
Journal of Computer Virology and Hacking Techniques (2023) 19:579–595
https://doi.org/10.1007/s11416-023-00465-2

ORIG INAL PAPER

Generative adversarial networks and image-basedmalware
classification

Huy Nguyen1 · Fabio Di Troia1 · Genya Ishigaki1 ·Mark Stamp1

Received: 14 September 2022 / Accepted: 19 January 2023 / Published online: 13 February 2023
© The Author(s), under exclusive licence to Springer-Verlag France SAS, part of Springer Nature 2023

Abstract
For efficient malware removal, determination of malware threat levels, and damage estimation, malware family classification
plays a critical role. In this paper, we extract features from malware executable files and represent them as images using
various approaches. We then focus on generative adversarial networks (GAN) for multiclass classification and compare our
GAN results to other popular machine learning techniques, including support vector machine (SVM), XGBoost, and restricted
Boltzmann machines (RBM). We find that the AC-GAN discriminator is generally competitive with other machine learning
techniques.We also evaluate the utility of theGANgenerativemodel for adversarial attacks on image-basedmalware detection.
While AC-GAN generated images are visually impressive, we find that they are easily distinguished from real malware images
using any of several learning techniques. This result indicates that our GAN generated images are of surprisingly little value
in adversarial attacks.

1 Introduction

The Covid-19 pandemic, which ran amok worldwide for
more than two years, drastically increased the trend of work-
ing from home. The remote work environment has also
pushed another trend: increasing cyber attacks, including
phishing, data breaches, andmalware. According toCSO [8],
in the second quarter of 2020, as compared to the same period
a year earlier, cloud security incidents increased by 188%,
ransomware attacks grew by over 40%, and email malware
attacks were up by 600%.

Malware, short for “malicious software”, consists of com-
puter programs that are written to cause harm to computer
and Internet users [39]. Common types of malware include
botnets, rootkits, Trojans, worms, and spyware. Malware can
be used to steal information, utilize hardware, cause disrup-
tion for financial or reputational gain, or other unauthorized
activity. Malware defense is an ongoing battle with multiple
layers: preventing malware from entering, alerting users that
a system is compromised, removal of malware from compro-
mised systems, and so on.

B Mark Stamp
mark.stamp@sjsu.edu

1 Department of Computer Science, San Jose State University,
San Jose, USA

There has been considerable research into malware detec-
tion and classification. In recent years,malware classification
based on machine learning has become the leading focus of
such research. With more computing power from graphic
processing units (GPU) and Google tensor processing units
(TPU), which are specialized for machine learning tech-
niques and feature extraction, costly deep learning image-
based malware detection techniques have become a viable
option.

An image can be derived directly from the byte sequence
of an executable file without executing (or emulating) or
otherwise pre-processing the data to extract features. Power-
ful image-based techniques, including Convolutional Neural
Networks (CNN) and Generative Adversarial Networks
(GAN) have been used to classify malware samples with
impressive results.

Malware detection is an arms race between detectors and
malware writers, where each side tries to develop new and
innovative ways to defeat the other side. Adversarial attacks
on machine learning based malware defenses have been
developed. In one type of adversarial attack, amalwarewriter
attempts to contaminate the training data, so that the result-
ing model is less effective. A possible approach to such an
adversarial attack on an image-based malware detection sys-
tem is to generate “deep fake” malware images to pollute the
training dataset. This is an approach that we consider in this
paper.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11416-023-00465-2&domain=pdf
http://orcid.org/0000-0002-3803-8368


580 H. Nguyen et al.

GANs have been used to generate realistic fake images.
For example, researchers at Nvidia [26] developed Style-
GAN, a style-based architecture for GAN, which by some
measures was 20% more effective than a traditional GAN
generator. StyleGAN was also used to create the trending
website “thispersondoesnotexist.com”. MalGAN is a GAN
technique thatwas designed specifically to dealwithmalware
images [22,27]. In this paper, we consider the utility ofGANs
for adversarial attacks on image-based malware systems.

In addition tomalware detection, malware classification is
critically important, as it enables us to estimate the damage,
determine the threat level, and to provide protection spe-
cific to a given malware family. In this research, we employ
Auxiliary Classifier GAN (AC-GAN) for multi-class clas-
sification of malware families and compare the resulting
model with a wide variety of other machine learning models,
including Support Vector Machine (SVM) [19], k-Nearest
Neighbors (k-NN) [20], multilayer perceptron (MLP) [44],
Random Forest (RF) [17], Restricted Boltzmann Machines
(RBM) [29], XGBoost [10], as well as the pre-trained deep
residual network, Resnet152 [18].We also develop SVMand
RFmodels to test the quality of fake images generated by our
AC-GAN generative model. The dataset that we use consists
of more than 26,000 malware executables from 20 distinct
families [12].

Among the contributions of this paper are the following.

• We compare four distinct techniques for generating
images from malware samples. Both grayscale and color
images are considered. As far as the authors are aware,
no previous work has provided a direct comparison of
all of the image generation techniques considered in this
paper.

• We apply a wide variety of learning techniques to a
challenging malware image classification problem. In
each case, we carefully tune the hyperparameters, which
results in ameaningful comparison of these learning tech-
niques in the image-basedmalware classificationdomain.
The only comparable work that the authors are aware
of is [37], which is focused on sequential techniques,
including Long Short-TermMemory (LSTM) and Gated
Recurrent Unit (GRU) classifiers.

• We carefully consider the potential utility of GAN-
generated “deep fake” malware images for adversarial
attacks. While such deep fake images are indeed visually
impressive, we find that they are woefully inadequate for
adversarial attacks. Specifically, we find that these deep
fake images cannot serve as substitutes for actual mal-
ware images in adversarial attack scenarios. The authors
are not aware of any previous work that explicitly makes
this point, with the possible exception of [32], which is
primarily focusedon the classificationpotential ofGANs,
rather than their use in adversarial attacks.

The remainder of this paper is organized as follows. In
Sect. 2, we discuss related work and briefly consider each of
the various machine learning and deep learning models used
in our research. Our dataset and image extraction techniques
are introduced in Sect. 3. In Sect. 4, we present our extensive
experimental results, and we provide analysis and discussion
of these results. Section 5 concludes the paper, andwe outline
a few potential avenues for future work.

2 Background

New malware families are being developed everyday. For
example, not too long ago the SolarWinds zero day attack
caused damage to several government agencies [30]. The
attack was caused by a state-sponsored group and put the
entire cyber security industry on high alert. The SolarWinds
attack reminded us of the importance of malware defense,
and malware detection in particular.

