
A Natural Language Processing Approach to
Malware Classification

Ritik Mehta∗ Olha Jurečková† Mark Stamp∗‡

July 21, 2023

Abstract

Many different machine learning and deep learning techniques have been suc-
cessfully employed for malware detection and classification. Examples of popu-
lar learning techniques in the malware domain include Hidden Markov Models
(HMM), Random Forests (RF), Convolutional Neural Networks (CNN), Support
Vector Machines (SVM), and Recurrent Neural Networks (RNN) such as Long
Short-Term Memory (LSTM) networks. In this research, we consider a hybrid
architecture, where HMMs are trained on opcode sequences, and the resulting
hidden states of these trained HMMs are used as feature vectors in various classi-
fiers. In this context, extracting the HMM hidden state sequences can be viewed
as a form of feature engineering that is somewhat analogous to techniques that
are commonly employed in Natural Language Processing (NLP). We find that
this NLP-based approach outperforms other popular techniques on a challenging
malware dataset, with an HMM-Random Forrest model yielding the best results.

1 Introduction

Malware is software that harms or interferes with computer systems. Examples of
malware include computer viruses, Trojan horses, worms, spyware, ransomware,
and adware. Despite advances in cybersecurity, malware remains one of the most
potent hazards in the cyber environment. According to a report published by
Sonicwall [35], the number of malware attacks worldwide in 2022 was 5.5 billion,
a 2% increase from 2021. Better malware detection and classification is required
given this escalating trend.

Signature-based techniques are commonly used by anti-virus (AV) applica-
tions [39]. Signature-based detection involves security systems creating signa-
tures for patterns observed in malicious software files, so that AV applications can

∗Department of Computer Science, San Jose State University
†Faculty of Information Technology, Czech Technical University in Prague
‡mark.stamp@sjsu.edu

1

ar
X

iv
:2

30
7.

11
03

2v
1 

 [
cs

.C
R

] 
 7

 J
ul

 2
02

3



efficiently scan for malware. This strategy focuses on individual or small groups
of malware samples and it is effective against traditional malware. However,
there are significant limitations to signature scanning, as it can only cope with
known malware samples, and numerous code obfuscation techniques have been
developed that can defeat signature scans: dead code insertion, register reas-
signment, instruction substitution, and code manipulation are some examples of
code obfuscation techniques [42]. As a result, a large percentage of modern mal-
ware can evade signature-based detection. Furthermore, extracting signatures
for signature-based malware detection requires significant time and effort [4].

An alternative to signature scanning is heuristic analysis [3]. However, heuris-
tic analysis has its own set of drawbacks, as heuristics must be carefully tweaked
to give the best possible identification of emerging threats, while avoiding exces-
sive false positives on benign code.

Relatively recently, researchers have started using machine learning approaches
to detect and analyze malware. A wide variety of classic machine learning tech-
niques, including Hidden Markov Models (HMM) [12], Random Forests (RF) [7],
and Support Vector Machines (SVM) [11] have been successfully employed in
the malware domain. In addition, deep learning techniques, such as Multilayer
Perceptrons (MLP) [13] and Long Short-Term Memory (LSTM) [15] networks
have been found to be effective for malware classification. These techniques can
be trained on static or dynamic features, or a combination thereof [8]. Static fea-
tures are those that can be obtained without executing or emulating the code,
while dynamic features require execution or emulation. Examples of popular
static features are opcode sequences and byte 𝑛-grams, while an example of dy-
namic features is API calls. In general, models that rely on static features are
more efficient as such features are easy to extract and have low computation com-
plexity, while models that use dynamic features are more resistant to common
obfuscation techniques. In this paper, we only consider static features.

In our experiments, we consider hybrid machine learning techniques, where
we first train HMMs on opcode sequences, then we determine the hidden state
sequences from the trained HMMs, and, finally, we classify malware samples
into their respective families based on these hidden state sequences. That is,
the HMM training serves as a feature engineering step that uncovers “hidden”
information in the opcode sequence, in an approach that is analogous to tech-
niques that are often used in Natural Language Processing (NLP) applications.
For example, when determining the part of speech of words in English sentences
(noun, verb, adjective, adverb, etc.), we could train an HMM, then use the hid-
den states to determine the most likely classification for each individual word. In
our malware experiments, we consider a variety of classifiers and find that a RF
performs best on our derived hidden state sequence—we refer to the resulting
hybrid model as an HMM-RF.

