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Abstract Collaborative learning has often been associated with the construction of a shared
understanding of the situation at hand. The psycholinguistics mechanisms at work while
establishing common grounds are the object of scientific controversy. We postulate that
collaborative tasks require some level of mutual modelling, i.e. that each partner needs some
model of what the other partners know/want/intend at a given time. We use the term “some
model” to stress the fact that this model is not necessarily detailed or complete, but that we
acquire some representations of the persons we interact with. The question we address is:
Does the quality of the partner model depend upon the modeler’s ability to represent his or
her partner? Upon the modelee’s ability to make his state clear to the modeler? Or rather,
upon the quality of their interactions? We address this question by comparing the respective
accuracies of the models built by different team members. We report on 5 experiments on
collaborative problem solving or collaborative learning that vary in terms of tasks (how
important it is to build an accurate model) and settings (how difficult it is to build an accurate
model). In 4 studies, the accuracy of the model that A built about B was correlated with
the accuracy of the model that B built about A, which seems to imply that the quality of
interactions matters more than individual abilities when building mutual models. However,
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these findings do not rule out the fact that individual abilities also contribute to the quality
of modelling process.

Keywords Cognitive modelling · Grounding · Theory of mind

Introduction

From its inception, Computer Supported Collaborative Learning (CSCL) research has been
following the suggestion by Roschelle and Teasley (1995) that collaborative learning has
something to do with the process of constructing and maintaining a shared understand-
ing of the task at hand. Building a shared/mutual understanding refers to the upper class
of collaborative learning situations, those in which students should build upon each other’s
understanding to refine their own understanding: what is expected to produce learning is
not the mere fact that two students build the same understanding but the cognitive effort
they have to engage to build this shared understanding (Schwartz 1995). This effort can
be observed by the frequency of rich interactions, i.e. interactions whose occurrence has
been related to learning: (self-) explanations in cognitive science (Chi et al. 1989; Webb
1991), conflict resolution in socio-cognitive theories (Doise et al. 1975) and mutual reg-
ulation (Blaye and Light 1995) in a Vygostkian perspective. The construction of shared
understanding has been investigated for several decades in psycholinguistics, under the
notion of grounding (Clark and Wilkes-Gibbs 1986). However, the relevance of grounding
mechanisms for explaining learning outcomes has been questioned in the learning sciences.
Grounding mechanisms are appropriate to explain conversational events, such as referen-
tial failures in short dialogue episodes, but they hardly predict deeper phenomena such
as conceptual change (i.e. the acquisition, acceptance and integration of a new belief into
one’s mental model) over longer sessions (Dillenbourg and Traum 2006). The cumula-
tive effect of grounding episodes can probably be better understood from a socio-cultural
perspective:

Collaborative learning is associated with the increased cognitive-interactional effort
involved in the transition from learning to understand each other to learning to under-
stand the meanings of the semiotic tools that constitute the mediators of interpersonal
interaction (Baker et al. 1999, p.31)

Along this line, several scholars suggest that CSCL research should go deeper towards
understanding how partners engage in shared meaning making (Stahl 2007) or intersubjec-
tive meaning making (Suthers 2006).

Paradoxically, while Clark’s theory is somewhat too linguistic from a learning viewpoint,
it is criticized at the same time as being too cognitivist by some psycholinguists, i.e. as over-
estimating the amount of shared knowledge and mutual representations actually necessary
to conduct a dialogue. The fundamental issue, as old as philosophy, is the degree of cou-
pling between the different levels of dialogue, mostly between the lexical/syntactical level
and the deeper semantic levels. Pickering and Garrod (2006) argue that mutual understand-
ing starts mostly with a superficial alignment at the level of the linguistic representations,
due to priming mechanisms, and that this local alignment may – in some cases – lead to a
global alignment of the semantic level (deep grounding). For these authors, the convergence
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in dialogue, and even the repair of some misunderstandings, is explained by this mimetic
behavior more than by a monitoring of each other’s knowledge:

[. . . ] interlocutors do not need to monitor and develop full common ground as a regu-
lar, constant part of routine conversation, as it would be unnecessary and far too costly.
Establishment of full common ground is, we argue, a specialized and non-automatic
process that is used primarily in times of difficulty (when radical misalignment
becomes apparent). (Pickering and Garrod 2006, p.179)

This view is actually not incompatible with Clark’s grounding criterion (Clark and
Schaefer 1989): the degree of shared understanding that peers need to reach depends upon
the task they perform. For instance, a dialogue between two surgeons might rely on superfi-
cial alignment if they talk about their friends but has to guarantee accurate common grounds
when talking about which intervention will be conducted in which way on which patient. In
this paper, we operationalized the grounding criterion, i.e. the necessity for accurate mod-
elling, as the correlation between the accuracy of partner models and measures of team
performance.

This interesting cognitive science debate occurred mostly outside the field of learning.
In education, the question is to relate these mechanisms to learning outcomes: Is linguistic
alignment sufficient to trigger conceptual change? Does negotiation of meaning only occur
when partners monitor and diagnose each other’s knowledge? If the ratio between shallow
alignment and deep grounding depends upon the task, and if deep grounding is a condition
for learning, then the pedagogical challenge is indeed to design tasks that require deep
grounding. Most empirical studies on grounding and alignment are conducted with simple
referencing tasks such as asking the way to the train station or helping the peer to choose a
picture among many. In the studies we report here, we explore several richer tasks such as
arguing about a sensitive issue or building a concept map.

Deep grounding or shared meaning making requires some cognitive load. For Clark and
Wilkes-Gibbs (1986), what is important is not the individual effort made by the receiver of a
communicative act, but the overall least collaborative effort. The cost of producing a perfect
utterance may be higher than the cost of repairing the problems that may arise through mis-
understandings, and in fact, subjects tend to make less efforts adapting their utterances to a
specific partner when they know that they can later provide feedback on his/her understand-
ing (Schober 1993). We introduced the notion of optimal collaborative effort (Dillenbourg
et al. 1995) to stress that misunderstanding should not be viewed as something to be avoided
(if this was possible), but as an opportunity to engage into verbalization, explanation, nego-
tiation, and so forth. This issue is related to the global argument regarding cognitive load
in learning activities, especially in discovery learning environments: there is no learning
without some cognitive load, but overload may hinder learning (Paas et al. 2003). In the
context of collaborative learning, we understand the cognitive load induced by mutual mod-
elling as part of Schwartz (1995) notion of effort towards a shared understanding. For
instance, CSCL researchers expanded the use of collaboration scripts (Kobbe et al. 2007).
A script is a pedagogical method that frames collaborative learning activities in order to
foster the emergence of productive interactions such as argumentation, explanation or con-
flict. Conflict-resolution scripts such as the ARGUEGRAPH (Dillenbourg and Hong 2008)
form pairs of students with opposite opinions, which increases the difficulty of consensus
building, requiring more justifications, more negotiation, and more load. Similarly, JIGSAW
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scripts (Aronson et al. 1978) provide peers with different but complementary knowledge
for augmenting (reasonably) the efforts that group members have to engage into to reach a
shared solution.