There are two broad categories of malware detection:
signature-based and anomaly-based. Signature-based mal-
ware detection keeps certain characteristics of previously-
seen malware in a dictionary and detects based on this
previously-determined information.There are threemaindis-
advantages of a signature-based approach, namely, the size of
the dictionary may not be scalable, new malware or zero day
attacks cannot be detected, and signatures can be changed by
malware writers using well-known obfuscation techniques.
Anomaly-based detection tries to distinguish between benign
and malware based on general characteristics or behavior.
One disadvantage of anomaly-based detection is that if the
training dataset can be corrupted in an adversarial fashion,
anomalous features can be made to appear normal.

Machine learning techniques can be viewed as a type of
anomaly-based detection, and such techniques can also be
considered as higher-level “signatures,” in the sense that a
model captures characteristics of an entire family, rather than
a single instance. Regardless of how we view machine learn-
ing models, adversarial attacks are a major concern. One
purpose of our research is to consider the effectiveness of
generated fake malware images in such adversarial attacks—
with the ultimate goal of producing more robust learning
models.

Next, we discuss relevant related work. Then we briefly
introduce each of the learning techniques considered in this
paper. We conclude this section with a discussion of the
statistics used to quantify classification success in our exper-
iments.

2.1 Related work

As a first example of research in image-based analysis, Jain
and Stamp [24] used Convolutional Neural Networks (CNN)

123



Generative adversarial networks and image-based malware classification 581

and Extreme LearningMachines (ELM) to classify malware.
Jain and Stamp suggested future work including testing dif-
ferent techniques for image extraction, such as zero padding
and GIST descriptors of images.

In another paper, Nagaraju and Stamp [32] worked on
image-based malware analysis using the GAN architecture
known as Auxiliary-Classifier GAN(AC-GAN). They exper-
imented with different image sizes from 32 × 32, 64 × 64
to as large as 512 × 512. Grayscale images were extracted
and truncated from executable files to the desired sizes. In
addition to AC-GAN, CNN and ELM were considered, with
CNN achieving impressive results in detecting fake images.
For futurework, they advised researchers to consider cutting-
edge models, including VG-199 and ResNet152.

Xiao et al. [52] introduced a novel framework called Mal-
CVS, which is their shorthand for Malware Classification
using Colab image generation, VGG16, and SVM. Images
were generated similar to grayscale, but with thick colored
lines between each section in the executable files. The images
then were passed through VGG16 for feature extraction
with the results fed to a multi-class SVM for classification.
The MalCVS framework achieved impressive results with
98.94% accuracy and F1-score at 97.91% on amulticlass (16
family) problem. Note that the MalCVS framework depart
from strict grayscale images by its use of color borders in its
image representation of malware.

A recent trend in image-based malware analysis is the
use of color images. Both Vasan et al. [47] and Singh et
al. [43] generate color maps and use byte sequences from the
executable files to represent color images. Both papers also
use similar learning techniques, including CNN and Resid-
ual Neural Networks (specifically, ResNet-50). Singh et al.
achieved impressive results with the MalImg dataset, obtain-
ing an accuracy of 98.10% using ResNet-50, while Vasan et
al. attained an accuracy of 98.82% using a so-called “fine-
tuned” CNN architecture. These papers tend to indicate that
color (RGB) representations captured more pattern informa-
tion, and therefore can achieve better results as compared to
grayscale malware images.

The idea of generating fake features for obfuscation and
adversarial attacks onmalware systems is not new. For exam-
ple, Hu et al. [22] and Kawai et al. [27] proposedMalGAN to
bypass black-box machine learning based detection models.
MalGAN uses the output of a black-box model and employs
GAN to generate fake samples. MalGAN has been shown to
be capable of substantially decreasing the true positive rate
(TPR) to near 0. The process of training MalGAN is fast and
efficient, making it practical for such attacks.

In the area of multiclass classification, Fu et al. [16]
achieved impressive results with a accuracy of 97.47% and
F-measure of 96.85% in categorizing 15 different malware
families. They focused heavily on extracting features from
malware executables, with a combination of global and local

features. Color features were extracted using a Portable Exe-
cutable (PE) format parser, and color images were built using
RGB layers. The executable files were divided into sections,
with features such as entropy, byte sequences, relative size,
and so on, extracted per section. The results were then com-
bined to represent the different RGB channels. The resulting
images were colorful and enable us to visualize the data
and code sections in malware files. For future work, they
suggested that deep learning models such as CNN could be
developed for malware classification.

Farhat and Rammouz [15] experimented with several
pre-trained deep convolutional models, including VGG16,
Resnet50, Resnet152, and MobileNet. With MobileMet, for
example, they obtained an accuracy of 94% after one training
epoch, based on a 9-class malware classification problem.
After 25 epochs, the accuracy reached a peak of more
than 97%. Pre-trained models take advantage of power-
ful image-based techniques and have been trained on vast
datasets, while only requiring fine tuning for the specific task
at hand. Thus, we can use pre-trained models for computer
vision tasks and save a tremendous amount of training time.

In our research, we consider a wide variety of machine
learning techniques, specifically, SVM, k-NN, MLP, RBM,
and two ensemble techniques:, namely, Random Forest and
XGBoost. We also consider three deep learning models: DC-
GAN, AC-GAN, and Resnet152. In the next section, we
briefly discuss each of these techniques, and we mention the
relative advantages and disadvantages of each in the context
of image-based malware classification.

2.2 Machine learningmodels

As its name suggests, the k-Nearest Neighbors (k-NN) clas-
sifier simply uses the k neighbors in the training set to classify
a sample in the test set. Consequently, k-NN is simple and
easy to understand, and it perform surprisingly well in many
applications. However, with images of size 128 × 128 × 3,
for example, the feature vector would be of length 49,152,
making distance computations in k-NN costly.

Support Vector Machines (SVM) and its multiclass ver-
sion, Support Vector Classifiers (SVC), use hyperplanes to
separate and classify data. Figure 1 illustrates a 2D version of
SVM hyperplane—in this case, a line separating two classes
of data. SVM performs well on many malware problems; for
example, SVMachieved 93.20% accuracy on a 25-class clas-
sification problem in [47]. However, similar to k-NN, when
the feature space is large, SVMcan be quite costly in practice.

We also consider two ensembles: RandomForest (RF) and
XGBoost. An ensemble is a group of models that are com-
bined in some way to function as a whole. XGBoost requires
substantial memory, as the dataset needs to be preprocessed
before training.

123



582 H. Nguyen et al.

Fig. 1 SVM separating hyperplane [46]

2.3 Deep learningmodels

Generative Adversarial Networks (GAN) are innovative
techniques where a generative and discriminative model are
trained simultaneously. The two models compete with each
other, and thus can yield improved results, as compared to
training each individually. There are many GAN variants,
including ProGAN, StyleGAN, and so on. We experiment
with DC-GAN for unsupervised generative models and AC-
GAN for multi-class discrimination. A primary goal for this
research is to examine both the discriminator and the gen-
erator models of GANs and compare them with various
other machine learning and deep learning techniques. The
AC-GAN discriminator can be used for the multiclass clas-
sification of malware families and binary classification of
fake versus real images. The GAN generator is used to pro-
duce fake malware images, which we analyze using various
other learning techniques.