The remainder of this paper consists of the following. In Section 2 we present
relevant background information, a brief introduction to the learning techniques
considered in our research, and a selective survey of some relevant previous work.

2



Section 3 covers our experimental design and provides a brief description of the
dataset used, while Section 4 gives our experimental results. We conclude the
paper with Section 5, which includes some ideas for future work.

2 Background

In this section, we first introduce the learning techniques that appear in subse-
quent sections of this paper. Then we provide a brief overview of a few of the
most relevant related research papers.

2.1 Hidden Markov Model (HMM)

Hidden Markov Models (HMM) [12] can be described as statistical Markov mod-
els in which the states are hidden. An HMM can be represented as 𝜆 = (𝐴,𝐵, 𝜋),
where 𝐴 is the state transition probability matrix, 𝐵 is the observation prob-
ability matrix, and 𝜋 is the initial state distribution. A series of observations,
denoted as 𝒪, are available, and these observations are probabilistically related
to the hidden states sequence 𝑋 via the 𝐵 matrix. Figure 1 provides a high-level
view of an HMM.

𝒪0 𝒪1 𝒪2 · · · 𝒪𝑇−1

𝑋0 𝑋1 𝑋2 · · · 𝑋𝑇−1
𝐴 𝐴 𝐴 𝐴

𝐵 𝐵 𝐵 𝐵

Figure 1: Hidden Markov Model [37]

The number of hidden states in an HMM is denoted as 𝑁 and the number of
unique observation symbols is denoted as 𝑀 , while the length of the observation
sequence is 𝑇 . Thus, the 𝐴 matrix is 𝑁 ×𝑁 , the 𝐵 matrix is 𝑁 ×𝑀 , and the
observation and hidden state sequences are of length 𝑇 . Furthermore, each row
of the 𝐴, 𝐵, and 𝜋 matrices is row-stochastic, that is, each row represents a
discrete probability distribution.

Given a hidden state sequence 𝑋 = (𝑥0, 𝑥1, . . . , 𝑥𝑇−1), and the correspond-
ing observation sequence 𝒪 = (𝒪0,𝒪1, . . . ,𝒪𝑇−1), the probability of state se-
quence 𝑋 is given by

𝑃 (𝑋,𝒪) =𝜋𝑥0𝑏𝑥0(𝒪0)𝑎𝑥0,𝑥1𝑏𝑥1(𝒪1)𝑎𝑥1,𝑥2 · · ·
· · · 𝑏𝑥𝑇−2(𝒪𝑇−2)𝑎𝑥𝑇−2,𝑥𝑇−1𝑏𝑥𝑇−1(𝒪𝑇−1)

3



where 𝑎𝑥𝑖,𝑥𝑗 is the state transition probability from 𝑥𝑖 to 𝑥𝑗 , 𝑏𝑥𝑖(𝒪𝑖) is the proba-
bility of observing 𝒪𝑖 in the hidden state 𝑥𝑖, and 𝜋𝑥0 is the probability of starting
in state 𝑥0.

Within the HMM framework, there are efficient algorithms to solve the fol-
lowing three problems [36].

1. Given an HMM 𝜆 = (𝐴,𝐵, 𝜋) and an observation sequence 𝒪, we can
compute a score of the observation sequence 𝒪 with respect to the model 𝜆,
where the score is based on the conditional probability 𝑃 (𝒪 |𝜆).

2. Given a model 𝜆 = (𝐴,𝐵, 𝜋) and an observation sequence 𝒪, we can deter-
mine the optimal hidden state sequence corresponding to 𝒪, where “opti-
mal” is defined as maximizing the expected number of correct states. Note
that this implies HMMs are an Expectation Maximization (EM) technique,
and that the HMM solution to this problem differs, in general, from a
dynamic program, where we maximize with respect to the overall path.