In summary, the controversy around the cognitive depth of shared understanding pertains
to psycholinguistics, which investigates natural conversations. The situation is different
in collaborative learning; tasks are actually designed for requiring a deeper negotiation
of meaning. The expertise of CSCL is to design collaborative situations that create inter-
dependence, avoid group think, and allow students to detect any “illusion of shared
understanding” (Cherubini et al. 2005). Our question is hence not anymore “do peers build
a shared understanding ?”, but rather “whenever peers have to build a shared understand-
ing, how do they achieve it ?”. This question addresses the mechanisms of grounding, in
which the basic sequence is: make a proposition, detect misunderstanding and, if any, repair
them. This paper focuses on the middle part, the detection of misunderstandings. Detect-
ing a misunderstanding means that the emitter of a message identifies a mismatch between
his communicative intention and the way his message is understood by his or her partner.
Detecting one peer’s misunderstanding is investigated hereafter under the general umbrella
of partner modelling.

Partner modelling

We refer to Partner modelling as the process of inferring one’s partner’s mental states. Any
claim that students carry out a detailed monitoring of their peers would be as incorrect as
any claim that they do not maintain any representation at all. If mental modelling had to
be permanently detailed and accurate, subjects would obviously face a huge cognitive load.
Conversely, peers could not collaborate without some minimal amount of mutual modelling.
Collaborative learning dialogue include many instances of utterances such as “I thought he
would do that” (first order modelling) or even “He thought I would do that but I intended
something else.” (second order modelling).

The content of the partner model ranges from dispositional to situational aspects. The
dispositional aspects refer to A’s representation of B’s long term knowledge, skills or traits.
It is thus closely related to the notion of transactive memory (Wegner 1987; Moreland
1999). Situational aspects refer to A’s representation of B’s knowledge, behavior or inten-
tions specifically activated in the situation in which A and B are collaborating, some of them
being valid for 2 seconds, other ones for 2 hours. Examples of fragments that constitute A’s
model of B regarding to aspects X, i.e. Model(A,B,X), abbreviated M(A, B,X), could
be:

– Model(A, B, knowledge): what does A know about B’s knowledge with respect to
the task at hand or, inversely, about B’s knowledge gaps? When can A consider B’s
statements as reliable?

– Model(A, B, skills): what does A know about B’s skills with respect to the task at
hand? May A expect B to perform well in a specific subtask? The effectiveness of
division of labor depends on the quality of this mutual model.

– Model(A, B, goals): what does A know about B’s intentions with respect to the
project, including B’ motivation and commitment? Can A trust B when B promises to
deliver?

– Model(A, B, task): what does A know about B’s representation of the situation and
the task: does A knows whether B has the same understanding of the problem at stake?
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– Model(A, B, plans): what does A know about B’s strategy. Does A understand why
B did what he did? Is A able to anticipate what B will do next?

– Model(A, B, “urgent”): what does A know about B’s understanding of A’s last
utterance: does “urgent” mean now, soon or “not too late”?

The list of what X stands for in M(A,B, X) is possibly infinite: beliefs, emotions, his-
tory, status, etc. A partner model is likely not a “box”, i.e. not a monolithic representation
but rather a mosaic of information fragments about the partner, with various granularity
and various life cycles. This mosaic is elaborated through a variety of mechanisms, first for
building an initial model of the partner, then for updating this model. As two students meet
for the first time, partners models are initialized by the assumptions they make upon each
other based on cues such as his/her belonging to broad categories (age, culture, profession,
. . . ), stereotypes (sportsmen, junkie, business women, Swiss,. . . ) as well as physical appear-
ance. Scholars studied how initial modelling impacts communication. In their experiment,
Slugoski et al. (1993) pretended to their subjects that their (confederate) partner had or had
not received the same information. They observed that the subjects adapted their dialogue by
focusing the explanation on the items that he/she was supposed to ignore. Brennan (1991)
showed that the subjects used different initial strategies in forming queries depending on
who they were told their partner was.

Initial common grounds are also initiated by co-presence: they include events to which A
and B attended together (Clark and Marshall 2002) in the physical space or in their cultural
space (e.g. “09-11”). While co-presence means that they can refer to shared objects and
events, it does not imply that they give them the same meaning. Namely, a shared screen
does not mean a shared understanding (Dillenbourg and Traum 2006).

After initialization, partners models are updated during the collaborative work through
verbal and non-verbal interactions. A default inference rule is that “my partner agrees
with me unless he disagrees”, which rejects the critiques that partner modelling generates
an unbearable cognitive load. This default rule is superseded by the several mechanisms
for monitoring and repairing the partner understanding: acknowledgement, continuous
attention, relevance of next turns, facial expressions including gaze signals, etc.

Finally, partner modelling does not occur in a vacuum but it is highly contextualized.
Clark and Brennan (1991) review how the features of the collaborative situation, namely the
media (co-temporality,. . . ), may facilitate or hamper mutual modelling. Hutchins and Palen
(1997) reported a study in which a short silence between two pilots was perfectly interpreted
because it occurred in a highly constrained communication context. Some environments are
more productive than others in helping peers to detect their misunderstandings. Roschelle
and Teasley (1995) reformulate the design of CSCL interfaces to provide ways for peers to
detect and repair their misunderstanding.

Mutual modelling

Mutual modelling is bi-directional. During dyadic problem solving, partner A builds some
model of B and B build some model of A. Moreover, these two processes are not indepen-
dent: A’s model of what B knows, includes what B knows about A. This leads to nested
levels of modelling. If A states “B thinks I am good in maths”, A builds a second level
model: M(A, B,M(B,A, maths-skill)). This leads to possibly infinite regress of nested
models: A saying “B knows that I don’t expect him to solve this statistics problem” corre-
sponds to M(A,B,M(B, A,ABstatistic-skills)). As we will see in one study we report
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on, mutuality also applies to triads in which A will elaborate a model of B and of C, and
reciprocally. This is probably also true for larger groups although one may hypothesize that
there exists (yet undefined) group size from which it is not possible to model all partners
individually and, therefore, members model the group as a whole instead as a collection of
individuals. We do not explore this hypothesis here and limit ourselves to dyads and triads.

This mutuality allows us to address a fundamental question: does the quality of partner
modelling depend upon the cognitive skills of each partner (some people being better in
perceiving other’s states) or does it result from the quality of interactions among them ?
Behind his question, the reader may perceive the long lasting debate between tenets of,
respectively, the individual and social views of human cognition. The simple hypothesis is
that when individuals are randomly paired for an experiment, there is no reason for which
their individual cognitive skills would correlate. Therefore, if it occurs that the quality of
the Model(A,B) is correlated with Model(B,A), one may infer that this quality depends
upon what A and B have built together while interacting.

To answer this question, we went back to five previous studies that addressed various
other research questions, but in which the correlation between the quality of these two mod-
els could be computed. The studies we report do not hence constitute a clean sequence of
experiments to investigate mutual modelling but the ad-hoc revisiting of previous experi-
ments to explore a question that we had then neglected. Some of these studies are about
collaborative learning while others are only collaborative problem solving, but the latter rely
on rich tasks that are similar to those we use in CSCL.