Additionally,we considerRestrictedBoltzmannMachines
(RBM) and the deep Residual Network (ResNet) architec-
ture known as Resnet152. The Resnet152 model has been
pre-trained on a vast image dataset and this particular model
has been shown to achieve state-of-the-art results for mal-

ware problems. Next, we briefly introduce each of these deep
learning models.

2.3.1 Deep convolutional GAN (DC-GAN)

DC-GAN was first introduced by Radford and Metz [38] in
2015 as an unsupervised technique for representational learn-
ing. As an unsupervised architecture, DC-GAN is applicable
to unlabelled data. We use our DC-GAN results as a bench-
mark for the binary classification of real versus fake malware
images.

Figure 2 illustrates the convolutional layers of a DC-GAN
architecture without fully connected or pooling layers. Here,
a noise vector consisting of 100 random numbers is fed into
themodel, which then generates images based on the training
data. The basic architecture of our DC-GAN has four convo-
lutional layers and the output is a 64×64×3 image. We can
modify the settings in the convolutional layers to work with
all of the image types considered in our experiments below,
namely, 128× 128× 1 and 256× 256× 1 grayscale, as well
as 128× 128× 3 RGB images.

2.3.2 Auxiliary-classifier GAN (AC-GAN)

There are multiple research papers showing that AC-GAN
performs well with multiclass data [25,32,34]. In contrast to
DC-GAN, AC-GAN makes use of class labels. Using this
extra data (the class labels), also enables us to generate fake
samples corresponding to a specific family. The AC-GAN
discriminator can be used to solve the multiclass classifica-
tion problem, which is a main focus in this research.

As we can see in Fig. 3, the input C , representing class
labels, is fed into both the generator and the discriminator.
There are two outputs from the discriminator, namely, the
validity of the image and the class label. The discriminator is
trained based on these two outputs, with two loss functions.

Fig. 2 DC-GAN generator [38]

123



Generative adversarial networks and image-based malware classification 583

Fig. 3 AC-GAN architecture [50]

2.3.3 Restricted Boltzmannmachines

Restricted Boltzmann Machines (RBM) can extract non-
linear features from images, which can then be used by a
linear model, such as Logistic Regression (LR). In some
applications, RBMsperformwell; for example, anRBMwith
an LR classifier has achieved 94% accuracy for the handwrit-
ten digit classification problem [42]. Both RBMs and LR are
fast and efficient to train.

For our RBM models, we use BernoulliRBM, the imple-
mentation details for which can be found in [4]. The RBM
acts as a layer that can be viewed as extracting meaningful
smaller images from our malware-based input images. The
resulting images are fed into a LR layer for multiclass clas-
sification. We also add an AutoEncoder layer in front of the
RBM to reduce noise in the images. Figure 4 illustrates our
RBM-based architecture from a high-level perspective.

2.3.4 Resnet152

For ResNet152 models, we use the Tensorflow and Keras
packages. Specifically, we use Resnet152v2, which has been
pre-trained on the ImageNet dataset [23]. To change the input
size and class label, we add one dense layer after the base
ResNet output, we freeze all the base ResNet model weights,
and then train the extra layer. Finally, we unfreeze half of
the layers of the pre-trained base models and train for sev-
eral epochs. Figure 5 provides a high-level illustration of the

Fig. 4 RBM architecture

Fig. 5 ResNet152 layers

ResNet152 architecture used in our experiments, which are
discussed in Sect. 4.

2.4 Evaluationmetrics

For the multiclass classification problem, to distinguish mal-
ware families from each other, we focus on the AC-GAN
discriminator model. We then compare the performance of
AC-GAN discriminator with other machine learning mod-
els including SVM, RF, RBM, and XGBoost. For all of our
experiments, our evaluation metrics are accuracy, precision,
recall, and f1-score, which are calculated based on the num-
ber of True Positive (TP), False Positive (FP), True Negative
(TN), False Negative (FN) results. The accuracy is computed
as

accuracy = TP+TN

TP+TN+FP+FN

while

precision = TP

TP+FP
and recall = TP

TP+FN

and, finally, the f1-score is computed as

f1 = 2× Precision× Recall

Precision+ Recall
= 2 TP

2 TP+FP+FN

Receiver Operating Characteristic (ROC) curves provide
away to quantify the performance of a classifier. Specifically,
the area under the ROC curve (AUC) measures the probabil-
ity that a randomly selected positive instance scores higher
than a randomly selected negative instance [6]. For our fake
malware image detection experiments, which are discussed
below in Sect. 4.3, we employ AUC as a metric.

123



584 H. Nguyen et al.

3 Data and features

In this section,wefirst discuss the dataset thatwe have used in
some detail. Then we introduce the various image extraction
techniques that we employ to generate the features for our
machine learning experiments.

3.1 Dataset

The malware data that we use in the experiments discussed
in this paper is derived from theMalExe dataset [12,28]. The
part of this vast dataset that we consider consists of 26,412
malware executable files from 20 different families. Each
family has between 842 and 3651 samples. Table 1 sum-
marizes each the 20 malware families, while Fig. 6 shows
the number of samples available in each family. Note that
the three families Vundo, Winwebsec, and Zeroaccess
have the most samples.

Figure 7 shows the histogram of file sizes over the entire
MalExe dataset. We see that the majority of samples are
smaller than 200KB while we have a fair amount of samples
between 200KB and 500KB, and a small number of samples
larger than 500KB in size. Most previous work involving
image-based malware analysis uses image sizes of 256×256
or 224×224 and,without resizing, thatwould equate to 64KB
and 49KB, respectively. We note that more than 75% of our
samples are in excess of 100KB in size.

Fig. 6 MalExe samples per family

Fig. 7 Histogram of MalExe file sizes

Table 1 Malware families Family Type Description

Adload Adware Shows ads, poses high threat [1]

Agent General Performs malicious actions [2]

Alureon Trojan Steals information [3]

Bho Trojan Steals information, redirects web sites [5]

Ceeinject Virtool Obfuscates itself to hide purposes [9]

Cycbot Backdoor/Trojan Provides backdoor access [11]

Delfinject PWS Steals passwords [13]

Fakerean Rogue Raises false alarms to make money [14]

Hotbar Adware Displays advertisements [21]

Lolyda PWS Monitors network activities [31]

Obfuscator Virtool Obfuscates itself to hide purposes [33]

Onlinegames PWS/Trojan Injects malicious files, steals information [35]

Rbot Backdoor/Trojan Provides backdoor access[40]

Renos Trojan Downloads unwanted softwares [41]

Startpage Trojan Changes internet browser homepage [45]

Vobfus Worm Downloads and spreads malwares [48]

Vundo Trojan Downloader Advanced defensive and stealth techniques [49]

Winwebsec Rogue Raises false alarms for money [51]

Zbot Trojan Steals information, gives access to hackers [53]

Zeroaccess Trojan Disables security features [54]

123



Generative adversarial networks and image-based malware classification 585

The average file size per family is given in Fig. 8. We
observe that, for example, Lolyda has an average file size
of 35KB, while the average file size of Adload is 602KB
and Startpage has the largest average size at 1042KB.