3. Given an observation sequence𝒪 and a specified number of hidden states𝑁 ,
we can train an HMM. That is, we can determine the matrices that comprise
the model 𝜆 = (𝐴,𝐵, 𝜋), so that 𝑃 (𝒪 |𝜆) is maximized.

The efficient solution to problem 1 relies on the so-called forward algorithm, while
the forward algorithm and the backward algorithm enable an efficient meet-in-
the-middle approach to solve problem 2 [1]. Typically, the Baum-Welch re-
estimation algorithm, which is a hill climb technique, is used to train an HMM
to model a given observation sequence. For the research in this paper, we will
be focusing on the solutions to problem 2 and 3.

2.2 Random Forest

Random Forests (RF), which were originally proposed in [6] in 2001, consists of
ensembles of decision trees. A decision tree [31] is a simple supervised technique
that is employed to categorize or make predictions based on a tree structure.
A decision tree is comprised of a root node, branches, internal nodes, and leaf
nodes. Decision trees can be regarded as a collection of if-else statements. For
example, Figure 2 represents a decision tree to determine whether a sample is
malware or not, based on two features, namely, file size and entropy. In this
example, files that are small and have high entropy are classified as malware,
where the thresholds for “small” size and “high” entropy would be determined
based on training data.

In a decision tree, we want to make more important or informative decisions
closer to the root node, as this makes the most efficient use of the information
available, and it allows for pruning of trees with minimal loss of accuracy. In-
formation Gain (IG) is a popular measure of the importance of a feature. IG is
defined as

IG = 𝐻(𝑆)−𝐻(𝑆 |𝑋)

4



file size

entropy

entropy

benign

malware

benign

benign

la
rg
e

sm
all

hig
h

hig
h

low

low

Figure 2: A decision tree example [37]

where 𝐻 represents entropy, which is a measure of uncertainty. Here, 𝐻(𝑆) is
the entropy of the original dataset 𝑆, while 𝐻(𝑆 |𝑋) represents the conditional
entropy of 𝑆, given the value of a specific feature 𝑋. Entropy, in turn, is defined
as

𝐻(𝑆) =
𝑛∑︁

𝑖=1

−𝑝𝑖 log 𝑝𝑖

where 𝑛 is the number of classes and 𝑝𝑖 is the probability of a sample belonging
to class 𝑖. Note that instead of IG, other criteria, such as the Gini coefficient [30],
are sometimes used when constructing decision trees.

As mentioned above, a Random Forest [7] (RF) is an ensemble machine learn-
ing technique that is based on a collection of decision trees. RFs can be used
for both classification and regression tasks. The first step in the RF algorithm
consists of selecting a subset of features and data points for constructing each
decision tree. Each decision tree will produce an output, with the final result
of the RF is based on a majority vote or averaging scheme for classification or
regression, respectively.

In this research, we consider following three important hyperparameters of
an RF.

• The number of decision trees in the RF, which is denoted as n estimators.
• The maximum number of features to considered while looking for the best

split, denoted as max features.
• The function that evaluates the quality of a specific split, denoted as the
criterion. Specifically, we consider Gini and entropy.

5



2.3 Literature Review

There has been a substantial amount of previous work on malware classifica-
tion using a wide range of machine learning approaches. This section discusses
a representative sampling of such malware classifications techniques, with the
emphasis on research that is most similar to our novel NLP-based HMM-RF
technique.

2.4 Malware Classification using HMM

In one of the earliest papers in this genre, Wong and Stamp [40] consider HMMs
for the detection of metamorphic malware. By modern standards, they consid-
ered a very small sample set, but they were able to distinguish malware from
benign with high accuracy, clearly indicating the viability of machine learning
models within the malware domain.

Annachhatre et al. [2] train multiple HMMs on a variety of metamorphic
malware samples. Each malware sample in the test set is then scored against all
models, and the samples are clustered based on the resulting vector of scores.
They were able to classify the malware samples into their respective families with
good accuracy, based solely on the clustering results, and they even obtained
good accuracy on malware samples belonging to families for which no explicit
model had been trained.

In [43], Zhao et al., explore the usage of complex Gaussian Mixture Model-
HMMs (GMM-HMM) for malware classification. In their research, GMM-HMMs
produced comparable results to discrete HMMs based on opcode sequence fea-
tures, and showed significant improvement over discrete HMMs when trained on
entropy-based features.