A notation for discussing mutual modelling

Natural language becomes cumbersome when describing things such as “the model that A
builds about the model that B builds about A”. Therefore, to define hypotheses and report
on experiments on mutual modelling, we use the notation M(A,B,X) to denote “A knows
that B knows X”. This notation is not proposed as a formal theory of mutual modelling
but as useful simplification for communicating about mutual modelling. This notation does
not mean A has an explicit, monolithic representation of B: it must be understood as an
abstraction referring to complex socio-cognitive processes. As explained in the previous
section, the model built by A can be fragmented, multi-dimensional, etc. This notation is
neither presented as a computational model of mutual modelling, nor as some universal
formalism; its usefulness is internal to this paper. Additionally, we refer to the degree of
accuracy of the model as M◦(A,B, X). We discuss in the next section the methodological
difficulty in measuring this accuracy.

We parametrize and assess the mutual modelling effort through 3 variables:

1. Tasks vary a lot with respect to how much they require mutual understanding. The
grounding criterion – denoted M◦

min – represents the minimum level of modelling
accuracy required for a task T to succeed. Qualitatively, if the performance on a given
task T is correlated to M◦(A,B,X), then M(A,B,X) is significant to T success,
and the grounding criterion of X for T (M◦

min(A, B, X, T )) is non-zero. Under the
assumption that the higher the correlation, the more critical M(A,B,X) is to T , we
hereafter use the correlation coefficient as an estimate of M◦

min.
2. Before any specific grounding action, there is generally a non-null probability that X

is mutually understood by A and B (e.g. X is part of A’s and B’s cultures, it is mani-
fest to co-present subjects or simply there is not much space for misunderstanding or
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disagreement about X). We simply could not collaborate without a certain level of ini-
tial grounds. We denote the theoretical accuracy of initial grounds with M◦

t0
(A,B,X).

3. The cost of grounding X refers to the physical and cognitive effort required to perform
a grounding act α: a verbal repair (e.g. rephrasing), a deictic gesture, a physical move to
adopt one partner’s viewpoint, etc. This cost varies according to media features (Clark
and Brennan 1991).

Based on these 3 parameters, the probability of making an action αt about content X at
time t during task T in order to increase M◦(A,B,X) is the ratio between how much it is
needed and how much it costs (Traum and Dillenbourg 1996):

p(αt (X, T )/M◦
t+1(A,B,X)↗) � M◦

min(A, B, X, T ) − M◦
t (A, B,X)

cost (αt )
(1)

This formula is presented as a qualitative summary, not as a real equation, since several
parameters are hard to quantify (e.g. the cost of a communication act depends upon the user
as well).

We can further clarify the parameters in the context of the experiments we present
hereafter:

– M◦(A,B, X): our experiments address different contents that can be represented in
mutual models:

1. M◦(A, B, actions) is about how well A guesses what action B has performed
(study 2) or will perform next (study 1),

2. M◦(A, B, emotion): how accurately A perceives B’s emotional state (study 3),
3. M◦(A, B, knowledge): how accurately A estimates B’s knowledge with respect

to the material they learn together (study 4 and 5).

– M◦
min(A, B, X, T ): our studies build upon various collaborative tasks: argumentation

(study 3), games (study 1 and 2) and concept mapping (study 4 and 5). By varying
the tasks, we do actually vary the grounding criterion. The tasks were all designed to
require a reasonably high grounding criterion, as they are meant for the participants to
have to actually build a solution or a representation together.

– M◦
t0(A, B,X): along the same reasoning, the initial degree of common grounds should

be rather low (and hence the difference between initial and required degrees rather high)
in order to make mutual modelling effort more observable. Studies 1, 4, and 5 have been
conducted with teams of students who did not know each other. They came nonetheless
from the same university (and they hence had some general common grounds). For
studies 2 and 3, students knew each other before for reasons explained later on. In study
5, we manipulated the initial mutual modelling by using a JIGSAW script.

– cost (α): in all studies but study 4, the cost of grounding is an independent variable.
Study 3 uses media richness as independent variable, with the hypothesis that mod-
elling emotions is “cheaper” with a richer medium, i.e. when peers can see each other.
Studies 1, 2, and 4 use awareness tools which, in principle, reduce the cost of mutual
modelling, but do not eliminate all costs: if the tool provides A with information about
what B does/knows, this additional information may actually increase cognitive load.
Awareness tools constitute a kind of mutual modelling prosthesis, and, like any pros-
thesis, they may augment mutual modelling (by facilitating it or even scaffolding it) or
inhibit it (by making it useless).
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While we introduce here formally the cost of grounding cost (α) as one relevant
variable for the discussion of mutual modelling situations, we will not attempt to
characterize it beyond these qualitative observations in the studies we present hereafter.

Methodological issues

Since a mental model is not directly observable, the study of mutual modelling is method-
ologically difficult. How can we for instance measure M◦(A,B,X)? We proceed in two
steps, first to capture M(A,B, X) and then to estimate M◦(A,B,X).

Capturing M(A, B, X) The simplest method is to ask A what he/she believes about
what B knows, feels, intends to do, etc. This raises obvious methodological concerns since
such a question triggers a modelling process beyond what would naturally occur. To avoid
this bias, one can estimate mutual modelling after task completion. Then, the obvious draw-
back are memory losses and post-hoc reconstruction. The first method was used in study
2 and the second one in the other studies. Another option would be to rely on external
behavioural metrics like eye-tracking: we hypothesise for instance that the fixation time
reflects the efforts engaged by the human to understand, hence, model, the others. Such an
approach has however not been investigated in the presented studies.

Estimating M◦(A, B, X) Once M(A,B,X) is captured, we need to access the refer-
ence model M(B,X) to estimate its accuracy. Since we can only indirectly access it via
what B reports (i.e. M(B, B,X)), accuracy can be estimated in 2 ways:

– Subjective accuracy: In study 3, for instance, we compute M◦(A, B,X) by measuring
if A describes B’s emotions in the same way B reports its emotions (M(A, B,X) =
M(B, B,X)).

– Objective accuracy: In studies 4 and 5, we compute M◦(A,B, X) by comparing
M◦(A,B, K) to B’s actual knowledge as it has measured by a test.

Our method for investigating mutual modelling relies on the observation of the variations
of accuracy that result from variations of external parameters (the variables of the formula 1
above): for instance, the accuracy should go down if we increase the cost of grounding
acts, and conversly go up if we increase the grounding criterion (i.e. the necessity to build a
shared understanding). One way to produce these variations relies what CSCW researchers
call “awareness tools”, i.e. functionalities that inform A about B’s actions that A can not
directly perceive due to B working in a different subset of the virtual space. Different aware-
ness tools are used in the following studies as methodological levers to experimentally
manipulate the mutual modelling activity.