For our machine learning experiments, we need fixed-size
input. There are multiple ways we can preprocess the data
to achieve this. One reasonable approach is to extract a fixed
amount of bytes and filter out smaller files, as is done in the
papers [24,32]. Another approach is to have variable sizes,
then resize to the desired width and height. In Sect. 3.2, we
discuss image extraction from executable files and we exper-
iment with different file sizes, as well as grayscale and color
images.

We divide this discussion of our implementation into four
parts: dataset overview, image and feature extraction, data
processing, and model hyperparameter tuning. We employ
Google Colab Pro+ to utilize Google’s computing power to
train multiple models on large datasets. Table 2 shows the
runtime and memory settings for each model. Note that for
XGBoost, we utilize GPUs for faster training time.

Fig. 8 MalExe average size per family

Table 2 Runtime environment specifications

Models Runtime Memory

AC-GAN TPU 35GB

DC-GAN TPU 35GB

RBM TPU 35GB

XGBoost GPU 51GB

SVM CPU 51GB

RF CPU 51GB

KNN CPU 51GB

MLP CPU 51GB

Resnet152 TPU/CPU 35GB

Table 3 Image width based on file size

File size Image width File size Image width

0KB– 10KB 32 100KB– 200KB 384

10KB– 30KB 64 200KB– 500KB 512

30KB– 60KB 128 500KB–1000KB 768

60KB–100KB 256 > 1000KB 1024

3.2 Image extraction

The sizes of the executable files vary and, as mentioned
above, we require fixed-size input for our learning experi-
ments Here, we consider two distinct approaches to generate
fixed-size images. Our first approach is based on resizing,
while for the second, we simply truncate.

For our resizing approach, we first divide the samples into
bins and set a corresponding image width per bin. For each
bin, a fixed width and variable height is used based on the
sizes given in [47]. Table 3 shows the details of the bins and
width.

After generating images fromexecutable files as described
in the previous paragraph, we resize all images to 128×128.
We refer to this image-generation approach as our “resizing”
method.

As an alternative approach for generating images from
exe files, we simply truncate the malware samples to
the desired size, with 0-paddings for smaller files. Thus,
for 128 × 128 images, we only use the first 16,384 bytes
of each executable files. We refer to this image generation
approach as the “truncating” method.

3.2.1 Grayscale images

Grayscale images are straightforward to generate from exe-
cutable files—we simply interpret the bytes as pixels in an
image. This is the most popular approach in the research
literature for generating malware images; see, for exam-
ple [24,32,52]. Only the byte sequence of the executable
file is needed, and the processing is fast, even if resizing
is employed. Examples of such grayscale malware images
from our dataset are given in Fig. 9.

3.2.2 Color images using color map

In this section, we discuss generating color images from exe-
cutable files using a colormap, as in [43,47]. First, we need to
generate a 2D color map, which is a 16×16 array where each
element corresponds to an RGB value. There are a total 256
colors in this palette so we extract from the byte sequence
a byte or 8-bit vector. We then split the byte into two parts,
the first half of the byte represents the y-coordinate and the

123



586 H. Nguyen et al.

Fig. 9 Examples of grayscale malware images

second half is the x-coordinate. We use these coordinates to
obtain the RGB value from the color map. Specifically, we
use the “plasma” colormap, as given in Fig. 10.

After we generate the images using the color map, the
images have different sizes based on the file sizes. We then
resize all images to the fixed 128 × 128 as in the examples
in Fig. 11. Each sample is now represented by an array of
size 128×128×3, and the data is ready to feed into machine
learning models for training. We refer to this method as the
“colormap” method.

3.2.3 Color images using three consecutive bytes

Anothermethod for generating color images that we consider
is to let three consecutive byte values correspond to the R, G
and B layers of an RGB image. We found that, visually, the
resulting images were not as colorful as expected. Therefore,
we kept the red and green layers, but replaced the blue value

Fig. 10 Plasma colormap

with

blue = 255− ByteValue.

The resulting three-grams images tend to have a blue back-
ground so that we can more easily distinguish them from
grayscale images. Examples of this type of malware-derived
color image are given in Fig. 12. We refer to this method of
generating color images as the “three-gram” approach.

Next, we discuss our fourth method for generating images
Then we conclude this section with a discussion of data pre-
processing and model hyperparameter tuning.

3.2.4 Color images from the PE file format

Fu et al. [16] proposed to transformmalware executables into
color images based on the Windows PE file format. For each
PE section, the entropy value is calculated once and used as
the R layer for the whole section. The B layer is represented
using the relative size of a section, while the G layer is just
the byte values (as in grayscale images). We experimented
with this method to extract colorful images from malware
files. Entropy values and size ratios are calculated and scaled
to the range of 0 to 255. The formulas for red and blue layers
are

RedLayer = Entropy× 255

8
and BlueLayer = SectionSize

FileSize
× 255.

Figure 13 shows the PE images of samples from three fam-
ilies, namely, Adload, Startpage, and Ceeinject.

Fig. 11 Colormap images of different families

Fig. 12 Three-gram images of different families

123



Generative adversarial networks and image-based malware classification 587

Fig. 13 PE images of different families

Note that Ceeinject uses extensive obfuscation, so we
expect images from the Ceeinject family to differ more
significantly than samples in the Adload or Startpage
families

3.3 Data processing

GANs require input data in the form of a 3-dimension array,
while many other techniques (e.g., SVM and XGBoost)
expect 1-dimension array input. Therefore, we convert
images to vectors by flattening and scaling according to

x̄ = x − μ

σ

whereμ is themean and σ is the standard deviation. Data that
is scaled to be between 0 and 1 may result in faster and more
stable computation in XGBoost and RBM experiments.

4 Experiments and results

In this section, we present and analyze our experimental
results. First,we considermodel hyperparameter tuning. This
is followed by extensive multiclass experiments, where we
compare a wide variety of classification techniques, and we
test each of the four image generation methods introduced in
Sect. 3.2, above. For our final set of experiments, we analyze
the generative capabilities of GAN-based techniques.

