
Journal of Computer Virology and Hacking Techniques (2021) 17:279–297
https://doi.org/10.1007/s11416-021-00381-3

ORIG INAL PAPER

Data augmentation and transfer learning to classify malware images in
a deep learning context

Niccolò Marastoni1 · Roberto Giacobazzi1 ·Mila Dalla Preda1

Received: 11 December 2020 / Accepted: 19 March 2021 / Published online: 8 April 2021
© The Author(s) 2021

Abstract
In the past few years, malware classification techniques have shifted from shallow traditional machine learning models to
deeper neural network architectures. The main benefit of some of these is the ability to work with raw data, guaranteed by
their automatic feature extraction capabilities. This results in less technical expertise needed while building the models, thus
less initial pre-processing resources. Nevertheless, such advantage comes with its drawbacks, since deep learning models
require huge quantities of data in order to generate a model that generalizes well. The amount of data required to train a
deep network without overfitting is often unobtainable for malware analysts. We take inspiration from image-based data
augmentation techniques and apply a sequence of semantics-preserving syntactic code transformations (obfuscations) to a
small dataset of programs to generate a larger dataset. We then design two learning models, a convolutional neural network
and a bi-directional long short-term memory, and we train them on images extracted from compiled binaries of the newly
generated dataset. Through transfer learning we then take the features learned from the obfuscated binaries and train the
models against two state of the art malware datasets, each containing around 10 000 samples. Our models easily achieve up
to 98.5% accuracy on the test set, which is on par or better than the present state of the art approaches, thus validating the
approach.

Keywords Deep learning · Binaries · Malware

1 Introduction

Malware (malicious software) comprises all programs that
arewrittenwith the intent to perform somemalicious activity.
The proliferation of these types of programs has increased
considerably in the last few years [28], as most households
own one ormore devices that can be attacked. It is thus imper-
ative to find fast and reliable techniques to identify and fight
new malware.

Modern-day malware samples are often heavily protected
against reverse engineering and many types of program anal-
ysis. For example, malware is frequently modified through
obfuscations [42]. These are syntactic code transformations

B Niccolò Marastoni
niccolo.marastoni@univr.it

Roberto Giacobazzi
roberto.giacobazzi@univr.it

Mila Dalla Preda
mila.dallapreda@univr.it

1 University of Verona, Verona, Italy

that take a program in input and generate a different program
that is more difficult to analyze while still maintaining its
functionality [11]. The combination of obfuscations with the
code optimization algorithms usually embedded in compil-
ers makes the reverse engineering of malware harder, often
slowing down or obstructing parts of the disassembly process
[1]. For this reason it is imperative to find techniques that deal
with the rawbinary instead of relying on higher-level features
stemming from reverse engineering attempts.

Obfuscations are widely used inmalware [31,47] and they
make it harder to classify emerging malware into their spe-
cific families. This task is calledmalware classification, and it
is usually achieved with machine learning techniques. These
can range from shallow models that require manual feature
engineering before the training process, to deep learning
models that can work directly on the raw data. The down-
side of shallow models is that they require specific domain
expertise, which means that time and resources are needed to
analyze the samples in the dataset before proceeding to the
learning phase.On the upside, the input of human-engineered
features usually renders the model and the results easier to

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11416-021-00381-3&domain=pdf
http://orcid.org/0000-0001-6988-1203


280 N. Marastoni et al.

interpret. With new malware spreading at an alarming pace,
the cost of thismanualwork is simply unfeasible. Deep learn-
ing techniques can automatically extract the features from
the dataset samples without the need for time consuming fea-
ture engineering or specific domain expertise. This advantage
makes deep learning the go-to paradigm for malware classi-
fication.

One of the drawbacks of deep learning techniques, com-
pared to shallower models, is their tendency to overfit when
trained with small datasets [43]. This can be a problem
in fields like program analysis, and especially in malware
classification, as gathering enough samples with the proper
ground-truth takes many resources and even more time.

This problem is also common in other fields, such as in
image recognition and image classification [35]. The lack of
enough training data is easily solvable in the vision context,
as new data points can be generated from existing ones by
applying some semantics-preserving transformations to the
images such as rotations, translations in space or selective
cropping. This process of generating new data from existing
images is known as data augmentation and it is a staple of
deep learning. This is a key factor in the approach that was
first introduced in [26].

Another way tomitigate the problems thatmodels can find
with few data-points is to reuse a part of an already trained
model, usually the part dedicated to feature extraction. These
models can be trained with millions of data points and then
they can be repurposed for a different problem setting by
removing the head of the model (dense layer) and re-training
a new head while “freezing” the rest of the network. This
process is of course less time expensive, but it also does
not incur the problem of needing more data to train, as the
majority of the weights are “frozen” and thus do not appear
as free variables. This technique is called transfer learning
[34].

Since obfuscations generate syntactic variants of pro-
grams but maintain their semantics, they can be seen as
data-augmentation transformations specific to code. This
is the main intuition of [26], where 47 small programs
with different semantics have been transformed iteratively
by applying obfuscations and generating 200 variants each,
resulting in a final dataset that contains 9 400 samples divided
in 47 classes.

Generating the dataset this way allows for fine control
on the size of the dataset itself and its class balance (that
can often be a problem in real-world datasets [18]). Another
upside of this technique is that it allows us to clearly see if
there are some obfuscations that render the programs harder
to classify than others, thus being more powerful or resilient
to the particular learning architecture.

In this paper we generate a dataset of 18 800 obfuscated
programs with the aforementioned technique, reaching a size
that is roughly double than the one generated in [26] with

the same technique. We then train two deep neural network
models, a convolutional neural network (CNN) and a bi-
directional long short-term memory (LSTM) and achieve an
average accuracy around 93% on the generated dataset. We
provide an analysis of the classification errors that highlight
the strength of certain obfuscations against the classification
effort and the weaknesses of the trained models.

To prove that the techniques and models used in this work
are suited for real-life scenarios involving malware we train
the CNN and the LSTM on two malware datasets heav-
ily used in literature, the dataset from the The Microsoft
Malware Classification Challenge hosted on Kaggle [20]
(referred to as the MsM2015 dataset from now on) and
the MalImg dataset [30]. These datasets will be thoroughly
described in Sect. 4.

We then experiment with transfer learning, taking the fea-
tures from themodels trained on the customdataset and using
them to classify the two aforementioned malware datasets.
We verify that it is indeed possible to use the features learnt
from the classification of a custom-made dataset of binaries
in order to classify a real-world dataset. This has the obvi-
ous potential of allowing big networks to be trained on huge
datasets and then be reused for smaller and newer datasets
at a very low cost. In Sect. 6 we show the results of our
experiments with transfer learning by training amodel on our
custom generated dataset and then verifying that the learnt
features can be used to classify the other two datasets. The
positive results achieved make us believe that this technique
has a lot of potential and could help mitigate the prob-
lems encountered when applying deep learning techniques
to small malware datasets.

The main contributions of this work are:

– the design of neural network models that can classify
obfuscated binaries from their images

– thorough comparison of the approaches
– validation of the models on two state of the art malware
datasets

– successful transfer learning experiments betweenmodels
trained with different datasets

2 Background

This section serves as a primer on a few of the key concepts
that we use in our study.

2.1 Obfuscations

Obfuscations are program transformations that change the
syntax of the programwithout altering its semantics. They are
meant to confuse analyzers and reverse engineers, although

123



Data augmentation and transfer learning to classify malware images in a deep learning context 281

the amount of confusion added cannot yet be reliably mea-
sured [7,8].

Let Prog be the set of all programs. An obfuscation is
a program transformation O : Prog → Prog that given a
program P ∈ Prog produces a new program O(P) with the
same functionality as P but that is unintelligible in some
sense [2].

In this work we use obfuscation as a data augmentation
tool to generate the first dataset from which we design both
our learning models. The programs in the datasets have been
created by running the Tigress C obfuscator [10] on simple
C programs.

2.2 Convolutional neural networks

CNNs are feed-forward neural network models that take
inspiration from the human visual cortex and are widely used
in image recognition and classification [23,38]. Their success
in image-related learning tasks has been attributed to their
translational invariance [3] which allows them to be used to
solve problems such as face recognition [23] or handwritten
character recognition [24]. In general, CNNs are very good
at extracting spatial features from the data.