Hypotheses and questions

The experiments we report here address mutual modelling across different tasks, some
with dyads, others with triads. They were conducted over 6 years in two different institu-
tions by different researchers. They used different independent, intermediate, and dependent
variables. Nonetheless, we were able to retroactively address 3 research questions across
these studies.
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Fig. 1 Mutual modelling in a dyadic interaction, �1 = �(M◦(A,B,X),M◦(B,A,X))

The symmetry question As stated earlier, the fundamental challenge is to determine if
mutual modelling is an individual skill (hypothesis H1 below) or the emergent property of
social interactions (hypothesis H3). This question is empirically translated into the sym-
metry of mutual modelling (Fig. 1): what is the relationship between M◦(A,B,X) and
M◦(B,A,X)? A low symmetry would mean that mutual modelling is mainly an individual
attitude/aptitude (H1). A high correlation might support H3 since there is a low probability
that randomly formed pairs integrate peers with the same level of mutual modelling skills.
However, a high correlation could also have another explanation, stated in H2: it could be
that A is good at modelling B and good at helping B to model herself or himself.

– H1: M◦(A,B) depends upon A’s ability or effort to model B,
– H2: M◦(A,B) depends upon B’s ability or effort to help A to model him/herself,
– H3: M◦(A,B) depends upon the quality of interactions among A and B.

H2 relates to second level modelling since B needs to monitor A to see if A under-
stood him/her (M(B, A,M(A,B))). We will see that H2 and H3 are actually difficult to
differentiate.

The triangle questions With triads, we may compute the accuracy of 6 mod-
els: M◦(A,B,X), M◦(B,A, X), M◦(A,C,X), M◦(C, A,X), M◦(C,B,X) and
M◦(B,C, X). This leads to two triangle questions (Fig. 2): Do A and B have the same
accuracy when modelling C (�2 = �(M◦(A,C, X),M◦(B,C, X)))? A significant cor-
relation would support , H2 (C has helped both A and B to model C) or support H3 (the
quality of triad interactions enables all partners to model each other accurately)

Conversely, does m̧odel with similar accuracy A and B? (low �3 =
�(M◦(C,A,X),M◦(C,B,X)))? A positive answer would support H1, b̧eing simply
good at modelling any partner. It could also support H3, since the quality of interactions

(a) (b)

Fig. 2 Mutual modelling in a triadic interaction
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influences the accuracy of two models that i̧s building. A negative answer would support
H2 since �3 could mainly be explained by the fact that A helped more ţo model him than
B did.

In addition, the comparison between �2 and �3 could tell us whether the accuracy
of mutual modelling depends more upon the modeller’s effort (H1) or the modellee’s
behaviour (H2).

Note that we consider the quality of interactions at triad level (A, B, C), neglecting the
cases where A and B interact better for instance than B and C, since there was no “private”
communication channel in the following studies. We do nonetheless acknowledge that this
point could be debated.

The rectangle questions We can go further by comparing self- versus other modelling
(�4 in Fig. 3). A large difference would indicate that meta-cognitive skills (self-modelling)
and partner modelling skills are rather different skills, while a small �4 could be interpreted
as the indications that these are two specific instance of a more general cognitive process.
This questions is however not central to this paper, and the value of �4 is only available in
one of the reported studies.

We can also question if modelling skills depend upon what aspects are being modeled
(X or Y ), which would explain vertical differences (�5 in Fig. 3). These differences would
allow refining the notion of modelling skills, namely whether there exist some general abil-
ity to model partners or whether this is only the abstraction of a beam of more specific skills
such as detecting emotions versus identifying references from deictic gestures.

Studies

We report on five studies (Table 1) conducted by different researchers in different contexts
between 2000 and 2015. They do not form a consistent research strategy but the fact that
some trends emerge despite their diversity constitutes the richness of this line of work.

Study 1: Effect of an awareness tool onM◦(A,B) in a virtual game

We studied the impact of an awareness tool on group performance and mutual mod-
elling (Nova et al. 2007). The availability of an awareness tool was our independent variable.
In previous studies, we replayed a video of the game to subjects who surprised us by their
ability to remember former states of their mutual model: “I did that because I thought that
you would do that”. Hence, this experiment focused the representation of each other’s action
plans. During the game, we asked them to anticipate the next action of their partner as well
as to announce their own actions.

Fig. 3 Meta-cognitive skills (horizontally) and domain-dependent modelling (vertically)
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Experimental setting

SPACEMINERS is a 3D game that involves two players harvesting ore found on asteroids
(Fig. 4). To do so, they must launch drones through the space after choosing their initial
direction and speed. Once launched, the trajectory of drones is influenced by the gravity
of planets and by “trajectory modification” tools. During the experiment, the teams were
confronted with three increasingly complex situations. The experiment was 2 hours long: a
30 minute tutorial and 3 levels of 30 minutes. The players were using a regular joystick and
communicated with each other through an audio channel.

The independent variable was the availability of an awareness tool that shows to player
A the location and gaze direction of player B: in this “awareness” condition, players
could switch to the scout mode where they could view what their partner was looking at.
We hypothesize that this would enable subjects to more accurately infer their teammate’s
intentions. Each player sat in front of a distinct computer located in different rooms.

Subjects

Thirty-six persons participated in this study, all native French speakers. We formed 18
dyads who did not know each other beforehand. The pairs were randomly assigned to either
the control condition (without the awareness tool) or the awareness condition (with the
awareness tool).

Variables

Task performance was measured by the score reached by the two subjects at the end of the
game (three levels). The effort of mutual modelling was measured as the ratio of time that
players would spend in the scout mode (divided by total time), which is the time during
which players are not performing their own actions but monitoring their partner’s actions.

Fig. 4 Screenshot of the SPACEMINERS game
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In order to evaluate M◦(A,B) during the task, we used two questionnaires (Fig. 5) that
were displayed during each of the three games, as a transparent layer appearing over the
game display. The first questionnaire concerned the player’s intended actions. The second
questionnaire asked each player about what he thought her or his partner was intending
to do. Some answers were identical in both questionnaires (like “adjusting a shot”) while
others were reversed (“to guide my partner” versus “to guide me”). This method provides
us with a subjective measure of accuracy (�(M(A, A,X),M(A, B, X))) rather than an
objective measure (i.e. the model M(A, B) is compared to B’s next action) because some
of the activities proposed by the questionnaire were not observable by the environment (e.g.
establishing a strategy). We calculated M◦(A,B, activity)) as the number of common
answers between questionnaires M(A, A) and M(A, B) in each game and computed the
average value across the 3 levels.

Results

Grounding criterion The grounding criterion was high: the correlation between
M◦(A,B) and task performance was 0.42, p = 0.05. Pairs with an accurate mutual model
reached higher scores. A regression analysis confirmed the positive and significant relation
between group performance and mutual modelling accuracy (β = 54, p = 0.02).