4.1 Model hyperparameter tuning

Figures 24 and 25 in the Appendix show the AC-GAN gener-
ator and discriminator architectures, respectively. Note that
these architectures are specific to color images of size 128×
128, and that they are the same as those used in [7]. For other
images, minor modifications are required

For the AC-GAN generator, Manisha et al. [36] showed
that for color imageswith sizes of 64×64 and above, increas-
ing the noise dimension has a significant positive impact on
the generative images, and therefore both the discrimina-
tor and generator models would benefit. For this reason, we
choose the noise dimension vectors for the generator to be
size (1000, 1) instead of the more typical (100, 1) for images
of size 28× 28 [36].

We perform hyperparameter tuning on each of our models
using a grid search. The hyperparameters tested and selected
for our RF, k-NN, MLP, SVM, and XGBoost models are
given in Tables 4 (a) through (e), respectively, where in
each case, the selected best hyperparameter value is in bold-

Table 4 Hyperparameters tested
and selected

Parameters Description Tested

(a) Random forest hyperparameters

nestimators Number of estimators 100,200,400,600

criterion Function to measure quality gini, entropy

maxdepth Maximum depth 3,4,5,6

(b) k-NN hyperparameters

nneighbors Number of neighbors 5,10,20,40

weights Function used in prediction uniform, distance

(c) MLP hyperparameters

hiddenlayer Sizes (100,100,20), (100,100,100,20)

activation Activation function logistic, tanh, relu

alpha L2 penalty 0.0001, 0.001, 0.01

(d) SVM hyperparameters

kernel Kernel function rbf, linear, poly

C Regularization parameter 1,10,100

(e) XGB hyperparameters

maxdepth Maximum depth 4,5,6,7

learningrate Learning rate 0.01, 0.02, 0.03

nestimators Number of estimators 200,400,600

123



588 H. Nguyen et al.

Fig. 14 Accuracies for malware families classification

face. For example, for RF, we found that 600 estimators, the
entropy function, and a maximum depth of 6 yielded the
best results.

4.2 Multiclass classification

We compare the performance of AC-GAN, RBM, SVM, and
XGBoost on the four image extraction methods discussed
above. Then we select the best of these image extraction
method to compare GANs with other popular machine learn-
ing models. This latter comparison is with respect to a
challenging multiclass malware classification problem.

4.2.1 Image extraction comparison

Figure 14 provides our results for each of the four image
extraction techniques considered—grayscale, colormap, PE,
and three-gram—using each of the classifiers AC-GAN,
RBM, SVM, and XGBoost. We observe that the PE fea-
tures perform the worst, while the color three-grams sightly
outperform grayscale images, with the truncated colormap
approach being the best overall. XGBoost, outperforms the
other learning techniques in all cases, but we will conduct a

much more thorough comparison of learning techniques in
the next section.

In summary, we have determined that the truncated col-
ormap method provides the best performance among the
image generation techniques tested. In the next section, we
compare a wide variety of learning techniques based on this
truncated colormap method. For the colormap experiments
in the next section, we only consider the first 128×128 bytes
of the executables; if the file size is smaller, we pad with 0
to the necessary size.

4.2.2 Machine learningmodel comparison

Figure 15 shows the accuracy and loss graphs for both
training and testing of the AC-GAN discriminator. After 30
epochs, there is no significant improvement in the discrimi-
nator, and therefore in all subsequent experiments, we train
the AC-GAN discriminator for 30 epochs.

Malware classification results for all of the classifiers we
tested are given in Table 5. From this table, we see that
Resnet152 performs the best, with XGBoost, MLP, and AC-
GAN all yielding reasonably strong results.

Figure 16 compares the training time and performance of
the various models. MLP and XGBoost perform exception-
ally well considering the training time is less than some of
the other deep learningmodels, such asAC-GAN.Resnet152
is clearly our best model, as it gives the best performance,
and the training time is fast due to it being pre-trained. AC-
GAN takes approximately 500 seconds per epoch, or around
4 hours to finish training; SVM takes 3 hours for training and
2 hours for prediction. All of our other models are relatively
fast, with each taking less than an hour to train.

As ResNet152 is our best performer, we provide its
confusion matrix in Fig. 17. We can see that the three fam-
ilies that are causing the most classification problems for
this model are Obfuscator, Rbot, and Agent. Since
Obfuscator obfuscates its code, we expect this family
to be a difficult classification problem. Agent is a general
family that includes malware with multiple purposes, and it
also makes sense that machine learning models would have
difficulty classifying more general types.

Fig. 15 AC-GAN discriminator
loss and accuracy

123



Generative adversarial networks and image-based malware classification 589

Table 5 Results of various
models on truncated colormap
images

Models Type Accuracy Precision Recall F1-Score

k-NN Maching learning 76.94% 87% 77% 79%

SVM Machine learning 85.22% 88% 86% 86%

MLP Machine learning 86.97% 86% 86% 86%

RF Ensemble 72.56% 80% 69% 70%

XGBoost Ensemble 89.44% 90% 89% 89%

AC-GAN Deep learning 84.00% 86% 86% 85%

Resnet152 Deep residual network 91.39% 91% 91% 91%

Fig. 16 Accuracy versus training time

Figure 18 confirms that more general and heavily obfus-
cated families are hard to classify. These families include
Agent, Ceeinject, Obfuscator, and Rbot, which
are consistently classified poorly by all learning techniques
tested. Resnet152 performs best on most of the families.
Interestingly, although k-NN does not perform well over-
all, it performs better than any of the other models on the
challenging Agent family.

4.2.3 Ensemble classifiers

In an attempt to improve the accuracy for the most difficult
families, such as Agent or Rbot, we generate an ensemble

Fig. 17 Confusion matrix for
Resnet152 using colormap
method

123



590 H. Nguyen et al.

Fig. 18 F1 scores for each
family

based on all 7 of the classifiers discussed above: AC-GAN,
k-NN, MLP, Resnet152, RF, SVM, and XGBoost. First, we
consider a simple voting procedure,where the familywith the
most votes from among the 7 classifiers is selected—in case
of a tie, we select randomly from those families with themost
votes. This voting ensemble yields an accuracy of 91.60%,

which is only amarginal improvement over the 91.39% accu-
racy achieved by ResNet152 alone.

As a second ensemble experiment, we generate feature
vectors using the 7 models and train another classifier. AC-
GAN and Resnet152 produce 20 × 1 output vectors, while
all other models generate one class label. These feature vec-
tors are concatenated and used to train a Random Forest

Fig. 19 Confusion matrix for
Random Forest ensemble

123



Generative adversarial networks and image-based malware classification 591

Fig. 20 Real versus fake images (DC-GAN and Adload family)

Fig. 21 Real and fake images of Ceeinject family

(RF) model. This RF based ensemble yields an accuracy
of 92.09%. Interestingly, this RF model provides a notice-
able improvement on the more difficult families, although
it performs somewhat worse than Resnet152 on the easier
families, including Cycbot, Adload, and Alureon. We
provide the confusionmatrix for thismodel in Fig. 19.Appar-
ently, the “noise” from the other other models causes the RF
classifier tomakemoremistakes thanResnet152 on the easier
models.