At their core, CNNs consist of at least one convolutional
layer connected to a dense layer. The convolutional layer
operates a convolution on the input in order to isolate the fea-
tures that the network deems important during the training
phase. This process greatly reduces the number of weights
needed since the input images are condensed into a smaller
feature set. The convolutional network usually is connected
to a max pooling layer that contributes further to the reduced
size of the features detected by combining the values of mul-
tiple neurons into a single value, usually the maximum value
(thus max-pooling) or the average value. After a combina-
tion of the aforementioned layers the CNN architecture is
completed by at least one fully connected (or dense) layer.
This layer is responsible for the classification process itself
and acts as a multi-layer perceptron that takes as input the
features extracted from the previous layers. To prevent over-
fitting, regularization techniques are commonly used and can
be applied anywhere in the network. This reduces the pos-
sibility of the network purely memorizing the training data,
thus allowing for better generalization [22].

2.3 Long short-termmemory

Asstated in the previous subsection,CNNsexcel at extracting
spatial features from data. This is invaluable when classify-
ing or generally working with natural images, but images
extracted from code reveal different types of patterns alto-
gether and therefore comprise a different learning problem
[26].

The sequential nature of code, and thus of compiled pro-
grams, indicates that a learning model that works well with
sequential data can be beneficial. Recurrent neural networks
(RNNs), which are designed to process sequences of data of
arbitrary length from beginning to end, is one example. Gen-
erally, the hidden state ht of a RNN depends on the output
of the previous state ht−1 and so on, which means that the
state ht contains a distributed representation of all the tokens
observed in the sequence up to the time step t . This way, the
network can generate probabilistic dependencies from previ-
ously seen data. One common pitfall of this structure is that
the dependencies between tokens that are far apart from each
other in the sequence are hard to manage. This stems from
the nature of the gradient descent algorithm over time steps,
which makes the components either decay or grow exponen-
tially [4,17].

Long short-term memory was developed to mitigate pre-
cisely this problem [17]. By storing information at particular
timesteps, LSTMs provide a mechanism to specify when to
remember certain information, and more importantly, when
to forget it.

The LSTM used in this work is bidirectional, meaning
that the input stream is read in both directions at once. This
is achieved with two LSTM models, one forward and one
backward, which read the input in the two directions and then
combine the resulting vectors to produce a unified result.

In Sect. 5 we outline the specific architecture of our neural
networks.

2.4 Transfer learning

As mentioned in previous sections, a big problem of deep
learning tasks is finding datasets that are big enough to
allow learning without overfitting. Training deep networks is
also very time consuming and requires adequate computing
resources. Transfer learning can alleviate both these prob-
lems [36], by leveraging the information learnt from one task
in order to solve a different task. Some common applications
of transfer learning are of course in vision, where huge mod-
els trained from the ImageNet dataset [13] can be re-purposed
for new image classification tasks.

To illustrate how transfer learning works we can imagine
a typical CNN as described earlier, trained on a dataset of
images for classification. The convolutional layers are tasked
with extracting the features from the inputs while the dense
layers towards the output provide the actual classification of
the dataset. One way to properly perform transfer learning
is to remove the dense layer from the CNN and “freeze”
the convolutional layers (meaning, the gradient descent will
not modify their weights). At this point a new dense layer
can be applied with the proper output shape (the number
of classes for the new learning problem) and the network
can be trained on the new dataset. Since the convolutional

123



282 N. Marastoni et al.

layers do not have to be trained again, the learning process
is sped up considerably. The size of the dataset is also less
important, since the number of free variables (weights) that
can be modified is much smaller than those in the original
network. The convolutional layers of the CNN will provide
the necessary features for the classification task at virtually
no cost as the feed-forward part of the network is relatively
inexpensive.

In this work we use transfer learning between different
datasets of images generated from compiled programs. This
allows us to gauge if the features extracted from one dataset
can be used to classify the others. The applications of this can
lead to many interesting opportunities that will be discussed
in future sections.

2.5 Bicubic interpolation

In order to resize the images in our custom dataset we use
bicubic interpolation as implemented in OpenCV [6]. This
algorithm infers the intensity of an unknown pixel by apply-
ing bicubic interpolation [21] over the neighboring 16 pixels.
It is often used in place of its bilinear counterpart when the
quality of the resulting image is more important than the
computational resources used, which fits our scenario.

3 Related work

In this section we explore the most relevant works that
approach the programclassification problemusing only com-
piled binaries. We do not include works that use features
extracted from the source code of the programs or from the
assembly, as our methodology is based on the premise of not
possessing either.

It has to be noted that the focus of our study is not only on
malware classification but on any obfuscated binary. This
is why the two malware datasets have been used mainly
for validation. Furthermore, none of the surveyed studies
train an LSTM on the images extracted from binaries. This
model provides new insights on the classification of images
extracted from binaries.

Since the classification of binaries according to their
images is done mainly on only two datasets, the MalImg and
MsM2015 ones, wewill group the relatedworks accordingly.
MalImg papers To our knowledge, the first work that utilizes
images extracted from binary files in order to classify them
is by Nataraj et al. [30]. The general idea of this paper comes
from the consideration that malware samples often appear
similar in layout and texture when translated into images. For
this reason this study approaches the feature selection with
GIST [32], using wavelet decompositions of the images. The
classifier used is a simple k-nearest neighbors with Euclidean
distance as a measure of similarity. Other than the different

models used and the different features used, our approach
also does not assume that the samples from the same classes
in our database look anything alike. In fact the opposite can
be said, since the obfuscations applied generate visually dif-
ferent variants for each class. Nonetheless we use the dataset
from this work to show that our approach can generalize to
datasets that, unlike our custom one, have not been created
ad hoc.

The study by Cui et al. [12] also considers malware clas-
sification as a means to its main goal. The paper argues
(rightfully so) that the MalImg dataset is heavily imbal-
anced,which can potentially lead to less than accurate results.
To quell the problem, they perform under-sampling of the
dataset (removing samples from specific classes) and demon-
strate that the process makes overfitting less of an issue.

Yakura et al. [46] designed a CNN with attention mecha-
nism in order to highlight which parts of the malware image
were being considered for the purpose of classifying them
into families. Their approach allows the learning process to
output specific regions of the image that are being used for
classification, thus providing useful information for further
manual analysis.

In [40], the authors take the deep residual network archi-
tecturewith 50 layers from [16] and use it to classifymalware
from the MalImg dataset. The network is first trained on a
typical object detection task, then the last layer is dropped
from the model and a new dense model with 25 output nodes
is added to classify the malware samples into their respec-
tive families. Other recent works such as [9] and [5] have
proposed slight variations of the aforementioned approach,
always pre-training their model on common image classifi-
cation tasks.

The intuition of the previous papers is that the malware
in the MalImg dataset present specific visual features that
make them distinctive to the human eye [40], thus a neu-
ral network trained to classify real-life objects could carry
enough features to also classify the malware samples.

Our approach starts with the assumption that we can
already extract meaningful features from malware samples,
so we need to verify that these features map easily to new
datasets. For this reason we use a network that is pre-trained
on a malware dataset in order classify a different malware
dataset.

A CNN has been used for malware classification in [18],
along with an extreme learning machine (ELM). The main
goal of this work is to compare the efficiency of the two
models when put to the task of classifying malware images.
This study uses the images from the dataset of Nataraj et al.
[30] to train their models and the results indicate that ELMs
are more suited for the task at hand, being faster and more
accurate than CNNs.
MsM2015 The MsM2015 dataset has been extensively used
in literature for malware classification tasks. For example,

123



Data augmentation and transfer learning to classify malware images in a deep learning context 283

the work by Kang et al. [19] uses word-to-vec approach with
an LSTM network to classify the samples in each family.
As many other studies on this subject, they do not consider
the binary as is but rather generate an assembly file for each
sample and collect opcodes and API functions that will then
constitute the bulk of the features utilized.

A very interesting work that uses both the MalImg dataset
and images extracted from the binaries in the MsM2015
dataset is [45]. The goal of the paper is to evaluate cost-
sensitive approaches to malware image classification and for
this purpose the authors combine a CNN with various RNN
models in order to gauge the effectiveness of the approaches.

4 Datasets

This section describes the datasets used in this work. We
start from themethodology for generating of our customOBF
dataset and then summarize the peculiarities of MalImg and
MsM2015.

4.1 OBF dataset

We start with 32 programs that are downloaded from a
beginners programming website [37]. These are very sim-
ple programs that average 23 lines and they were selected so
that the full images extracted from the programs would fit
the models.