Study-specific questions The awareness tool permitted higher group performance, but it
did not improve the accuracy of the mutual model. Since teams were free to use the aware-
ness tool or not (the scout mode), we performed a post-hoc split of players depending on
how much time they used it. The split point was the mean of time spent in the scout mode
and it led to the constitution of two groups made up of 12 individuals “short time in scout
mode” and 24 individuals “long time in scout mode”. A two-way analysis of variance con-
ducted on these contrasted groups revealed that pairs in the awareness condition who spent
more time in the scout mode reached higher levels of M◦(A,B)(F = 8.02, p = 0.015).
Of course, a post-hoc split does not support a causal direction. An alternative explanation
could be that good modellers are more social and hence appreciate the awareness tool.

Fig. 5 M(A,A) and M(A,B) questionnaires in SpaceMiners (translated from French)
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Symmetry question We computed intra-class correlation as described by Kenny et al.
(1998) from the answers to the cross-questionnaires. Considering all pairs in both con-
ditions, we found a positive and significant correlation (r = 0.38, p < 0.05) between
M◦(A,B) and M◦(B,A). Interestingly, this was higher in the control group (r = 0.44)
than in the experimental group (r = 0.24). Actually, �(M◦(A, B),M◦(B,A)), i.e. the
absolute differences between the models accuracy, was not significantly different with or
without the awareness tool (F [1, 13] = 0.144, p > 0.5). This result could be explained by
the fact that the players without awareness tools communicated more.

The triangle and rectangle questions are not addressed in this study

Discussion

How do we interpret a correlation of 0.38 between M◦(A,B) and M◦(B,A)? It is sig-
nificant, which supports H2 and H3. It is nonetheless far from 1, which implies we cannot
discard the individual modelling skills. We collect more evidence in the next studies.

Study 2: Effect of an awareness tool onM◦(A,B) in a pervasive game

This study concerns a collaborative game that occurred in physical space (Nova et al. 2006).
We studied whether players build an accurate model of the path followed by their partners,
assuming that this path would reflect their problem solving strategy. We used an objective
measure of M◦(A,B): the distance between where A believes B has been walking and
where B actually went. The main hypothesis concerned the effect of awareness tools on
group performance and on M◦(A,B).

Experimental setting

CATCHBOB is a mobile game in which groups of 3 players have to solve a joint task. The
game was played on a university campus. Participants had to find a virtual object (Bob)
and to “catch” it by forming a triangle around it. The players used a Tablet PC that dis-
played a map of the campus and an indication of their personal distance to Bob. Their
annotations on the map were shared with the two other players (A could see what B and
w̧rote). These annotations faded out after a few minutes to avoid covering the full dis-
play. The awareness tool also displayed the location of the two other players on the map.
Three conditions were considered: the control condition (without tool) and two experimental
conditions: synchronous awareness (display of the current position of each player) and asyn-
chronous awareness (display of current position of each player as well as their recent spatial
trace).

Subjects

Ninety students participated in this experiment. We only selected students from university
campus since knowledge of the campus geography had an impact both on group perfor-
mance and on mutual modelling: to represent the path of someone across some space is
difficult without an a priori mental map of this space. We formed groups of students who
knew each other. We assigned 10 triads to each of our three experimental conditions. Each
condition was made up of approximately 25 % of women, but we did not control gender
repartition within each triad.



Intern. J. Comput.-Support. Collab. Learn (2016) 11:227–253 241

Variables

The independent variable was the presence and role of the awareness tool. As a dependent
variable, we had the task performance which was the distance covered by the team to catch
Bob and M◦(A,B). To estimate M◦(A,B), we asked players to draw on paper their own
path and the path of each of their partners after the game. This enabled us to calculate the
number of errors players made while drawing the path of their partners. We compared the
path that player A attributed to B with B’s real path recorded by the system and the same
for A & a̧nd B & a̧s depicted on Fig. 6.

M◦(A,B) is the sum of errors made by A about B’s paths. An error was either drawing
a place where the partner had not been or not drawing a place where he/she had gone. One
could argue that M◦(A,B) is biased by the subjects’ ability to translate the memory of their
trajectories into a map drawing. However, 85% of subjects made no mistake at all when
drawing their own path. We therefore consider mistakes in their partners’ path as being due
to a lack of mutual modelling accuracy instead of being due to spatial reasoning skills.

Results

Grounding criterion The correlation between M◦(A,B) and the task performance (path
lengths) was low: 0.15. Using a post-hoc split on M◦(A, B), we found no significant differ-
ence between the performance of the groups with high and low M◦(A,B) (F = 1.45, p =
0.24). Conversely, a post-hoc split of the groups according to their performance did not
show any significant differences on M◦(A,B) (F = 1.16, p = 0.29).

Study-specific questions There was no significant difference regarding the task perfor-
mance. However, and surprisingly, the absence of the awareness tool was related to a higher
M◦(A,B): players tended to better remember their partners’ paths when they could not

(a) (b)

Fig. 6 Reported and actual path of one of the player, during the CATCHBOB game



242 P. Dillenbourg, et al.

constantly monitor their positions. As detailed in the original study (Nova et al. 2005), it
appeared that teams without awareness tool made more manual annotations on the map
while permanent monitoring has an underwhelming effect.

Symmetry question The correlation between M◦(A,B) and M◦(B,A) is positive (r =
0.41) and significant (p < 0.01): the more A makes errors about B, the more B does as well
(and vice-versa).

Triangle questions Regarding �2, the correlation between M◦(A,C) and M◦(B,C) is
significant: r = 0.43, p < .001. Concerning �3, the correlation between M◦(A,B) and
M◦(A,C) is significant as well: r = 0.30, p < .01.

Discussion

The positive correlation observed in the symmetry question confirms the first study. In this
case, this was not expected given the high heterogeneity of spatial skills among adults (Liben
et al. 1981). This result therefore supports H2 and H3. The results regarding �2 sup-
port both H2 and H3 but discards H1: if the skill of the modeller would dominate – as
hypothesized by H1, M◦(A,C) and M◦(B,C) would tend not to be generally correlated.
Conversely, �3 supports H1 and H3 but discards H2 (if the modellee’s skill were to domi-
nate, M◦(A,B) and M◦(A,C) would tend not to correlate). In summary, various indices
support the 3 hypotheses, which implies there is some truth in each of them, but H3 is the
only hypothesis that is not rejected by any index. We may hence, with great caution, con-
clude that the social perspective (H3) is moderately reinforced by this second study. Since
the correlation values for �2 and �3 are similar, we do not interpret their minor difference
as evidence for a stronger role of the modeller (H1) or the modellee (H2).

We have also to bring some nuances to the social viewpoint (H3). The main feature that
can be associated to the team level in this experiment is probably not the quality of their
verbal interactions per se (they interact mostly by drawing on a shared map), but rather the
consistency of the spatial exploration strategy: a clear strategy facilitates memorizing one’s
partner path. One could argue whether the team strategy can be dissociated from the team
interactions quality or constitutes one of its components.

Study 3: Effect of media richness onM◦(A,B) in argumentation

The aim of this unpublished1 study was to evaluate the effect of media richness on
M◦(A,B, emotions). The hypothesis was that video communication would lead to a better
M◦(A,B) than audio only since emotions often impact facial expressions.

