic for Scenario-Based Decision Modeling and Verification in Platoon
Systems” by Xu et al. proposes a formal modeling and verification approach to provide safety assurance for
platoon vehicles’ cooperative driving behaviors, by extending the multi-agent spatial logic (MASL) with relative
orientation and multi-agent observation and utilizing a timed automata type supporting MASL formulas to model
vehicles’ decision controllers for platoon driving, of which the viability has been demonstrated by a case study in
which safety properties of a human-driven vehicle joining the platoon are verified with the use of UPPAAL.

The article “MEBS: Uncovering Memory Life-Cycle Bugs in Operating System Kernels” by Zhang et al. presents
a study of memory life-cycle bugs and an implementation of a memory life-cycle bug sanitizer (MEBS) with the
use of inter-procedural global call graphs for bug detection that may reveal memory allocation, dereferencing, and
freeing sites in kernels, of which the effectiveness has been demonstrated by experimental results on operating
system kernels.

The article “Trace Semantics and Algebraic Laws for Total Store Order Memory Model” by Xiao et al. investi-
gates the trace semantics and algebraic laws for the total store order, a widely-used weak memory model in SPARC
implementations and x86 architecture, by applying the unifying theories of programming, and the link between the
trace semantics and the algebraic semantics has been established through deriving trace semantics from algebraic
semantics.

The article “Symbolic Reasoning About Quantum Circuits in Coq” by Shi et al. proposes a symbolic approach
to reasoning about quantum circuits based on a set of laws involving basic manipulations on vectors and matrices,
with the advantage that it scales better than the explicit one and is well suited to be automated in Coq, as
demonstrated with typical examples.

The article “HRPDF: A Software-Based Heterogeneous Redundant Proactive Defense Framework for Pro-
grammable Logic Controller” by Liu et al. proposes a programmable logic controller (PLC) compatible software-
based defense mechanism for thwarting multiple types of attacks against PLCs without the need of external devices,
of which a prototype system has been implemented and evaluated in a real-world PLC and an OpenPLC-based
device.

The article “AMCheX: Accurate Analysis of Missing-Check Bugs for Linux Kernel” by Wang et al. proposes a
missing-check analysis method for the Linux kernel for automatically inferring possible security-sensitive operations,
and based on the proposed method, a tool named AMCheX has been implemented on top of the LLVM framework
and the effectiveness of the tool has been demonstrated by an application on the Linux kernel.

The article “Verifying Contextual Refinement with Ownership Transfer” by Li and Feng proposes an approach
to give abstract and implementation independent specifications to concurrent objects with ownership transfer by
designing a program logic to verify contextual refinement of concurrent objects w.r.t. their abstract specifications,
of which the applicability has been demonstrated by verifying a simplified version of the memory management
module of a real-world preemptive OS kernel.



1230 J. Comput. Sci. & Technol., Nov. 2021, Vol.36, No.6

The article “Verification of Real Time Operating System Exception Management Based on SPARCv8” by Ma et
al. proposes a Hoare-style framework to verify the exception management based on SPARCv8 (Scalable Processor
Architecture Version 8) processor architecture at the design layer, of which the application has been demonstrated
by verifying the exception management of the real-time operating system SpaceOS on the Beidou-3 satellite, with
the use of the interactive theorem prover Coq.

We thank all the authors who submitted to this special section. We appreciate great help from the guest editors:
Shengchao Qin (Huawei Hong Kong Research Centre, Hong Kong) and Wenhui Zhang (Institute of Software,
Chinese Academy of Sciences, Beijing). We are also highly appreciative to the reviewers who provided valuable
review feedback on the submissions in a tight schedule. All these preceding contributions make this special section
possible.

Leading Editor:

Tao Xie, Chair Professor, School of Computer Science, Peking University, Beijing taoxie@Qpku.edu.cn

Guest Editors:

Shengchao Qin, Senior Software Expert, Huawei Hong Kong Research Centre, Hong Kong
shengchao.qin@gmail.com
Wenhui Zhang, Professor, Institute of Software, Chinese Academy of Sciences, Beijing zwh@ios.ac.cn

Tao Xie is a chair professor in the School of Computer Science at Peking University, Beijing. He
received his Ph.D. degree in computer science from the University of Washington at Seattle in 2005.
He received his M.S. degree in computer science from Peking University, Beijing, in 2000, and his B.S.
degree in computer science from Fudan University, Shanghai, in 1997. His research interests are in
software engineering, system software, software security, and trustworthy AI. He is an AAAS Fellow,
ACM Distinguished Scientist, IEEE Fellow, and a distinguished member of CCF.

Shengchao Qin is currently a senior software expert in Huawei Hong Kong Research Centre, Hong
Kong. He got his Ph.D. degree in applied mathematics from Peking University, Beijing, and also
worked as a Postdoctoral Research Fellow in National University of Singapore under the Singapore-MIT
Alliance program, before moving his job to UK. While in UK, he worked as a university lecturer in
Durham University, and reader in Teesside University, before being promoted to professor (chair) of
Computer Science in 2011. He also acted as associate dean for Research and Innovation between 2016
and 2019. His research interests lie mainly in formal methods, software engineering and programming

languages, in particular, formal specification and modelling, program analysis and verification, the-
ories of programming, and program logic such as separation logic. To this date he has published over 130 papers in
international journals and peer-refereed international conferences. He is a senior member of both ACM and IEEE. He
serves as a full member of EPSRC peer review college and a member of UKRI Future Leaders Fellowship peer review college.

‘Wenhui Zhang is a professor at the Institute of Software of the Chinese Academy of Sciences, Beijing.
He had studied at the Department of Mathematics of Peking University, Beijing, and at the Department
of Informatics of the University of Oslo, Oslo, and received his Ph.D. degree from the latter in 1988.
Prior to joining the Institute of Software in 2001, he was a research scientist at the Institute of Energy
Technology, Halden, Norway. His current research interests include formal methods, logics and semantics,
deductive and automated proof methods, and software verification techniques.