Small programs work well enough to illustrate the
methodology but bigger programs can lend some validity.
For this reason 15 more programs have been added to the
original dataset, all taken from solutions of the Google Code
Jam. These programs have been selected randomly and rep-
resent amore real-world scenario with source code that spans
between 38 lines and 150.
Applying obfuscations We selected 8 obfuscations from
Tigress and we applied them iteratively on the 47 files of
the original dataset.

– Flatten changes the control flow of functions by inserting
a switch statement that decides where each basic block
flows next

– Split splits a function into two separated functions
– RandomFuns inserts a random function into the code
– EncodeArithmetics encodes any arithmetic operation into
a semantically equivalent but syntactically harder to deci-
pher operation

– EncodeLiterals initializes literal integers and strings with
new functions

– InitOpaque adds specific data structures that can be used
to insert opaque predicates

– InitEntropy adds new variables in order to collect entropy

– InitImplicitFlow initializes handlers for implicit flow
analysis

These obfuscations have been selected because they
represent different types of syntactic transformations. For
example, the first 2 dealwith structural transformations of the
control flow graph while EncodeArithmetics and EncodeLit-
erals perform a more symbolic kind of transformation.
RandomFuns has been added specifically because it adds
new functions to the code, preserving the basic semantics of
the original program but at the same time augmenting it. This
is akin to what happens in some malware, where the payload
is consistent between different samples of a family but the
surrounding program can have different semantics [14].

All 8 obfuscations are applied to every sample in the initial
dataset, generating 376 (47 ∗ 8) new syntactic variants of the
base programs.

Then the process is repeated, but this time the new pro-
grams are each obfuscated with a new transformation, thus
generating 2632 (376 ∗ 7) variants which are added to the
initial dataset and the simple variants. The reason why only
7 obfuscations can be considered during the first repetition
of the algorithm is that we do not allow for repeated obfus-
cations.

After all, most transformations do not result in a new
interesting variant when applied twice. For example, Flatten
applied to a function that has already been flattened would
result in exactly the same program, as it is idempotent.

Repeating this algorithm until all possible combinations
of obfuscations are depleted generates 17,055,360 samples.
We limit the size of our dataset to 18,800 samples in order to
have 400 variants for every initial program.

One of the advantages of generating such a dataset from
scratch is that the resulting classes will be as balanced as
needed. Some datasets in literature are heavily imbalanced,
for example, both theMalImg dataset (used in this paper) and
the GENOME [48] dataset for Android malware suffer from
this. It is expected to find such imbalance in datasets found
in the wild, but this leads to problems in the classification
process, or more properly, in the accuracy measurement. For
instance, let us imagine a dataset of malware that contains
25 classes distributed in a balanced way. Given a random
sampling of the test set, a simple classifier could always guess
one of the classes and get it right 1/25 of the time, thus
obtaining around 4% accuracy. This is evidently a bad result
and would alert the researchers to the inherent incapability
of the learning model. On the other hand, theMalImg dataset
contains 9 458 samples divided into 25 classes and the largest
class has 2 949 elements, with the second largest one closing
in at 1 591. A simple classifier could learn to distinguish
between these 2 big classes, then guess all samples to be
contained in them and still reach almost 50% accuracy. Of
course this is not a good result by itself, but it can trick anyone

123



284 N. Marastoni et al.

Fig. 1 8 samples from the classes ‘adialer’ and ‘Lolyda’ of MalImg

Fig. 2 8 samples from the classes armstrong_n and calculator of OBF

123



Data augmentation and transfer learning to classify malware images in a deep learning context 285

Fig. 3 8 samples from the classes ‘armstrong_n’ and ‘calculator’ of OBF, interpolated

into thinking that the model is actually learning something
from the dataset when that is certainly not the case.

Another advantage of our dataset generation technique is
that we can ensure that the obfuscations applied will cause
pervasive structural changes in the binaries, generating visu-
ally distinctive images that belong in the same class. This is
not always the case, especially for datasets that have been
collected in the wild, since many code transformations do
not act on the global structure of the executable file. This can
be easily seen in Fig. 1, which shows samples from the same
classes looking very similar. We will expand on this later.

The dataset generated from the simple programs itera-
tively obfuscated will be called OBF from now on. In Fig. 2
we show 8 programs taken randomly from two classes,
‘armstrong_n’ and ‘calculator’. At the bottom of
each figure there is a list of all the obfuscations applied to
the specific sample. It should be evident that the syntactic
transformations of the source code also result in visually dis-
tinctive binaries, and thus the images extracted from them
also have distinctive features.

The images generated vary in size, from 24 × 64 for the
smallest sample to 9800×64 for the largest one. Since image
classification models in general require a uniform size for all
the images, we use bicubic interpolation to bring them to
one size. In Fig. 3 we show the same samples as in Fig. 2 but
with interpolation applied to them. Even at first glance, the
difference in the images caused by the obfuscations is still
noticeable, if not more so.

4.2 Microsoft malware dataset [MsM2015 ]

TheMsM2015 dataset consists of more than 20,000malware
samples for Windows, collected by the Microsoft corpora-
tion and distributed by Kaggle for a competition in 2015
[41]. Each sample in the dataset belongs to one of 9 known
malware families. The dataset provides each datapoint as the
hexadecimal representation of its executable and as a col-
lection of metadata generated by IDA pro. The total size of
the dataset is around 500 GB of data, making it less than
nontrivial to work with.

For this study we utilized only the byte representation of
the samples, loading it in python using the same technique
applied in [26] and representing every sample as an image
with a set width of 64. Each sample is then resized to either
64 × 64 or 256 × 64 using bicubic interpolation, generating
a more manageable dataset. Since images generated from
the MsM2015 dataset are sourced from real-life malware,
they come in varying sizes that far surpass those of the OBF
dataset. As a result, the interpolation process removes even
more detail than it did in the first dataset.

4.3 MalImg

The MalImg dataset is a collection of 9458 malware sam-
ples divided into 25 families. The main characteristic of this
dataset is that the malware samples are not provided directly,
but rather as their images as they appear on disk. In a similar

123



286 N. Marastoni et al.

Table 1 Accuracies of the bidirectional LSTM when trained with dif-
ferent timesteps and image shapes

Img size Timesteps Features Accuracy (%) Time (s)

32 × 128 32 128 92.4 279

128 × 32 128 32 92.6 743

64 × 64 64 64 93.4 392

64 × 128 64 128 92.8 402

128 × 64 128 64 93.2 712

128 × 128 128 128 93.1 641

32 × 256 32 256 92.9 364

256 × 32 256 32 92.4 1516

64 × 256 64 256 92.2 461

256 × 64 256 64 92.1 1251

128 × 256 128 256 91.9 673

256 × 128 256 128 92.9 1341

Highest accuracy value is indicated in bold

way to the work in [26], the bytes of the executable files are
trivially mapped to floats, which will then be interpreted as
pixel values of grayscale images.

As anticipated, the classes in the dataset are heavily
imbalanced: the biggest one (‘Allaple.A’) contains 2949
samples, while the smallest one contains only 80 samples.

In Fig. 1 we show 8 random samples taken from two
classes of the dataset. It should be readily evident that the
images from each class have distinctive patterns that allow
us to tell samples from one family apart from samples in
the other family. This is again true for samples processed by
bicubic interpolation, as shown in Fig. 4. The observation
that different families of malware had a distinctive ‘look’ is
part of what has driven the original work in [30]. This is not
always the case with binaries. Being able to tell at a glance
that two executable files belong to the same class is a lux-
ury that we do not have in the OBF dataset. Fig. 2 shows
this clearly, and in fact, the second sample in the first fam-
ily appears most similar to the fourth sample in the second
family.

4.4 Fixed size

Throughout the rest of this paper the size of the images con-
sidered for classification has been set to 64×64 and 256×64.
This is done to optimize the training time and the classifi-
cation accuracy for both models. The training accuracy for
various image sizes (resulting in multiple time step values
and features) can be seen in Table 1. As made evident by
the experimental results, the two selected values are among
the optimal ones according to classification accuracy. These
experiments were done on the OBF dataset but empirical
observations led us to keep the same fixed image size for the
classification of all the datasets.

5 Experiment setup

In this section we describe the details of our experiments,
from reproducibility and generalizability concerns to model
architecture and considerations on how to best present our
results.