Experimental settings

Triads had to address an emotional societal debate: authorizing or not adoption by homosex-
ual couples. They worked on-line and had to structure their argumentation with the shared
concept map tool TEAMWAVE as illustrated in Fig. 7. Ten groups had only an audio con-
nection while ten groups had audio and video. The video communication was provided by

1The data and statistical analyses of this study are available online: https://github.com/chili-epfl/
mutual-modelling-emotions-study.

https://github.com/chili-epfl/mutual-modelling-emotions-study
https://github.com/chili-epfl/mutual-modelling-emotions-study
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Fig. 7 Example of argumentation graph

a webcam and the software IVISIT. For the audio link, we used microphones, headsets and
the BATTLECOM software. In the audio + video condition, the screen was divided in three
sections. The main part was devoted to the concept map window, and the images of the two
peers appeared next to it. In the audio condition, this video zone was left empty so that the
size of the concept map was equal in each condition. The subjects were located in the same
room, separated by mobile walls. Despite their headsets, non-verbal audio cues (e.g. tap-
ping the floor with feet) were possibly heard by the participants. The task lasted in average
61 minutes.

Subjects

Sixty students (twenty triads) from the University of Geneva participated to this exper-
iment (36 women and 24 men). We formed groups of subjects who knew each other:
the task required the discussion of sensitive issues which required to feel quite comfort-
able with peers. Since groups were formed a priori, we did not balance gender in each
condition.

Variables

The independent variable was the presence or not of a video link. The dependent vari-
able M◦(A,B) was measured subjectively from three questionnaires: in the first one, A
described his/her own emotionsM(A,A), while in the two other questionnaire, A described
B’s and C’s emotions. The questionnaire included 18 items (7-point Likert Scale) describ-
ing emotions labeled as adjectives: anxious, enthusiastic, agitated, proud, excited, quiet,
calm, stressed, bored, upset, relaxed, irritated, determined, hostile, active, etc. M(A,B)

was modelled as a vector of 18 numerical values corresponding to their answers on each
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questionnaire items, and M◦(A,B) was computed as the distance between the two vectors
M(A, B) and M(B,B), hence the smaller the score, the more accurate the model:

M◦(A,B, emotions) =
∑

emotions

|M(A, B, e) − M(B,B, e)|
18

Results

Grounding criterion The maps produced by teams were ranked by three independent
judges on completeness and structure quality (Kendall’s W = 0.474, limited agreement).
We used the average rank as a estimation of the team performance and correlated it with
the average of the 6 values of M◦(A,B) per team (M◦(A,B), M◦(A,C), M◦(B,A),...).
The correlation is 0.22: teams with a good M◦(A,B) tend to be better ranked.

Study-specific questions Our hypothesis about media richness is rejected: the average
degree of accuracy for M(A,B, emotions) was 1.25 (SD = 0.53) in the audio+video
condition and 1.09 (SD = 0.41) in the audio alone condition (t = 1.89, df = 111, p =
0.062). The smaller distance between M(A,B, emotions) and M(B, B, emotions) in the
audio condition shows that, in average, the degree of accuracy of M(A, B, emotions) is
higher in the audio alone condition.

Symmetry question We computed the absolute differences �1 between M◦(A,B) and
M◦(B,A) over all pair of subjects within a triad (3 values per triad, 20 triads), and com-
pared them with the same differences computed from random gradings (following the same
grade distribution as for the experimental data). A t-test on the two sets revealed a signif-
icantly lower average difference in the experimental data (mean difference: 0.40 vs 0.54
with random gradings, t = −3.3, df = 60, p = 0.0016), which confirms the symmetry of
mutual modelling.

Triangle questions �2 is computed in a similar way as the average of the absolute dif-
ferences between M◦(A,C) and M◦(B,C) over the 60 subjects. The average difference
is 0.42 (SD = 0.34), and is not significantly different from the same index computed from
random gradings (t = −1.61, df = 60, p = 0.11).

For �3, the average absolute difference between M◦(C,A) and M◦(C,B) over the 60
subjects is 0.40 (SD = 0.41) and is significantly lower than chance (t = −2.62, df =
60, p = 0.01): a given subject tends to model its two partners with similar degrees of
accuracy.

Rectangle question We cannot address the relationship �4 between self and social accu-
racy here because we do not have an estimation of self-accuracy: subjects describe their
own emotions but we have no way to check if they are correct. By measuring M◦(A,B)

on 18 emotional labels, we can however have a glimpse about �5: how M◦(A,B,X)

varies according to X. Figure 8 shows the range of modelling errors: the difference between
M(A, B) and M(B, B), on a scale of 7, is 0.3 in average for the emotion discasted, and up
to 1.9 for the emotion calm. This is probably specific to the variety of scales (SD = 0.5 for
discated versus SD = 0.7 for calm). Our point is not to interpret this too far, but to show
that there are large variations even within one area (perceiving emotions). These variations
still question the existence of a general aptitude to model others ( H1).
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Fig. 8 Average values of M◦(A,B,X) where X is one of the proposed emotions (max = 7)

Discussion

In this third study, the accuracy of mutual modelling between two peers tend to be sym-
metrical, which supports H2 and H3. This result is contradicted by the fact that �2 is not
significant, which contradicts both H2 and, to a lower extent, H3. Finally, �3 supports both
H1 and H3: this study brings some supports to H3, but reveals again that H3 is only part of
the explanation.

Like the previous one, this study leads us to refine what we mean by “quality of interac-
tions” in H3. We expected that the video channel would help peers building a more accurate
model of each other’s emotions. The results show the opposite: peers in the audio-only con-
dition built more accurate models, probably because they concentrated more on the shared
concept map. This confirms other studies that revealed that viewing what one’s partner sees
(shared graphical editor) is more important than seeing each other (Gaver et al. 1993; Ander-
son et al. 1997). Therefore, what is meant by the quality of interactions in H3 is more than
the linguistic features of dialogue but includes the way these interactions are articulated to
the task.

Study 4: Effects of a script onM◦(A,B) in concept mapping

This study investigated the effect of a collaboration script on collaborative learning (Moli-
nari et al. 2008). The script chosen is a JIGSAW: two students receive different but
complementary subsets of the knowledge (texts) which have to be integrated to build a
shared concept map. This script increases the cognitive effort to build the map, not only to
conciliate the viewpoints of each team member but, before that, to find out what the other
knows.

Experimental settings

The instructional material consisted of an explanatory text about the neurophysiologic phe-
nomenon of action potential. The text was divided into 3 chapters. In the same information
(SI) condition, the same text was given to both partners. In the complementary informa-
tion (CI) condition, it was divided into two sub-texts, one about the electrical processes of
the neuron while the second one about the chemical processes. These two versions were
equivalent in terms of number of information pieces.
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The peers were located in two rooms equipped with the same computer. The experimental
session lasted around 90 minutes and consisted of 6 phases: Participants used two software
components, CMAPTOOLS and TEAMSPEAK.