2.5 Malware Classification using SVM

Support Vector Machines (SVM) are a prominent class of techniques for super-
vised learning. The objective of the SVM algorithm is to determine an optimal
hyperplane—or hyperplanes, in the the more general multiclass case—that can
segregate 𝑛-dimensional space into classes. The decision boundary is then used
to classify data points not in the training set. In [19], Kruczkowski et al., trained
an SVM on malware samples and achieved a cross-validation accuracy of 0.9398,
and an F1-score of 0.9552.

Singh et al. [34] also use SVMs for malware classification. They trained
HMMs, computed a Simple Substitution Distance (SSD) score based on the
classic encryption technique from symmetric cryptography, and also computed
an Opcode Graph Score (OGS). Each malware sample was classified—using an
SVM—based on its vector of these three scores. While the individual scores
generally performing poorly in a robustness analysis, the SVM results were sig-
nificantly more robust, indicating the advantage of combining multiple scores via
an SVM.

6



2.6 Malware Classification using Random Forest

In [14], Garcia and Muga II employ an approach for converting a binary file to a
gray scale image, and subsequently use an RF to classify malware into families,
with an accuracy of 0.9562 being achieved. Domenick et al. [23], on the other
hand, combine an RF with Principal Component Analysis (PCA) [38] and Term
Frequency-Inverse Document Frequency (TF-IDF) [32]. The model based on RF
and PCA outperformed a models based on Logistic Regression, Decision Trees,
and SVM on one datasets, while the model based on Random Forest and TF-IDF
performed best on a second dataset.

2.7 Malware Classification using RNN and LSTM

A Recurrent Neural Network (RNN) [10] is a type of neural network designed to
process sequential data by incorporating feedback connections. However, generic
RNNs are subject to computational issues, including vanishing and exploding
gradients, which limit their utility. Consequently, various specialized RNN-based
architectures have been developed, which mitigate some of the issues observed
in plain vanilla RNNs. The best-known and most successful of these specialized
RNN architectures is the Long Short-Term Memory (LSTM) model.

An unsupervised approach of using Echo State Networks (ESNs) [29] and
RNNs for a “projection” stage to extract features is discussed by Pascanu et
al., in [28]. A standard classifier then uses these extracted features to detect
malicious samples. Their hybrid model with the best performance employed
ESN for the recurrent model, a max pooling layer for non-linear sampling, and
Logistic Regression for the final classification.

R. Lu, in [21], experimented with LSTMs for malware classification. First,
Word2Vec word embedding of the opcodes were generated using skip-gram and
CBOW models. Subsequently, a two stage LSTM model was used for malware
detection. The two-stage LSTM model is composed of two LSTM layers and
one mean-pooling layer to obtain feature representations of malware opcode se-
quences. An average AUC of 0.987 was achieved for malware classification on a
modest-sized dataset consisting of 969 malware and 123 benign files.

2.8 Malware Classification using CNN

Recently, image-based analysis of malware has been the focus of considerable
research; see [5, 16, 26, 41], for examples. Much of the work is based on Convo-
lutional Neural Networks (CNN) [27]. A CNN is a type of neural network that
designed to efficiently deal with data that is in a grid-like layout where local
structure dominates, such as is the case in images. In [18], Kalash et al., pro-
posed a CNN-based architecture, called M-CNN, for malware classification. The
architecture of M-CNN is based on the VGG-16 [33], and it achieves accuracies
of 0.9852 and 0.9997 on the popular MalImg [25] dataset and a Microsoft [22]
dataset, respectively.

7



3 Methodology

In this section, we first introduce the dataset used in our experiments. We then
outline the experimental design that we employ for the experiments presented in
Section 4.

3.1 Dataset and Preprocessing

In this research, we use the well-known Malicia dataset [24]. The dataset in-
cludes 48 different malware families. However, the dataset is highly imbalanced,
and we removed all classes with less than 50 samples. This results in malware
samples belonging to 7 classes. For our experiments, we use an 80-20 train-test
split, i.e., 80% of the samples are used for training, while 20% of the samples are
used for testing. The distribution of samples in the malware families is shown in
Figure 3.