5.1 Training, validation and testing sets

In order to guarantee a degree of generalization we split each
dataset in training, validation and testing sets. During the
learning stages we experimented with different ratios for the
splits with the goal of maximizing the fairness of the general-
ization [39] but also to preserve as many samples as possible
for the training stage. The ratio of the hold-out test set for all
of the experiments in this paper is 0.2, meaning that 20% of
the dataset is reserved for the testing phase that happens after
the training and it is not used to tweak any of the parameters.
Of the remaining samples in the dataset, 10% is kept for the
validation set, which is used at every training epoch to calcu-
late the validation loss, while the rest is the training set with
which the weights of the network will be trained.

All the results from the subsequent sections have been
achieved using the hold-out test set, averaged after running
the experiments up to 20 times. This should ensure the gen-
eralizability of the approach, as any unfortunate division of
the dataset should be prevented by the average over multiple
random splits.

5.2 Classification scores

The main results in this paper are reported as measure of
test set accuracy, that being the percentage of samples clas-
sified into the right class. Due to the unbalanced nature of
the MalImg dataset we also report the precision, recall and
f1 measure for each class.

Given the true positives as TP and the false positives as
FP we can define precision as:

Precision = TP
TP + FP

(1)

Intuitively, if a classifier has high precision for a specific
class A it means that it guesses correctly when a sample
belongs to A and will not classify foreign samples to this
class. It is the percentage of correct guesses when the clas-
sifier guesses A. However this does not take into account
the samples belonging to A that have been wrongly assigned
to other classes. Recall, on the other hand, considers these
mistakes which are called false negatives (FN ):

Recall = TP
TP + FN

(2)

123



Data augmentation and transfer learning to classify malware images in a deep learning context 287

Fig. 4 8 samples from the classes ‘adialer’ and ‘Lolyda’ of MalImg, interpolated

Table 2 Average classification
accuracy

CNN LSTM
64 × 64 (%) 256 × 64 (%) 64 × 64 (%) 256 × 64 (%)

OBF 90.9 92.3 93.4 92.6

MsM2015 90.8 92 93.8 90

MalImg 98.1 98.3 98.5 98.2

Highest accuracy value is indicated in bold

The recall of a classification task for the class A is the per-
centage of correct guesses made by the model when it should
have guessed A.

To better visualize the difference between accuracy and
these measures we can add the true negatives (TN ) and then
define accuracy as:

Accuracy = TP + TN
TP + TN + FP + FN

(3)

Precision and recall are often combined in the F1measure
via their harmonic mean:

F1 = 2 ∗ Precision ∗ Recall

Precision + Recall
(4)

5.3 Models

The two models considered have been fully coded in Python
with Keras [33] and deployed on Colab notebooks freely
available online to simplify the reproducibility of the study.
The untrained models for these experiments can be found at

[27] butwe cannot provide a download link for theMsM2015
and the MalImg datasets as they are made available by each
respective owner on their own terms. The OBF dataset is
already available in the notebooks, along with methods that
can adapt the other two datasets to the models.

In the following we provide a technical description of the
models implemented.
CNNWe implement a convolutional neural network inKeras,
an almost direct translation of the one employed in [26]
(which was built on barebones TensorFlow). The network
has a base of two convolutional layers, each followed by a
max pooling layer. Each convolutional layer has a kernel size
of 5 and employs a rectified linear unit (relu) as the activation
function, with 32 filters in the first layer and 64 in the second.
Both max pooling layers have a size of 2×2 with padding set
to ‘same’ in order to avoid shrinking the input image. The
head of the network is a dense layer followed by a dropout
layer that flows in the last dense layer. The dropout layer
is a form of regularization which, as anticipated in Sect. 2,
prevents the network from memorizing the training set and

123



288 N. Marastoni et al.

thus hopefully allows it to better generalize. With a value set
to 0.2, the drop out layer randomly selects 20% of the neu-
rons of the previous layer and sets their activation to zero.
The network is then trained via gradient descent through the
Adam optimizer with default learning rate and epsilon, while
categorical cross-entropy is used as loss measure.

This network has been thoroughly tested on the MNIST
dataset of hand-written digits [25], where it reaches accu-
racy values up to 99%. The purpose of testing it on a dataset
with simple images is to show that, while the approach is
meant to work on any image recognition task, it can gener-
alize to arguably more difficult tasks. Further, according to
the experiments in [26], it is the smallest network that can
learn and generalize on the OBF dataset. It is important to
contain the size of the network because bigger models tend
to overfit and generally underperform unless they are trained
with huge datasets [15].

We tested with many image sizes, taking the approach
shown in [26] but using interpolation to resize the images
instead of cropping and zero-padding. Among the various
sizes we only show the results with square images of size 64
pixels by 64 pixels and 256 by 64 (64 × 64 and 256 × 64 in
the tables) as they are the most significant.
LSTM The long short-term memory has also been imple-
mented in Keras. It consists of two recurrent units, specif-
ically bi-directional LSTM units with 141 and 94 units
respectively. In order to quell overfitting the network has
been equipped with a patience of 30 epochs, meaning that
the model will stop learning 30 epochs after the validation
loss has stopped decreasing.

The LSTM model clearly performs better than the CNN
in all 3 datasets considered, given the initial input size of
64 × 64. The advantage of the LSTM model is not only in
the improved accuracy but also in its considerably smaller
size, although it results in a higher training time. An interest-
ing aspect of the LSTM models is that they do not perform
better with bigger images, in fact, the accuracy drops quite
a bit. A way to slightly mitigate this effect is to encode the
images as 64 × 256 (short and fat instead of tall and thin).
This likely has something to do with the fact that the increase
in the height of the image corresponds to an equal increase in
the timesteps of the recurrent network. Keeping the number
of timesteps to 64 maintains the performance of the network
but the improvement on the classification results is not par-
ticularly noticeable.

We show the average accuracy for all models and datasets
in Table 2.

6 Results and analysis

This section is devoted to presenting our results on both archi-
tectures presented in the previous section against the datasets

Table 3 Classification scores for the CNN on OBF

Classes Precision Recall f1-score Support

alien_lang 0.91 0.99 0.95 80.0

armstrong_n 0.89 0.84 0.86 80.0

bot_trust 0.99 0.95 0.97 80.0

calculator 0.93 0.80 0.86 80.0

candy_split 0.98 0.80 0.88 80.0

char_freq 0.96 0.92 0.94 80.0

count_digits 0.86 0.84 0.85 80.0

count_vowels 0.89 0.85 0.87 80.0

factorial 0.94 0.79 0.86 85.0

factorial_rec 0.97 0.88 0.92 75.0

factors 0.83 0.84 0.83 80.0

fair_warn 0.96 0.98 0.97 80.0

fib_1 0.81 0.79 0.80 80.0

fib_2 0.77 0.82 0.80 80.0

fly_swatter 0.81 0.90 0.85 80.0

gcd 0.92 0.69 0.79 85.0

gcd_rec 0.84 0.92 0.88 75.0

hello_world 0.95 1.00 0.98 80.0

lcm 0.80 0.74 0.77 80.0

leap_year 0.88 0.86 0.87 80.0

magicka 0.97 0.85 0.91 80.0

min_product 0.82 0.90 0.86 80.0

multibase_hap 1.00 0.95 0.97 80.0

n_palindrome 0.78 0.81 0.80 80.0

n_is_prime 0.84 0.86 0.85 80.0

n_sum_of_p 0.75 0.74 0.74 80.0

pos_or_neg 0.83 0.84 0.83 80.0

power_n 0.69 0.79 0.74 80.0

prime_n 0.83 0.81 0.82 80.0

pyramid 0.90 0.95 0.93 80.0

quot_remainder 0.74 0.92 0.82 80.0

remove_char 0.89 0.88 0.88 80.0

reverse_int 0.85 0.89 0.87 80.0

rotate 0.91 0.92 0.92 80.0

saving_univ 0.87 0.94 0.90 80.0

snapper_chain 0.88 0.89 0.88 80.0

store_struct 0.88 0.96 0.92 80.0

strcat 0.89 0.88 0.88 80.0

strcpy 0.87 0.90 0.88 80.0

stringsort 0.91 0.92 0.92 80.0

strlen 0.91 0.94 0.93 80.0

sum 0.89 0.84 0.86 80.0

theme_park 0.99 0.99 0.99 80.0

times_table 0.84 0.91 0.87 80.0

train_t_tab 0.94 0.94 0.94 80.0

watersheds 0.95 0.99 0.97 80.0

welcome_cjam 0.99 0.98 0.98 80.0

123



Data augmentation and transfer learning to classify malware images in a deep learning context 289