4.3 GAN generated images

Recall that DC-GAN is an unsupervised architecture, which
implies that we do not directly obtain accuracy scores from a
DC-GAN discriminator model. However, we can use DC-
GAN to analyze the generative power of our AC-GAN
generators. Figure 20 shows a comparison between real
and generated images using DC-GAN. Although not perfect
replicas, the DC-GAN images do appear to capture some
significant characteristics of the real images.

Recall that AC-GAN is a multiclass GAN, and hence
it uses class labels when generating images. Figures 21

Fig. 22 Real and fake color images of Adload family

and 22 show real and AC-GAN generated images from the
Ceeinject and Adload family, respectively. In the case
of AC-GAN, these “deep fake” images appear to be excellent
representations of the real malware images.

To analyze the performance of our generator, below we
experiment with binary classification, i.e., malware versus
benign. We use a dataset of 704 benign executables, extract
images from themusing theColormapmethod thenuseSVM,
RF, and CNN to determine howwell we can distinguish these
benign samples from a random selection of malware sam-
ples. Finally, we mix the benign samples with fake malware
images from AC-GAN and compare the detection perfor-
mance.This latter experiment simulates an adversarial attack,
where GAN-generated images are used to corrupt the train-
ing data of a model.

4.3.1 Binary classification results

For our first set of binary classification experiments, our
dataset consists of 10,000 malware samples from 20 families
(approximately 500 samples per family) and 704 benign sam-
ples. We use colormap images and SVM for these malware
detection experiment.We find that the 5-fold cross validation
results range from 99% to 100%, both in terms of accuracy
and AUC.

Next, we train models to distinguish between 10,000 fake
malware images and 10,000 real malware images. Here, we
ignore the benign set and we are simply trying to distinguish
between real and fake images. In this case, both SVM and
RF models score 99% to 100% in accuracy and AUC. This
shows that GAN-generated images are surprisingly easy to
distinguish from real images. Since the fake images are easily
distinguished from real, we can use a 2-level detection strat-
egy, where we first filter out the malware corresponding to
fake images, and then classify the remaining samples by any
strategy that we prefer. This shows that our GAN-generated
malware images cannot be used effectively in an adversarial
attack on the image-based malware classifiers that we have
considered.

In addition to AC-GAN and DC-GAN, we experimented
withWasserstein GANs with gradient penalty (WGAN-GP).
As WGAN-GP requires intensive computation power and
training time, we only trained for 100 epochs, whereas 300
epochs were used for DC-GAN. As with the AC-GAN and
DC-GAN images, we are still able to distinguish theWGAN-
GP images from real malware images with 99% to 100%
accuracy and AUC for both SVM and RF classifiers. We
experiment with the three-grammethod using AC-GAN, and
obtained similar results.

123



592 H. Nguyen et al.

Fig. 23 Real and fake color images of Adload family

4.4 Discussion

Intuitively, since a GAN model includes a generator and a
discriminator, it should improve both models, as compared
to other approaches. In our experiments, we found that an
AC-GAN discriminator performs well when trained for 30
epochs, while the AC-GAN generator requires at least 200
epochs to produce visually impressive images. Figure 23
shows a comparison between a real image and generated
images after 30 epochs and 200 epochs. At 200 epochs, the
AC-GAN generator clearly performs better. However, the
AC-GAN discriminator shows definite signs of overfitting at
such a high number of epochs, with its accuracy decreasing
to 65%.

As with our multiclass malware family experiments,
Resnet152 outperforms AC-GAN in our malware detection
(i.e., binary classification) experiments. Resnet152 also has
a substantially faster training time. This again shows an
advantage of a pre-trained model, and indicates that image-
based malware classification should generally emphasize
pre-trained models, such as Resnet152 and VGG19. Never-
theless, it is interesting that the AC-GAN classifier is highly
competitive for malware detection, and it is somewhat sur-
prising that visually impressive GAN-generated images are
so easily distinguished from real malware samples.

5 Conclusion and future works

We experimented with four different ways of extracting
images from malware executables: grayscale, colormap,
three-gram, and PE.We found that based on the same amount
of data, the colormapmethod improves the overall results for
all models, with AC-GAN showing the most improvement
for the malware families classification problem. XGBoost
and RBM were faster to train as compared to SVM or GAN;
however for XGBoost the memory requirement is high.

As expected, our models do not do as well with malware
families that aremore general or obfuscated. For futurework,
experiments with transformers or Long Short-TermMemory
(LSTM)would be worth considering, especially with respect
to the more highly obfuscated malware families. The PE
image method did not perform well in our experiments, but
we believe that this image generation method has consider-
able room for improvement.Other image generationmethods
could also be considered. In particular, it might be advanta-
geous to consider images with a depth of two which has
a more natural interpretation in terms of exe files. In our
experiments, we chose a depth of three, simply in analogy to
RGB colors.

There are many GAN variants (StyleGAN, MalGAN,
etc.) that could be considered, especially with respect to the
malware image generation problem. Designing a new GAN
architecture or changing the AC-GAN loss function to speed
up the training process of its generator would also be inter-
esting topics to explore.

Our GAN-generated images do not directly correspond to
functioningmalware samples,whichmaximizedour freedom
to generate high quality images. Nevertheless, we showed
that the resulting GAN images are easily distinguished from
real malware images using an SVM or Random Forest. To
generate GAN images that are easily converted to function-
ing malware is challenging future work. This would likely
place considerably more constraints on the GAN itself and,
ironically, would likely make the samples even easier to dis-
tinguish from benign samples.

Declarations

Conflicts of interest The authors have no relevant financial or non-
financial interests to disclose.

Appendix

In this appendix, we provide details of the AC-GAN gener-
ator and discriminator architectures (Figs. 24 and 25). Note
that these architectures are specified to the case of color
images of size 128×128. Other images and sizes are straight-
forward modifications.