1. As a pre-test, participants were asked to write down all they knew about the neuron and
its functioning (5 minutes),

2. Participants were instructed to read a text (12 minutes),
3. Participants were asked to build individually a concept map in order to graphically

represent what they learnt from the text (10 minutes),
4. Dyads had to built a concept map during 20 minutes, communicating by audio. The

screen layout was structured into three areas (Fig. 9),
5. Participants were invited to individually complete a knowledge test (15-20 minutes),
6. Participants where asked to estimate their own- and their partner’s final knowledge in a

questionnaire.

Subjects

Fifty-eight first year students from EPFL (47 men and 11 women, mean age: 20.46) were
remunerated for participation. Dyads were randomly assigned to one of the two experimen-
tal conditions. Gender was balanced over the conditions. Participants did not know each
other before the experiment. Students from the Life Sciences faculty were not recruited to
avoid high initial background knowledge on the learning domain.

Variables

The independent variable, script versus no-script, was implemented by the difference of
texts that individuals had to read. The dependent variables were the post-test scores, used

Fig. 9 The group concept map and the individual concept maps in study 4
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to assess M◦(A,B, knowledge). In phase 6, participants were asked to estimate (7-point
Likert scale) their own and their partner’s outcome knowledge with respect to each chap-
ter of the learning material. The order of questions about oneself and about the other was
counterbalanced across participants.

Results

Grounding criterion In this task, the grounding criterion was low. We did not, however,
evaluate task performance (e.g. the quality of the jointly produced concept map) but learning
gains. The correlation between M◦(A,B) and A’s learning gains is not significant (β =
0.08, ns, N = 60). It is also not significant within each condition.

Study-specific questions We performed a non-parametric Mann-Whitney test on post-
test scores for the questions touching the electrical inner working of neurons, and a one-way
ANOVA on scores for chemistry-related questions (Levene tests for homogeneity of vari-
ances): p = 0.02 and ns, respectively. Results did not show any significant difference
between the same information (SI) condition and the complementary information (CI)
condition, neither for electrical-related questions (U = 388.50, z = −0.88, ns), nor for
chemistry-related questions (F(1, 58) = 0.17, ns).

The effect of scripts on M◦(A,B) was not significant (F(1, 58) = 0.78, ns) when
considering the absolute difference between M◦(A,B) and B’s post-test score. However,
A tended to underestimate B’s score in the SI condition (M = −2.06) and to overestimate it
in the CI condition (M = 1.21) (F(1, 58) = 6.44, p < 0.01). Regarding M◦(A,A), there
was no significant difference between conditions.

Symmetry question The inter-class correlation between M◦(A,B) and M◦(B,A) is
approaching significance (r = 0.26, F (1, 29) = 1.71, p = 0.075). It is indeed significant
when students read the same text (SI condition: r = 0.43, F (1, 15) = 2.53, p < 0.05) but
not when they read different texts (r = 0.13, F (1, 12) = 1.3, ns).

Rectangle question The correlation between M◦(A,A) and M◦(A, B) (�4) is globally
not significant (r = 0.05), and neither it is in each of the conditions: someone good at self-
modelling is not necessarily good at modelling someone else and vice-versa. This seems to
indicate that partner modelling requires different skills than meta-cognition, despite their
similarity at some level of abstraction.

Discussion

In this experiment, the symmetry of mutual modelling is found but in one condition, namely
when subjects receive the same information before the task. This condition corresponds to
the situation tested in the three previous studies and supports H2 and H3.

How do we interpret the fact that the symmetry vanishes when peers receive different
texts to read before the task? One explanation would be the difficulty of mutual modelling
when peers do not know what the others read, but we found no significance of M◦(A,A)

between conditions. Since texts were partly overlapping, another explanation is that, in
absence of these initial common grounds, mutual modelling requires A to make evident to
B what A thinks B does not know about A, which is the second level of modelling described
in H2 . A low symmetry means that some peers are better than others at this second level of
modelling, which supports the existence of such an individual skill, as stated in H2.
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Study 5: M◦(A, B, knowledge) in concept mapping

This study investigates if M◦(A,B, knowledge) is related to learning outcomes by com-
paring teams with or without a Knowledge Awareness Tool (KAT), i.e. a tool that informs
A about B’s knowledge as measured through a pre-test.

Experimental setting

The peers were located into two different rooms. A complete description of the study is
provided in Sangin et al. (2008). The experiment lasted 90 minutes.

It started with the same two first steps as in study 4, followed by:

3. Subjects passed a pre-test, with ten questions per chapter.
4. Participants had 20 minutes to draw a collaborative concept map reporting the content

of the texts. They were able to communicate orally through headsets. We used Tobbii
eye tracking devices to record their gazes.

5. The post-test included the same items than the pre-test but in a different order.
6. Finally, participants were asked to estimate their partner’s knowledge at the post-test

for each of the three chapters on a 7-point Likert-like survey.

Subjects

Sixty-four first year EPFL students (46 men, 18 women, mean age: 21.2) participated to the
study. They were randomly assigned to conditions and did not know each other before. Like
in Study 4, students from Life Science faculty were excluded.

Variables

The participants of the experimental condition group were provided with the Knowledge
Awareness Tool on the bottom part of the screen (Fig. 10): each line represents the score
obtained by the partner at the pre-test for a chapter. Participants did not see their own score,
but they usually started their discussion by exchanging this information.

Results

Grounding criterion A linear regression revealed a positive relation between M◦(A,B)

and the learning gain of the pair {A,B} (calculated as the average of the individual learning
gains): β = 0.401, p < 0.001, r2adj. = 0.15, large effect. This relationship was not
significant in the previous experiment which was conducted with the same task (using the
same task should produce the same grounding criterion). This is probably due to the fact
that M◦(A,B) was influenced by the KAT.

Study-specific questions The t-test reported a significant difference between the KAT
condition participants (M = 13.4 %) and the control group M = 3.6 % [t (1, 60) =
2.73, p < 0.01, Cohen’s d = 0.7, medium to large effect]: providing learners with cues
about the prior-knowledge of their partner enhances their collaborative learning. As a treat-
ment check, we found a positive and significant correlation between the amount of gazes
on KAT (using eye tracking devices) and the learning gains (r(22) = 0.54, p = 0.01). A
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Fig. 10 Screenshot of the KAT condition during the concept-map building phase

detailed analysis revealed that the participants look at KAT to assess their peer’s credibility
when he/she provided new information.

The KAT has a significant effect on M◦(A,B): peers more accurately estimated their
partners knowledge (M = 1.11) than those in the control condition M = 0.98 [t (1, 60) =
3.19, p < 0.01, Cohen’s d = 0.83, large effect]. This is a trivial result since the KAT pro-
vided them with an initial M(A,B). However, the participants have to predict the post-test
score while the KAT informed them about the pre-test score. Actually, pairs in the KAT con-
dition produced significantly more instances of 3 interesting categories of interactions: (1)
utterances asking about the other’s knowledge such as “Did you understand how transmis-
sion works?” (2) utterances describing one’s own knowledge (M(A, A)) such as “I don’t
remember the Ranvier’s thing...” and (3) elaborated utterances with rich contents. These
three categories provide different account of M◦(A, B): (1) as an effect of A’s effort to
model B (H1), (2) as B’s effort to give cues to A about his own knowledge (H2) and (3) as
an effect of the quality of interaction (H3) .