Table 4 Classification scores for the LSTM on OBF

Classes Precision Recall f1-score Support

alien_lang 0.99 0.99 0.99 80.0

armstrong_n 0.84 0.84 0.84 80.0

bot_trust 0.98 0.99 0.98 80.0

calculator 0.89 0.94 0.91 80.0

candy_split 0.93 0.82 0.87 80.0

char_freq 0.99 0.96 0.97 80.0

count_digits 0.82 0.88 0.85 80.0

count_vowels 0.90 0.88 0.89 80.0

factorial 0.85 0.90 0.88 78.0

factorial_rec 0.94 0.98 0.96 82.0

factors 0.96 0.88 0.92 80.0

fair_warn 1.00 0.99 0.99 80.0

fib_1 0.75 0.82 0.79 80.0

fib_2 0.79 0.85 0.82 80.0

fly_swatter 0.95 0.96 0.96 80.0

gcd 0.83 0.78 0.80 81.0

gcd_rec 0.87 0.82 0.84 79.0

hello_world 0.99 0.95 0.97 80.0

lcm 0.78 0.82 0.80 80.0

leap_year 0.87 0.84 0.85 80.0

magicka 0.99 1.00 0.99 80.0

min_product 0.97 0.90 0.94 80.0

multibase_hap 1.00 0.98 0.99 80.0

n_palindrome 0.89 0.82 0.86 80.0

n_is_prime 0.84 0.88 0.86 80.0

n_sum_of_p 0.92 0.88 0.90 80.0

pos_or_neg 0.91 0.91 0.91 80.0

power_n 0.70 0.84 0.76 80.0

prime_n 0.84 0.79 0.81 80.0

pyramid 0.87 0.91 0.89 80.0

quot_remainder 0.79 0.85 0.82 80.0

remove_char 0.95 1.00 0.98 80.0

reverse_int 0.91 0.78 0.84 80.0

rotate 0.93 0.95 0.94 80.0

saving_univ 1.00 0.99 0.99 80.0

snapper_chain 0.98 0.99 0.98 80.0

store_struct 0.94 0.96 0.95 80.0

strcat 0.81 0.80 0.81 80.0

strcpy 0.89 0.88 0.88 80.0

stringsort 0.94 0.99 0.96 80.0

strlen 0.91 0.92 0.92 80.0

sum 0.86 0.81 0.83 80.0

theme_park 0.98 1.00 0.99 80.0

times_table 0.86 0.80 0.83 80.0

train_t_tab 0.99 0.99 0.99 80.0

watersheds 1.00 1.00 1.00 80.0

welcome_cjam 0.99 1.00 0.99 80.0

Table 5 Classification scores for the CNN on MsM2015

Classes Precision Recall f1-score Support

Obfuscator.ACY 0.92 0.86 0.89 252.0

Simda 0.11 0.12 0.12 8.0

Ramnit 0.85 0.87 0.86 314.0

Vundo 0.88 0.82 0.85 89.0

Gatak 0.86 0.84 0.85 202.0

Lollipop 0.86 0.92 0.89 509.0

Kelihos_ver1 0.98 0.93 0.95 88.0

Tracur 0.69 0.65 0.67 145.0

Kelihos_ver3 1.00 0.99 1.00 566.0

Table 6 Classification scores for the CNN on MalImg

Classes Precision Recall f1-score Support

Adialer.C 1.00 1.00 1.00 26.0

Agent.FYI 1.00 1.00 1.00 19.0

Allaple.A 1.00 1.00 1.00 604.0

Allaple.L 1.00 1.00 1.00 314.0

Alueron.genJ 1.00 1.00 1.00 40.0

Autorun.K 1.00 1.00 1.00 25.0

C2LOP.P 0.82 0.85 0.84 27.0

C2LOP.geng 0.92 0.87 0.89 38.0

Dialplatform.B 1.00 1.00 1.00 43.0

Dontovo.A 1.00 1.00 1.00 34.0

Fakerean 0.97 1.00 0.99 75.0

Instantaccess 1.00 0.99 0.99 90.0

Lolyda.AA1 1.00 1.00 1.00 45.0

Lolyda.AA2 0.96 1.00 0.98 25.0

Lolyda.AA3 1.00 1.00 1.00 24.0

Lolyda.AT 1.00 1.00 1.00 29.0

Malex.genJ 1.00 0.97 0.99 35.0

Obfuscator.AD 0.96 1.00 0.98 25.0

Rbotgen 0.97 1.00 0.98 28.0

Skintrim.N 1.00 1.00 1.00 21.0

Swizzor.genE 0.70 0.59 0.64 27.0

Swizzor.genI 0.54 0.58 0.56 26.0

VB.AT 1.00 1.00 1.00 78.0

Wintrim.BX 1.00 1.00 1.00 13.0

Yuner.A 1.00 1.00 1.00 156.0

presented in Sect. 4. At the end of the section we briefly dis-
cuss how the results obtained can be analyzed.

6.1 OBF dataset

CNN On the OBF dataset the CNN model achieves an aver-
age accuracy of 92.3% on the hold-out test set with the input
images resized to 256×64. This result is a definite improve-

123



290 N. Marastoni et al.

ment from 88%which was the average accuracy on the same
dataset with the CNN in [26], where the images had a bigger
height (596 pixels) and were not compressed.

This tells us that the information needed by the CNN for
the classification is not reduced by the interpolation process.
In fact, interpolating the images results in better classification
accuracy than the cropping and padding methods used in
[26]. The better performance in the classification of 256×64
images reinforces the belief expressed in Marastoni et al.
[26] that bigger size correlates with more information for the
model and thus results in an easier classification process. In
Table 3 we show the classification scores of the CNN.
LSTM The same consideration cannot be done by looking at
the LSTM results, where the accuracy for the OBF dataset
oscillates around 92.6% for images of size 256 × 64, com-
pared to 93.4% for the smaller square images. This result has
to be attributed to the difficulty encountered by the LSTM
due to the increase of the timesteps, which also incurs a loss
of speed. Whatever advantage there might be in having big-
ger images is then lost to the vanishing information in long
recurrent networks. Interestingly enough, the classification
accuracy does not improve when we switch the height with
the width of the images and learn with the LSTM, while
the training time does indeed decrease due to the reduced
timesteps.

This result is definitely better than the CNN but incurs a
processing time overhead. The training process for theLSTM
takes about twice as long than the one for the CNN. This is
expected, as CNNs are renowned for being very fast models,
and furtherore the LSTM is bi-directional so the input must
be scanned in 2 directions.

In Table 4 we show the classification scores of the LSTM
for every family in OBF. It should be noted how the subdi-
vision of the families in this dataset is more balanced than
in the others. This is of course due to the fact that the OBF
dataset is generated from scratch and thus does not suffer
from class imbalance. We also noticed that the classification
scores tend to have more outliers when the classes are dis-
tributed differently between the training set and the test set,
thus this is avoided through a simple balancing algorithm
that results in the almost uniform distribution clearly shown
in Tables 4 and 3.

6.2 MsM2015 andMalImg datasets

The same architectures described above are used to classify
malware samples from the MsM2015 and MalImg datasets.
CNN The accuracy for the CNN models trained on the two
malware datasets is higher than the accuracy achieved on the
OBF dataset. Classifying the hold-out test set samples of the
MsM2015 dataset yields 92% accuracy on average, while
on the MalImg we record results of up to 98.3% average
accuracy. The classification scores for the individual classes

Table 7 Classification scores for the LSTM on MalImg

Classes Precision Recall f1-score Support

Adialer.C 1.00 1.00 1.00 26.0

Agent.FYI 1.00 1.00 1.00 19.0

Allaple.A 1.00 1.00 1.00 604.0

Allaple.L 1.00 1.00 1.00 314.0

Alueron.genJ 1.00 1.00 1.00 40.0

Autorun.K 1.00 1.00 1.00 25.0

C2LOP.P 0.80 0.89 0.84 27.0

C2LOP.geng 0.88 0.92 0.90 38.0

Dialplatform.B 1.00 1.00 1.00 43.0

Dontovo.A 0.97 1.00 0.99 34.0

Fakerean 0.96 1.00 0.98 75.0

Instantaccess 1.00 1.00 1.00 90.0

Lolyda.AA1 1.00 1.00 1.00 45.0

Lolyda.AA2 1.00 1.00 1.00 25.0

Lolyda.AA3 1.00 1.00 1.00 24.0

Lolyda.AT 1.00 1.00 1.00 29.0

Malex.genJ 1.00 0.97 0.99 35.0

Obfuscator.AD 1.00 1.00 1.00 25.0

Rbotgen 1.00 1.00 1.00 28.0

Skintrim.N 1.00 1.00 1.00 21.0

Swizzor.genE 0.67 0.22 0.33 27.0

Swizzor.genI 0.46 0.62 0.52 26.0

VB.AT 1.00 0.99 0.99 78.0

Wintrim.BX 0.87 1.00 0.93 13.0

Yuner.A 1.00 1.00 1.00 156.0

of CNN on theMsM2015 andMalImg datasets are in Table 5
and Table 6 respectively.
LSTM The LSTM reaches 98.5% average accuracy on Mal-
Img, which is a result comparable to recent works that use the
same dataset [29,44]. The same architecture trained on the
MsM2015 dataset achieves an average accuracy of 94.2%.