123



Generative adversarial networks and image-based malware classification 593

Fig. 24 AC-GAN generator
architecture

123



594 H. Nguyen et al.

Fig. 25 AC-GAN discriminator architecture

References

1. Adload. https://www.microsoft.com/en-us/wdsi/threats/malware-
encyclopedia-description?Name=Adware:Win32/Adload&
threatId=243639

2. Agent. https://www.microsoft.com/en-us/wdsi/threats/malware-
encyclopedia-description?Name=Win32%2FAgent

3. Alureon. https://www.microsoft.com/en-us/wdsi/threats/
malware-encyclopedia-description?Name=Win32/Alureon

4. BernoulliRBM. https://scikit-learn.org/stable/modules/generated/
sklearn.neural_network.BernoulliRBM.html

5. BHO. https://www.microsoft.com/en-us/wdsi/threats/malware-
encyclopedia-description?Name=Trojan:Win32/BHO.BO

6. Bradley, A.P.: The use of the area under the roc curve in the
evaluation of machine learning algorithms. Pattern Recogn. 30(7),
1145–1159 (1997)

7. Brownlee, J.: How to develop an auxiliary classifier
GAN (AC-GAN) from scratch with Keras (2019). https://
machinelearningmastery.com/how-to-develop-an-auxiliary-
classifier-gan-ac-gan-from-scratch-with-keras/

8. Carlson, B.: Top cybersecurity statistics, trends, and facts (2021).
https://www.csoonline.com/article/3634869/top-cybersecurity-
statistics-trends-and-facts.html

9. CeeInject. https://www.microsoft.com/en-us/wdsi/threats/
malware-encyclopedia-description?Name=VirTool%3AWin32
%2FCeeInject

10. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system.
In: Proceedings of the 22nd ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, KDD ’16, pp.
785–794 (2016). http://arxiv.org/abs/1603.02754

11. Cycbot. https://www.microsoft.com/en-us/wdsi/threats/malware-
encyclopedia-description?name=Win32/Cycbot

12. Dang, D., Di Troia, F., Stamp, M.:. Malware classification using
long short-term memory models. In: 5th International Workshop
on Formal Methods for Security Engineering, ForSE 2021 (2021).
https://arxiv.org/abs/2103.02746

13. DelfInject. https://www.microsoft.com/en-us/wdsi/threats/
malware-encyclopedia-description?Name=PWS:Win32/
DelfInject&threatId=-%202147241365

14. Fakerean. https://www.microsoft.com/en-us/wdsi/threats/
malware-encyclopedia-description?Name=Win32/FakeRean

15. Farhat, H., Rammouz, V.: Malware classification using transfer
learning (2021). https://arxiv.org/abs/2107.13743

16. Fu, J., Xue, J., Wang, Y., Liu, Z., Shan, C.: Malware visualiza-
tion for fine-grained classification. IEEE Access 6, 14510–14523
(2018)

17. Garcia, F.C.C., Muga II, F.P.: Random forest for malware classifi-
cation (2016). https://arxiv.org/abs/1609.07770

18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for
image recognition (2015). https://arxiv.org/abs/1512.03385

19. Hearst, M.A., Dumais, S.T., Osuna, E., Platt, J., Scholkopf, B.:
Support vector machines. IEEE Intell. Syst. Appl. 13(4), 18–28
(1998)

20. Hegedus, J., Miche, Y., Ilin, A., Lendasse, A.: Methodology for
behavioral-based malware analysis and detection using random
projections and k-nearest neighbors classifiers. In: 2011 Seventh
International Conference on Computational Intelligence and Secu-
rity, pp. 1016–1023 (2011)

21. Hotbar. https://www.microsoft.com/en-us/wdsi/threats/malware-
encyclopedia-description?Name=Adware%3AWin32%2FHotbar

22. Hu, W., Tan, Y.: Generating adversarial malware examples for
black-box attacks based onGAN (2017). http://arxiv.org/abs/1702.
05983

23. ImageNet (2021). https://www.image-net.org
24. Jain, M., Andreopoulos, W., Stamp, M.: Convolutional neural net-

works and extreme learning machines for malware classification.
J. Comput. Virol. Hacking Tech. 16, 229–244 (2020)

25. Kang, M., Shim, W., Cho, M., Park, J.: Rebooting acgan: auxiliary
classifier GANs with stable training (2021). https://arxiv.org/abs/
2111.01118

26. Karras, T., Laine, S., Aila, T.: A style-based generator architec-
ture for generative adversarial networks (2018). http://arxiv.org/
abs/1812.04948

123

https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Adware:Win32/Adload&threatId=243639
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Adware:Win32/Adload&threatId=243639
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Adware:Win32/Adload&threatId=243639
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32%2FAgent
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32%2FAgent
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/Alureon
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/Alureon
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.BernoulliRBM.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.BernoulliRBM.html
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Trojan:Win32/BHO.BO
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Trojan:Win32/BHO.BO
https://machinelearningmastery.com/how-to-develop-an-auxiliary-classifier-gan-ac-gan-from-scratch-with-keras/
https://machinelearningmastery.com/how-to-develop-an-auxiliary-classifier-gan-ac-gan-from-scratch-with-keras/
https://machinelearningmastery.com/how-to-develop-an-auxiliary-classifier-gan-ac-gan-from-scratch-with-keras/
https://www.csoonline.com/article/3634869/top-cybersecurity-statistics-trends-and-facts.html
https://www.csoonline.com/article/3634869/top-cybersecurity-statistics-trends-and-facts.html
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=VirTool%3AWin32%2FCeeInject
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=VirTool%3AWin32%2FCeeInject
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=VirTool%3AWin32%2FCeeInject
http://arxiv.org/abs/1603.02754
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?name=Win32/Cycbot
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?name=Win32/Cycbot
https://arxiv.org/abs/2103.02746
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=PWS:Win32/DelfInject&threatId=-%202147241365
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=PWS:Win32/DelfInject&threatId=-%202147241365
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=PWS:Win32/DelfInject&threatId=-%202147241365
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/FakeRean
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/FakeRean
https://arxiv.org/abs/2107.13743
https://arxiv.org/abs/1609.07770
https://arxiv.org/abs/1512.03385
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Adware%3AWin32%2FHotbar
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Adware%3AWin32%2FHotbar
http://arxiv.org/abs/1702.05983
http://arxiv.org/abs/1702.05983
https://www.image-net.org
https://arxiv.org/abs/2111.01118
https://arxiv.org/abs/2111.01118
http://arxiv.org/abs/1812.04948
http://arxiv.org/abs/1812.04948


Generative adversarial networks and image-based malware classification 595

27. Kawai, M., Ota, K., Dong, M.: Improved MalGAN: avoiding mal-
ware detector by leaning cleanware features. In: 2019 International
Conference on Artificial Intelligence in Information and Commu-
nication, ICAIIC, pp. 040–045 (2019)

28. Kim, S.: PE header analysis for malware detection.Master’s thesis,
San Jose State University (2018)

29. Larochelle, H., Mandel, M., Pascanu, R., Bengio, Y.: Learning
algorithms for the classification restricted Boltzmann machine. J.
Mach. Learn. Res. 13, 643–669 (2012)

30. Lazarovitz, L.: Deconstructing the solarwinds breach. Comput.
Fraud Secur. 2021(6), 17–19 (2021)

31. Lolyda. https://www.microsoft.com/en-us/wdsi/threats/malware-
encyclopedia-description?Name=PWS%3AWin32%2FLolyda.
BF

32. Nagaraju, R., Stamp, M.: Auxiliary-classifier GAN for malware
analysis (2021). https://arxiv.org/abs/2107.01620

33. Obfuscator. https://www.microsoft.com/en-us/wdsi/threats/
malware-encyclopedia-description?Name=VirTool%3AWin32
%2FObfuscator.C