Z
er
oA

cc
es
s

W
in
w
eb
se
c

Se
cu
ri
ty
Sh
ie
ld

Z
bo
t

C
ri
de
x

Sm
ar
tH
D
D

H
ar
eb
ot

0

1000

2000

3000

4000

5000

1305

4360

58

2136

74 68 53

S
am

p
le
s

Figure 3: Malware samples per family

3.2 Experimental Design

The methodology for training our HMM-RF model can be summarized as follows.

1. Train HMMs on opcode sequences — This step consists of training 𝑛 differ-
ent HMMs, where 𝑛 is the number of classes. Each HMM is trained based
on the opcode sequences of samples belonging to a particular class. Recall
that when training an HMM, we specify the number of hidden states 𝑁 .

8



2. Determine the hidden state sequence for each sample — The first 𝐿 opcodes
of a given sample are fed into each HMM. This results in 𝑛 hidden state
sequence vectors that are of length 𝐿.

3. Concatenating the hidden state sequences — For each malware sample, we
concatenate the 𝑛 hidden state sequences obtained in the previous step.

4. Scale the hidden state sequences — In this step, each concatenated hidden
state sequence vector is scaled using a standard scaler.

5. Train the RF model — We then train an RF model using the scaled hid-
den state sequences obtained in the previous step as the feature vectors.
Of course, the malware family to which the sample belongs serves as the
corresponding label.

To summarize, we train an HMM for each family, then use the trained HMMs to
determine the hidden state sequences corresponding to each sample, with these
hidden state sequences then used to train an RF model. For any new malware
sample, we first generate the concatenated hidden state sequence by feeding the
first 𝐿 opcodes to each HMM. The next step is to scale the concatenated hidden
state sequence, and subsequently use the Random Forest model to determine
the class of the malware sample. The motivation for this approach comes from
Natural Language Processing (NLP), where uncovering the hidden state sequence
is a fundamental step in analyzing text. As far as the authors are aware, this
NLP-based approach has not previously been employed in the malware domain.

4 Experiments and Results

In this section, we first discuss the training of the HMMs and their use to obtain
hidden state sequences, and we consider the training of our HMM-RF classi-
fier, including hyperparameter tuning. We then summarize the results of our
experiments, and we compare these results to other other similar models. We
conclude this section with a comparison of our results to other research involving
the Malicia dataset.

4.1 HMM Training and Hidden States

As discussed above, the subset of the Malicia dataset that we use consists of
seven malware families. We train one HMM for each family, and hence we
have seven trained HMMs, where each model is of the form 𝜆 = (𝐴,𝐵, 𝜋). We
experimented with 𝑁 ∈ {5, 10, 20, 30}, where 𝑁 is the number of hidden states,
and we found that 20 yields the best results. The number of unique observations
(i.e., a superset of the opcodes in all seven families) is 426, with MOV being the
most frequent. Hence, 𝑁 = 20 and 𝑀 = 426 in all of our models.

Recall that the HMM matrices are 𝐴 = {𝑎𝑖𝑗}, which is 𝑁 × 𝑁 , 𝐵 = 𝑏𝑖(𝑗),
which is 𝑁 ×𝑀 , and 𝜋 = {𝜋𝑖}, which is 1 × 𝑁 . We initialize the 𝐴, 𝐵, and 𝜋

9



matrices to approximately uniform, that is, each 𝑎𝑖𝑗 ≈ 1/𝑁 , each 𝑏𝑖(𝑗) ≈ 1/𝑀 ,
and each 𝜋𝑖 ≈ 1/𝑁 , while enforcing the row stochastic conditions. The minimum
number of iterations of the Baum-Welch re-estimation algorithm is set to 10, and
we stop when successive iterations beyond this number produce a change in the
model score of less than 𝜀 = 0.001. When training our models, the average
number of iterations was 10.43, and it took an average of five hours to train each
HMM.