Since the MalImg dataset contains a noticeable class
imbalance we provide various classification scores for the
single classes with the LSTM in Table 7 and with the CNN
inTable 6.Analyzing these scores it is easy to spot two classes
in particular, ‘Swizzor.genE’ and ‘Swizzor.GenI’,
that appear to be difficult to classify for both the LSTM and
the CNN. The confusion matrix shown in Fig. 5 provides
a clearer picture on the classification errors for these two
classes, where it is clear that the models struggle with decid-
ing whether some samples belong to the ‘Swizzor.genE’
class or the ‘Swizzor.GenI’ class. Since these malware
samples are simple variants of the same family they appear
very similar and cannot be reliably distinguished by ourmod-
els. In contrast, the confusion matrix shows that the variants
‘C2LOP.P’ and ‘C2LOP.geng’ do not generate the same

123



Data augmentation and transfer learning to classify malware images in a deep learning context 291

Fig. 5 Confusion matrix for the CNN on the MalImg dataset

amount of errors for our models as they appear to be different
enough to be reliably classified.

In Tables 5 and 8 we show the scores for the classification
of theMsM2015 dataset on theCNNandLSTM respectively.
It is easy to notice that the class ‘Simda’ is very hard to
classify for both models, achieving an F1 score of 0.12 with
the CNN and 0.31 with the LSTM. This is easily explained
by the support shown as the last column, which is the number
of samples against which the classifier has been tested (the

samples in the test set for a specific class). The class ‘Simda’
is very under-represented, in fact only 40 samples exist of this
class in the whole dataset, while the biggest classes feature
thousands of samples each. This of course leads to problems
with the classification accuracy, as 40 samples is not nearly
enough for the class to be relevant in the training process.

Both models generate better results for the two malware
datasets compared to the OBF dataset. This is probably due
to the nature of the obfuscated files of theOBF dataset, where

123



292 N. Marastoni et al.

Table 8 Classification scores for the LSTM on MsM2015

Classes Precision Recall f1-score Support

Obfuscator.ACY 0.95 0.90 0.92 252.0

Simda 0.40 0.25 0.31 8.0

Ramnit 0.90 0.92 0.91 314.0

Vundo 0.92 0.93 0.93 89.0

Gatak 0.91 0.92 0.92 202.0

Lollipop 0.96 0.94 0.95 509.0

Kelihos_ver1 0.93 0.97 0.95 88.0

Tracur 0.84 0.88 0.86 145.0

Kelihos_ver3 1.00 1.00 1.00 566.0

the intra-class similarities and the inter-class differences are
not as definite as the samples found in the wild for the other
datasets. One advantage of the OBF dataset is the size of the
original programs before obfuscation. Since the programs
are very small and usually consist of a single function with
few auxiliaries, it is easy to change the structure of the pro-
grams in amore effective way and this reflects on the binaries
themselves (and thus on the images).

6.3 Transfer learning

Having trained a CNN on three different datasets we investi-
gate whether the features learnt in one of them can generalize
to the other two. In order to do this we employ transfer learn-
ing, a technique that is very popular nowadays as it allows to
re-use an already trained architecture for a completely dif-
ferent problem.

As explained in 2, the convolution layers of the CNN are
concerned with feature extraction, along with max pooling
and activations. The head of the model, two dense layers and
a drop out layer in our case, is tasked with using the features
to classify the programs into their respective classes. This
of course is also true for the bi-directional LSTM that we
trained, removing the dense layer from a model and apply-
ing a new dense layer with proper outputs provides with a
new model that can use pre-trained features for a new clas-
sification problem.

Thanks to this neat subdivision of tasks, it has become
good practice to download pre-trainedmodels from either big
companies or research labs and re-use them for completely
new purposes. This allows huge networks such as the ones
trained on ImageNet [13] for days (often with very expensive
equipment) to be used by people that would otherwise not
have the possibility to access such architectures. The hope is
that features extracted from a comprehensive image dataset
such as ImageNet will hopefully generalize to other image-
based learning problems.

In our case we train all the models with images extracted
from binaries, thus there could be an interesting intersection

in the features as they come from the same problem domain.
What needs to be investigated is if the features extracted from
one dataset of compiled programs can be used to classify
another dataset in the same domain. This is akin to using
the networks trained on ImageNet for different (and usually
smaller) datasets, since it can save time and resources. At
the same time it can open up future possibilities, where big
networks are trained on huge datasets of images extracted
from compiled programs which can then be repurposed in
order to classify smaller and newer datasets.

In the rest of this section we illustrate our experiments
with transfer learning with both models on all the datasets.
MsM2015→MalImg [LSTM]Abi-directional LSTMmodel
has been trained for 200 epochs on the MsM2015 dataset,
achieving around 94% accuracy. After removing the dense
layer we set the base as untrainable, thus preventing the
optimizer from modifying the weights of the two LSTM
units and preserving the features learned from the MsM2015
dataset. We then added a new dense layer with 25 outputs
(as opposed to the 9 for the previous classification problem)
and we trained on the MalImg dataset for a little over 321
epochs, achieving 98.4% accuracy on the hold-out dataset.
This result is on par or even slightly better than most models
trained using only the MalImg dataset. The performance of
the LSTM on the MalImg dataset is already very good and
adding the transfer learning actually increased the learning
time from around 100 epochs to more than 400 for the same
accuracy.
MsM2015→MalImg [CNN]TheCNNmodel performs very
well on the MalImg dataset, taking between 45 to 50 epochs
to achieve 98.4%accuracy. This is the best result for theCNN
so far and the fastest training time.

After downloading a trained model for the MsM2015
dataset (which achieved around 92% accuracy on said
dataset), we attach a new dense layer and retrain it for 80
epochs. The final accuracy is 98.2%.

These experiments led us to believe that there is some
untapped potential in the process of transfer learning applied
to our problem setting. The positive results could stem from
the fact that the MsM2015 dataset, while consisting of less
classes altogether, contains a comparable amount of samples.
It also certainly helps that the programs fromboth datasets are
for the Windows system, thus possibly sharing many visual
features. This hypothesis is tested in the next attempt.
OBF → MalImg transfer [CNN and LSTM] The process
described above has been tried with a CNN and an LSTM,
both trained on theOBF dataset. TheCNNmodel on theMal-
Img dataset, with the base of the network set as untrainable,
achieved 97% accuracy on the hold out set. This confirms
that the features learned by the CNN model to solve the
classification problem for the OBF dataset are in fact appli-
cable to the MalImg dataset. An analysis of the classification
errors revealed that the same problems persist with the new

123



Data augmentation and transfer learning to classify malware images in a deep learning context 293

Fig. 6 Obfuscations frequency in the classification errors for the CNN and LSTM on the OBF dataset

model. In particular, the classes ‘Swizzor.genE’ and
‘Swizzor.genI’ are still very hard to tell apart. Since
the new network allows updates only on the weights for the
dense layers, the training time is also greatly reduced, going
from an average 70 seconds to around 18 s with only a slight
reduction in accuracy.

The LSTM model also improves on the training time but
the accuracy decreases to around 87%, making it less viable.
OBF → MsM2015 [CNN and LSTM] The models gener-
ated with transfer learning for theMsM2015 dataset perform
slightly worse than the ones for the MalImg dataset. The
average accuracy for the CNN model trained on OBF and
then transferred to the classification of MsM2015 is around
78%, a full 14 points lower than its counterpart trained solely
on the MsM2015 dataset. The LSTM does not fare better, its
accuracy hovering around 70%.