We examined M◦(A,B) as potentially mediating the effect of the KAT factor on the rel-
ative learning gain. A linear regression confirmed that M◦(A,B) was significantly related
to the KAT-factor (β = 0.381, p < 0.01, r2 = 0.15). The KAT-factor was also signifi-
cantly and positively related to the RLG (β = .332, p < 0.01, r2 = 0.11). We then tested
the relation between the independent variable (KAT) and the dependent variable (gains)
when controlling for the mediating variable (M◦(A,B)). A multiple regression showed
that the KAT-factor was no longer a significant predictor (β = 0.210;p = ns) whereas
the M◦(A,B) was still a significant predictor (β = 0.32, p < 0.01). Thus, it can be con-
cluded that M◦(A,B) mediated the KAT-factor’s effect on the learners’ RLG. The Sobel
significance test for indirect effects was significant [z = 1.99, p < 0.05].
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Symmetry question We did not find an intra-pair correlation (ICC = 0.05, ns), which
does not support H2 and H3. In addition, the KAT supports the processing of modelling at
the first level (H1) and not at the second level (H2). Hence the fact that the KAT enhances
M◦(A,B) brings additional supports to H1. However, the analysis of verbal interactions
finds elements that actually support the three hypotheses.

Discussion

Despite the fact that the learning task was the same as in study 4, the conditions of collabo-
ration (viewing multiple maps or not) and the conditions (scripted or not, awareness tool or
not) probably explain differences in terms of mutual modelling.

Synthesis

In the introduction, we mentioned the controversy around the cognitive depth of dialogues:
does efficient dialogue require some modeling of what the partner understands or intends
to convey, as initially postulated by Clark and Wilkes-Gibbs (1986), or can dialogue sim-
ply rely on some shallow syntactic alignment, as objected by Pickering and Garrod (2006).
While the shallow hypothesis may be relevant to simple chat situations, we investigated
this issue in richer problem solving tasks that are more representative of the tasks assigned
to learners in CSCL environments. In four different tasks, we found evidence that part-
ners model each other since the quality of modelling emerged as an intermediate variable,
sensitive to several independent variables (like the presence of awareness tools or media
richness), and predictive of several dependent variables, such as task performance or learn-
ing gains. Therefore, even if we do not bring any definite conclusion to this debate, our
results support the CSCL school of thought in which shared understanding or intersubjective
meaning making have been a foundational concept (Roschelle and Teasley 1995; Schwartz
1995; Dillenbourg and Traum 2006; Suthers 2006; Stahl 2007).

Second, we questioned whether the accuracy of the partner’s model depends on the
cognitive skills of each partner or instead results from the quality of the interactions
among them. We respectively refer to these hypothesis as H1 and H3. Our rationale
was that a symmetry of mutual modelling (correlation between the accuracy of each
other’s model) would favor H3 over H1. We also formulated H2, by which a learner A
who is good at modelling B would also help B to repair his inaccurate representations
of A.

We found a symmetry of the mutual models on 4 studies out of 5. In study 4, this only
applies to the control group (having read the same text before), which corresponds to the
situation of the 3 first studies. Evidencing this symmetry constitutes per se an interesting
result as we are not aware of earlier studies that have established this relationship. Still,
the symmetry alone does not allow to discriminate H2 from H3. The second hypothesis
is questioned by study 3 where çould be modelled accurately by A and not accurately by
B. The same hypothesis is however supported by the results of study 2, and indirectly by
study 4.

This does not rule out entirely H1 (i.e. partner modelling is primarily a individual skill)
either: even where we found significant correlations, they were all below 0.50, not around
0.90. Hence, even if the quality of the social interaction matters, there is obviously a large
part of individual variance within teams.
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In other words, these studies do not conclude that one hypothesis is right and the others
are wrong, and this is indeed the main contribution of this article. We started from the idea
that partner modelling is essentially an individual skill and that we would therefore improve
the quality of collaboration by providing awareness tools, as those tools would act as a kind
of prosthesis for partner modelling. The role and importance of this individual skill cannot
be discarded: everyone has experienced the pleasure of interacting with colleagues who
answer precisely to the question we asked them and even guess the reason why we asked
this question. Conversely, everyone also experienced the frustration of someone referring to
a third person by his name, say Mike Smith, while knowing perfectly that there is no chance
that we know this Mike Smith. In fact, the role of this individual skill is not denied by our
studies; the novelty of this paper is to show, thanks to symmetry values, that individual skills
only account for a part of the accuracy in mutual modelling.

We acknowledge that the difference between these hypotheses is rather theoretical since
the process of modelling one’s partner H1 and the process of helping one’s partner to model
oneself H2 are mediated by verbal interactions in the team. It is difficult to imagine someone
managing a very accurate modeling despite low quality interaction. There is a bidirectional
causal link between the accuracy of mutual modelling and the quality of the interactions.
This rather artificial distinction does however contribute to the more fundamental discus-
sion of the role of individual and social mechanisms in human cognition. In the field of
social cognition, it is commonplace to state that “the whole is greater than the sum of the
parts”. This refers to the emergence of team properties than cannot be reduced to the set
of individual contributions. Our paper illustrates this emergence by showing the symmetry
of mutual modelling. In a nutshell, yes there is a non-negligible component of mutuality in
modelling one’s partner.

These conclusions must be presented with multiple disclaimers. First, they heavily rely
on correlations; hence we cannot identify causal links. Second, we faced difficult method-
ological issues. Providing learners with on-task questionnaires introduces a bias: they will
pay more attention to their partners in the remaining time. Providing them with “after-task”
questionnaires implies mnemonic and rationalization biases. The nature of mutual mod-
elling implies methodological challenges that call for new measurement methods. We have
promising results for using eye tracking methods to address this challenge. Third, our results
emerge from a post-hoc reinterpretation of studies that addressed different research ques-
tions (media richness, awareness tools, scripts,...). This diversity makes our results difficult
to integrate as they appear partly contradictory. Nonetheless, this diversity also incidentally
provides some generalizability: mutual modelling has been investigated in different contexts
(virtual space versus real space), with different groups sizes (pairs and triads) and different
tasks.

These limitations and our difficulty to provide clear-cut conclusions comes from the
fact that this series of experiments was not planned a priori. This paper relies on the post-
hoc comparison of experiments conducted across various contexts. The overall conclusion
is that this research question would deserve a specific research agenda for 3 reasons: (1)
it raises fundamental theoretical dilemma on the social nature of cognition, (2) it raises
methodological challenges and (3) it could provide empirical grounds to design decisions
for CSCL environments. The eye tracking tools we developed and the notation we used for
referring to different components of mutual modelling could pave the road for elaborating a
systematic agenda for research on mutual modelling. Let us repeat that the expressions we
used, such as M(A, B), do not imply we have a mechanical view of modelling, but were
simply useful ways to talk about mutual modelling.
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