34. Odena, A., Olah, C., Shlens, J.: Conditional image synthesis with
auxiliary classifier GANs. In: Proceedings of the 34th International
Conference on Machine Learning, pp. 2642–2651 (2017). https://
arxiv.org/abs/1610.09585

35. Onlinegames. https://www.microsoft.com/en-us/wdsi/threats/
malware-encyclopedia-description?Name=PWS%3AWin32
%2FOnLineGames

36. Padala, M., Das, D., Gujar, S.: Effect of input noise dimension
in GANs. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W.,
Hidayanto, A.N. (eds.) Neural Information Processing, pp. 558–
569. Springer (2021). https://arxiv.org/abs/2004.06882

37. Prajapati, P., Stamp, M.: An empirical analysis of image-based
learning techniques for malware classification. In: Stamp, M.,
Alazab, M., Shalaginov, A. (eds.) Malware Analysis Using Artifi-
cial Intelligence and Deep Learning. Springer (2021). https://arxiv.
org/abs/2103.13827

38. Radford, A., Metz, L., Chintala, S.: Unsupervised representation
learning with deep convolutional generative adversarial networks
(2015). https://arxiv.org/abs/1511.06434

39. Razak, M.F.A., Anuar, N.B., Salleh, R., Firdaus, A.: The rise of
“malware”: bibliometric analysis of malware study. J. Netw. Com-
put. Appl. 75, 58–76 (2016)

40. Rbot. https://www.microsoft.com/en-us/wdsi/threats/malware-
encyclopedia-description?Name=Backdoor:Win32/Rbot

41. Renos. https://www.microsoft.com/en-us/wdsi/threats/malware-
encyclopedia-description?Name=Win32%2FRenos

42. Restricted Boltzmann machine features for digit classification.
https://scikit-learn.org/stable/auto_examples/neural_networks/
plot_rbm_logistic_classification.html

43. Singh, A., Handa, A., Kumar, N., Shukla, S.K.:Malware classifica-
tion using image representation. In: Dolev, S., Hendler, D., Lodha,
S., Yung, M. (eds.) Cyber Security Cryptography and Machine
Learning, pp. 75–92 (2019)

44. Stamp, M.: Introduction toMachine Learning with Applications in
Information Security, 2nd edn. Chapman and Hall/CRC (2022)

45. Startpage. https://www.microsoft.com/en-us/wdsi/threats/
malware-encyclopedia-description?Name=Trojan:Win32/
Startpage&threatId=15435

46. Support vector machines. https://scikit-learn.org/stable/modules/
svm.html

47. Vasan, D., Alazab, M., Wassan, S., Naeem, H., Safaei, B., Zheng,
Q.: Imcfn: image-based malware classification using fine-tuned
convolutional neural network architecture. Comput. Netw. 171,
107138 (2020)

48. Vobfus. https://www.microsoft.com/en-us/wdsi/threats/malware-
encyclopedia-description?Name=Win32%2FVobfus

49. Vundo. https://www.microsoft.com/en-us/wdsi/threats/malware-
encyclopedia-description?Name=Win32%2FVundo

50. Waheed,A.,Goyal,M.,Gupta,D.,Khanna,A.,Al-Turjman, F., Pin-
heiro, P.: CovidGAN: data augmentation using auxiliary classifier
GAN for improved Covid-19 detection. IEEE Access 8, 91916–
91923 (2020). https://arxiv.org/abs/2103.05094

51. Winwebsec. https://www.microsoft.com/en-us/wdsi/threats/
malware-encyclopedia-description?Name=Win32/Winwebsec

52. Xiao, M., Guo, C., Shen, G., Cui, Y., Jiang, C.: Image-based mal-
ware classification using section distribution information. Comput.
Secur. 110, 102420 (2021)

53. Zbot. https://www.microsoft.com/en-us/wdsi/threats/malware-
encyclopedia-description?name=win32%2Fzbot

54. Zeroaccess. https://www.microsoft.com/en-us/wdsi/threats/
malware-encyclopedia-description?Name=Win32/Sirefef

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123

https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=PWS%3AWin32%2FLolyda.BF
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=PWS%3AWin32%2FLolyda.BF
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=PWS%3AWin32%2FLolyda.BF
https://arxiv.org/abs/2107.01620
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=VirTool%3AWin32%2FObfuscator.C
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=VirTool%3AWin32%2FObfuscator.C
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=VirTool%3AWin32%2FObfuscator.C
https://arxiv.org/abs/1610.09585
https://arxiv.org/abs/1610.09585
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=PWS%3AWin32%2FOnLineGames
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=PWS%3AWin32%2FOnLineGames
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=PWS%3AWin32%2FOnLineGames
https://arxiv.org/abs/2004.06882
https://arxiv.org/abs/2103.13827
https://arxiv.org/abs/2103.13827
https://arxiv.org/abs/1511.06434
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Backdoor:Win32/Rbot
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Backdoor:Win32/Rbot
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32%2FRenos
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32%2FRenos
https://scikit-learn.org/stable/auto_examples/neural_networks/plot_rbm_logistic_classification.html
https://scikit-learn.org/stable/auto_examples/neural_networks/plot_rbm_logistic_classification.html
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Trojan:Win32/Startpage&threatId=15435
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Trojan:Win32/Startpage&threatId=15435
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Trojan:Win32/Startpage&threatId=15435
https://scikit-learn.org/stable/modules/svm.html
https://scikit-learn.org/stable/modules/svm.html
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32%2FVobfus
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32%2FVobfus
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32%2FVundo
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32%2FVundo
https://arxiv.org/abs/2103.05094
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/Winwebsec
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/Winwebsec
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?name=win32%2Fzbot
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?name=win32%2Fzbot
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/Sirefef
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/Sirefef

	Generative adversarial networks and image-based malware classification
	Abstract
	1 Introduction
	2 Background
	2.1 Related work
	2.2 Machine learning models
	2.3 Deep learning models
	2.3.1 Deep convolutional GAN (DC-GAN)
	2.3.2 Auxiliary-classifier GAN (AC-GAN)
	2.3.3 Restricted Boltzmann machines
	2.3.4 Resnet152

	2.4 Evaluation metrics

	3 Data and features
	3.1 Dataset
	3.2 Image extraction
	3.2.1 Grayscale images
	3.2.2 Color images using color map
	3.2.3 Color images using three consecutive bytes
	3.2.4 Color images from the PE file format

	3.3 Data processing

	4 Experiments and results
	4.1 Model hyperparameter tuning
	4.2 Multiclass classification
	4.2.1 Image extraction comparison
	4.2.2 Machine learning model comparison
	4.2.3 Ensemble classifiers

	4.3 GAN generated images
	4.3.1 Binary classification results

	4.4 Discussion

	5 Conclusion and future works
	Appendix
	References