These results come solely from training on images of size
64× 64 so the lower accuracy could come from the original
model not learning enough features from the OBF dataset.
The MsM2015 dataset is also generally harder to learn from
when compared to MalImg.
MalImg → MsM2015 [CNN and LSTM] For completeness
we tried to apply the models trained on the MalImg dataset
to classify samples in the MsM2015 dataset. The accuracy
achieved by the CNN model obtained via transfer learning
is around 76%, only slightly lower than the previous experi-
ment with the model trained on OBF. Once again the LSTM
model achieves a lower score than the CNNwith around 70%
accuracy.

This experiment suffers from the small size of theMalImg
dataset and from the apparent difficulty inherent in classify-
ing the MsM2015 dataset while only looking at the images
extracted from its binaries.

6.4 Error analysis

As anticipated, the custom nature of the OBF dataset allows
us to monitor the effect of the obfuscations on the classifica-
tion results. In order to do this we collected all themistakenly
classified samples from every run of both models against the
OBF dataset and counted the obfuscations that have been
applied to such samples. The obfuscation count is then aver-
aged through the runs (in our case 20 runs) and then finally
normalized, so we can have a number between 0 and 1 that
is easy to compare between the different models.

In Fig. 6 we show the result of this study in a bar graph.
The CNN results (in the blue, wider bars) clearly show that
the network has the most trouble classifying programs that
have been transformed by the InitOpaque transformation,
while the Flatten transformation, with around half the errors
on average, comes in at second place. This big discrepancy
between the errors makes it clear that the spatial features
extracted by the CNNhave troublewhen programs are obfus-
cated with InitOpaque, possibly due to the huge amount of
entropy added to the binary (easily seen in Fig. 2).

The LSTM (in orange, slimmer bars) has a more uniform
distribution of the errors wrt the applied obfuscations. Ini-
tOpaque is still one of the obfuscations that are harder to
classify, but is preceded by RandomFuns and Flatten, while
being followed closely by Split and EncodeLiterals. What
we can gauge from this analysis is that the LSTM does not
have a particular weakness toward specific obfuscations but
struggles relatively uniformly on the hardest obfuscations.

Thesemodel-specific observationsmake it clear that using
one particular model to classify binaries by looking at their
images has its drawbacks. The general lack of precision of
the models trained on the OBF dataset further strengthen this
idea.

123



294 N. Marastoni et al.

Fig. 7 Classification errors for the CNN and the LSTM on the OBF dataset, normalized

123



Data augmentation and transfer learning to classify malware images in a deep learning context 295

Another point of interest is that both models find it very
easy to classify programs that are encoded with InitEntropy
and InitImplicitFlow.This reinforces the observation that cer-
tain obfuscations are more effective than others against these
classification techniques. As with images, the transformation
used to fool the classifier can be more or less effective and
part of this work is to show that this is the case.

In Fig. 7 we show the errors with a focus on the classes of
the OBF dataset. The errors of the LSTM are again more uni-
formly distributed while the CNN presents few taller peaks.
It is interesting to note that some programs that appear on
the higher end of error count for the LSTM are among the
easiest to classify for the CNN (i.e. ‘factorial_rec’ and
‘alien_language’). This again highlights the difference
in strength of the two models.

6.5 Comparison with existing works

We decided not to directly compare the accuracy values
recorded with the two malware datasets in this paper with
those achieved in previous works. The main reason for this
is that the goal of this work is not to raise the ever-raising
bar of classification accuracy in a specific domain, as that
can usually be achieved by simply spending more time over-
tuning the parameters or throwing more expensive hardware
at the problem. At the same time, the accuracy level that we
report is always taken from a hold-out test set that has been
extracted randomly from the main dataset. This is a different
approach than the one taken in most works we surveyed

7 Conclusions and discussion

We have shown how two deep learning models (a CNN and
an LSTM) fare in a classification task on a generated dataset
and two real-life malware datasets. The models have been
built with an image classification task in mind and have been
fine-tuned with a custom generated dataset of obfuscated
programs. The results clearly show that the LSTM model
performs better in all the classification tasks, reaching 98.5%
average accuracy on a hold-out set of the MalImg dataset
which is on par or superior to other studies in the state of
the art. The models trained with the MalImg and MsM2015
datasets have then been subjects of transfer learning experi-
ments in order to generate newmodels that have been trained
on one dataset, while classifying samples from the other.
With the accuracy of both these classifiers generated through
transfer learning we verified that the features learned from
either dataset can be used to classify malware from the other.
This is a great result because it means that, not only can we
use the images extracted from executable malware samples
in order to classify them into their respective families, we
can also transfer the knowledge gathered during such pro-

cess to classify a new malware dataset. Akin to the results in
image recognition, this can potentially save a lot of compu-
tation time and resources when dealing with newly released
datasets.
Discussion These promising results listed in this work led us
to believe that there is a lot of untapped potential in transfer
learning applied to malware classification. Further experi-
ments are needed to have a more comprehensive view of
the potentials and limitations of this technique. For exam-
ple we envision future experiments with a different starting
pool of programs to generate a new, bigger dataset to which
we can apply the obfuscations. Having more classes in the
OBF dataset would allow for more diversity and bigger pro-
grams could be included since the size limitations of [26]
have been overcome with bicubic interpolation. The pool of
obfuscations can also be considerably expanded.

Different visualization techniques could also be needed
in the future. It is evident that merely changing the way the
images are resized greatly impacts the learning process, this
means that the way we extract images from the binaries is
important. We wonder if designing new techniques that are
not meant for generic images (such as bicubic interpolation)
but catered specifically to programs could aid the learning
process.

On a related note, it would be also interesting to see what
features are extracted by the networkswhen encountering dif-
ferent obfuscations. An attention based network could point
out which of these features is important to distinguish the
programs in different classes and which ones are merely
introduced by the obfuscations.

Funding Open access funding provided by Università degli Studi di
Verona within the CRUI-CARE Agreement.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Andriesse, D., Chen, X., Van Der Veen, V., Slowinska, A., Bos, H.:
An in-depth analysis of disassembly on full-scale x86/x64 binaries.
In: 25th USENIX Security Symposium (USENIX Security 16), pp.
583–600 (2016)

2. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A.,
Vadhan, S., Yang, K.: On the (im) possibility of obfuscating pro-

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


296 N. Marastoni et al.

grams. In: Annual International Cryptology Conference, pp. 1–18.
Springer (2001)

3. Bengio, Y., LeCun, Y., Henderson, D.: Globally trained handwrit-
ten word recognizer using spatial representation, convolutional
neural networks, and hiddenMarkovmodels. In: Advances in Neu-
ral Information Processing Systems, pp. 937–944 (1994)

4. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependen-
cies with gradient descent is difficult. IEEE Trans. Neural Netw.
5(2), 157–166 (1994)

5. Bhodia, N., Prajapati, P., Di Troia, F., Stamp, M.: Transfer
learning for image-based malware classification. arXiv preprint
arXiv:1903.11551 (2019)

6. Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software
Tools (2000)

7. Canavese, D., Regano, L., Basile, C., Viticchié, A.: Estimating
software obfuscation potency with artificial neural networks. In:
International Workshop on Security and Trust Management, pp.
193–202. Springer (2017)

8. Ceccato, M., Di Penta, M., Nagra, J., Falcarin, P., Ricca, F., Torchi-
ano, M., Tonella, P.: The effectiveness of source code obfuscation:
an experimental assessment. In: 2009 IEEE17th International Con-
ference on Program Comprehension, pp. 178–187. IEEE (2009)

9. Chen, L.: Deep transfer learning for static malware classification.
arXiv preprint arXiv:1812.07606 (2018)

10. Collberg, C.: The tigress c diversifier/obfuscator. Retrieved August
14, 2015 (2015)

11. Collberg, C., Thomborson, C., Low,D.:A taxonomyof obfuscating
transformations (1997)

12. Cui, Z., Du, L., Wang, P., Cai, X., Zhang, W.: Malicious code
detection based on cnns and multi-objective algorithm. J. Parallel
Distrib. Comput. 129, 50–58 (2019)

13. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Ima-
genet: A large-scale hierarchical image database. In: 2009 IEEE
Conference on Computer Vision and Pattern Recognition, pp. 248–
255. Ieee (2009)

14. Deshotels, L., Notani, V., Lakhotia, A.: Droidlegacy: Automated
familial classification of android malware. Proceedings of ACM
SIGPLAN on Program Protection and Reverse Engineering Work-
shop 2014, 1–12 (2014)

15. Gibert, D., Mateu, C., Planes, J.: A hierarchical convolutional neu-
ral network for malware classification. In: 2019 International Joint
Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2019)

16. He,K., Zhang,X., Ren, S., Sun, J.:Deep residual learning for image
recognition. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 770–778 (2016)

17. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural
Comput. 9(8), 1735–1780 (1997)

18. Jain, M., Andreopoulos, W., Stamp, M.: Convolutional neural net-
works and extreme learning machines for malware classification.
J. Comput. Virol. Hacking Tech. 16(3), 229–244 (2020)

19. Kang, J., Jang, S., Li, S., Jeong, Y.S., Sung, Y.: Long short-
termmemory-basedmalware classificationmethod for information
security. Comput. Electr. Eng. 77, 366–375 (2019)

20. Kebede, T.M., Djaneye-Boundjou, O., Narayanan, B.N., Ralescu,
A., Kapp, D.: Classification of malware programs using autoen-
coders based deep learning architecture and its application to the
microsoft malware classification challenge (big 2015) dataset. In:
2017 IEEENational Aerospace and Electronics Conference (NAE-
CON), pp. 70–75. IEEE (2017)

21. Keys, R.: Cubic convolution interpolation for digital image pro-
cessing. IEEE Trans. Acoust. Speech Signal Process. 29(6), 1153–
1160 (1981)

22. Kukačka, J., Golkov, V., Cremers, D.: Regularization for deep
learning: a taxonomy. arXiv preprint arXiv:1710.10686 (2017)

23. Lawrence, S., Giles, C.L., Tsoi, A.C., Back, A.D.: Face recogni-
tion: a convolutional neural-network approach. IEEETrans. Neural
Netw. 8(1), 98–113 (1997)

24. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based
learning applied to document recognition. Proc. IEEE 86(11),
2278–2324 (1998)

25. LeCun,Y.,Cortes,C.,Burges,C.:Mnist handwritten digit database.
AT&T Labs [Online]. http://yann.lecun.com/exdb/mnist2 (2010)

26. Marastoni, N., Giacobazzi, R., Dalla Preda, M.: A deep learning
approach to program similarity. In: Proceedings of the 1st Interna-
tional Workshop on Machine Learning and Software Engineering
in Symbiosis, pp. 26–35 (2018)

27. Marastoni, N.: Niccolò Marastoni’s personal website. https://
niccolomarastoni.github.io/articles.html (2021)

28. McAfee: McAfee Labs Threats Report 2020. https://www.mcafee.
com/enterprise/en-us/assets/reports/rp-quarterly-threats-nov-
2020.pdf (2020)

29. Naeem, H., Ullah, F., Naeem, M.R., Khalid, S., Vasan, D., Jabbar,
S., Saeed, S.: Malware detection in industrial internet of things
based on hybrid image visualization and deep learning model. Ad
Hoc Netw. 105, 102154 (2020)

30. Nataraj, L., Karthikeyan, S., Jacob, G., Manjunath, B.: Malware
images: visualization and automatic classification. In: Proceedings
of the 8th International Symposium on Visualization for Cyber
Security, p. 4. ACM (2011)

31. OKane, P., Sezer, S., McLaughlin, K.: Obfuscation: the hidden
malware. IEEE Secur. Priv. 9(5), 41–47 (2011)

32. Oliva, A., Torralba, A.: Building the gist of a scene: the role of
global image features in recognition. Prog. Brain Res. 155, 23–36
(2006)

33. O’Malley, T., Bursztein, E., Long, J., Chollet, F., Jin, H., Invernizzi,
L., et al.: Keras Tuner. https://github.com/keras-team/keras-tuner
(2019)

34. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans.
Knowl. Data Eng. 22(10), 1345–1359 (2009)

35. Perez, L., Wang, J.: The effectiveness of data augmentation
in image classification using deep learning. arXiv preprint
arXiv:1712.04621 (2017)

36. Pratt, L.Y., Mostow, J., Kamm, C.A., Kamm, A.A.: Direct transfer
of learned information among neural networks. Aaai 91, 584–589
(1991)

37. Programiz: C examples. https://www.programiz.com/c-
programming/examples (2020)

38. Rawat, W., Wang, Z.: Deep convolutional neural networks for
image classification: a comprehensive review. Neural Comput.
29(9), 2352–2449 (2017)

39. Reitermanova, Z.: Data splitting. In: WDS 10, 31–36 (2010)
40. Rezende, E., Ruppert, G., Carvalho, T., Ramos, F., De Geus,

P.: Malicious software classification using transfer learning of
resnet-50 deep neural network. In: 2017 16th IEEE International
Conference on Machine Learning and Applications (ICMLA), pp.
1011–1014. IEEE (2017)

41. Ronen, R., Radu, M., Feuerstein, C., Yom-Tov, E., Ahmadi,
M.: Microsoft malware classification challenge. arXiv preprint
arXiv:1802.10135 (2018)

42. Schrittwieser, S., Katzenbeisser, S., Kinder, J., Merzdovnik, G.,
Weippl, E.: Protecting software through obfuscation: Can it keep
pace with progress in code analysis? ACMComput. Surv. (CSUR)
49(1), 1–37 (2016)

43. Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmen-
tation for deep learning. J. Big Data 6(1), 60 (2019)

44. Vasan, D., Alazab, M., Wassan, S., Naeem, H., Safaei, B., Zheng,
Q.: Imcfn: image-based malware classification using fine-tuned
convolutional neural network architecture. Comput. Netw. 171,
107138 (2020)

123

http://arxiv.org/abs/1903.11551
http://arxiv.org/abs/1812.07606
http://arxiv.org/abs/1710.10686
http://yann.lecun.com/exdb/mnist
https://niccolomarastoni.github.io/articles.html
https://niccolomarastoni.github.io/articles.html
https://www.mcafee.com/enterprise/en-us/assets/ reports/rp-quarterly-threats-nov-2020.pdf
https://www.mcafee.com/enterprise/en-us/assets/ reports/rp-quarterly-threats-nov-2020.pdf
https://www.mcafee.com/enterprise/en-us/assets/ reports/rp-quarterly-threats-nov-2020.pdf
https://github.com/keras-team/keras-tuner
http://arxiv.org/abs/1712.04621
https://www.programiz.com/c-programming/examples
https://www.programiz.com/c-programming/examples
http://arxiv.org/abs/1802.10135


Data augmentation and transfer learning to classify malware images in a deep learning context 297

45. Venkatraman, S., Alazab, M., Vinayakumar, R.: A hybrid deep
learning image-based analysis for effective malware detection. J.
Inf. Secur. Appl. 47, 377–389 (2019)

46. Yakura, H., Shinozaki, S., Nishimura, R., Oyama, Y., Sakuma,
J.: Neural malware analysis with attention mechanism. Comput.
Secur. 87, 101592 (2019)

47. You, I., Yim, K.: Malware obfuscation techniques: a brief sur-
vey. In: 2010 International Conference on Broadband, Wireless
Computing, Communication and Applications, pp. 297–300. IEEE
(2010)

48. Zhou, Y., Jiang, X.: Dissecting android malware: characterization
and evolution. In: 2012 IEEE Symposium on Security And Privacy,
pp. 95–109. IEEE (2012)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123


	Data augmentation and transfer learning to classify malware images in a deep learning context
	Abstract
	1 Introduction
	2 Background
	2.1 Obfuscations
	2.2 Convolutional neural networks
	2.3 Long short-term memory
	2.4 Transfer learning
	2.5 Bicubic interpolation

	3 Related work
	4 Datasets
	4.1 OBF dataset
	4.2 Microsoft malware dataset [MsM2015 ]
	4.3 MalImg
	4.4 Fixed size

	5 Experiment setup
	5.1 Training, validation and testing sets
	5.2 Classification scores
	5.3 Models

	6 Results and analysis
	6.1 OBF dataset
	6.2 MsM2015 and MalImg datasets
	6.3 Transfer learning
	6.4 Error analysis
	6.5 Comparison with existing works

	7 Conclusions and discussion
	References