Next, we use the trained HMMs to generate hidden state sequences for each
sample. Given a sample, we generate a hidden state sequence using the HMM
corresponding to the family that the sample belongs to. The length of the hid-
den state sequence corresponding to each malware sample is truncated to a con-
stant 𝐿, that is, we only use the hidden states corresponding to the first 𝐿
opcodes. We experiment with 𝐿 ∈ {25, 50, 100, 200}. In rare cases there were in-
sufficient opcodes available in a given sample, i.e., the length of opcode sequence
for the malware sample was less than 𝐿, in which case we dropped the sample
from consideration; the number of such exceptional cases for each value of 𝐿 is
given in Table 1. As can be observed from Figure 3, the total number of mal-
ware samples in the seven classed is 8054, and hence an insignificant percentage
of malware samples were dropped for each value of 𝐿.

Table 1: Number of malware sample dropped for different values of 𝐿

𝐿 Samples dropped

25 3
50 11
100 14
200 26

4.2 HMM-RF Training

As discussed above, in our HMM-RF, a standard Random Forests algorithm is
trained on the hidden state sequences generated by HMMs. For each sample,
we generate the hidden state sequence of length 𝐿 for each of the seven trained
HMMs. These hidden state sequences are then concatenated, yielding a feature
vector of length 7𝐿 for each sample.

Using the feature vectors discussed in the previous paragraph, we conducted
a grid search [20] to determine the hyperparameters of our RF classifier. We
tested the hyperparameter values in Table 2, with the values in boldface yielding
the best result.

4.2.1 Results

The accuracy we obtained for the best choice of hyperparameters in Table 2
was 0.9758. In Figures 4(a), 4(b), and 4(c), we give expanded results for each of

10



Table 2: HMM-RF hyperparameters tested

Hyperparameter Values

𝐿 25, 50, 100, 200
n estimators 1, 10, 100, 150, 200
criterion gini, entropy, log loss

max features sqrt, log2, None

the individual hyperparameters in Table 2, namely, n estimators, criterion,
and max features, respectively. In Figure 4, the hyperparameter to be tested is
kept fixed, and an average of the accuracy obtained after running a grid search
on other hyperparameters is plotted. For example, in Figure 4(a), n estimators

is fixed to a particular value, and an average accuracy obtained by running a grid
search on criterion and max features is plotted to correspond to that value.
It can be observed that, for example, an HMM-RF with 𝐿 = 50 performs better
than its counterparts for all other combinations of hyperparameters.

1 10 100 150 200
0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

n estimators

T
ra
in
in
g
ac
cu
ra
cy

𝐿 = 25
𝐿 = 50
𝐿 = 100
𝐿 = 200

(a) n estimators

Gini Entropy

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Criterion

T
ra
in
in
g
ac
cu
ra
cy

𝐿 = 25
𝐿 = 50
𝐿 = 100
𝐿 = 200

Sqrt Log2 None

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Max feature

T
ra
in
in
g
ac
cu
ra
cy

𝐿 = 25
𝐿 = 50
𝐿 = 100
𝐿 = 200

(b) criterion (c) max features

Figure 4: Training accuracy trends for different hyperparameters

11



In Figure 5 we provide a pair of confusion matrices for our HMM-RF exper-
imental results. Figure 5(a) gives the actual number of classifications for each
case. Since the number of samples per class is highly imbalanced, in Figure 5(b)
we provide a confusion matrix that is scaled to the number of samples per class.
We observe that the samples from the three largest classes, namely, ZeroAccess,
Winwebsec, and Zbot, are classified with an accuracy of 0.9872. Of the four
smaller classes, Cridex and Harebot are poorly classified; however, the num-
bers in those classes are so small that they have minimal effect on the overall
classification accuracy.

Ze
ro
A
cc
es
s

W
in
we
bs
ec

Se
cu
rit
yS
hi
eld

Zb
ot

Cr
id
ex

Sm
ar
tH
D
D

H
ar
eb
ot

ZeroAccess

Winwebsec

SecurityShield

Zbot

Cridex

SmartHDD

Harebot

259 2

870

2 10

5 13 409

1 10 1 3

14

4 1 5

0

40

80

120

160

200

Ze
ro
A
cc
es
s

W
in
we
bs
ec

Se
cu
rit
yS
hi
eld

Zb
ot

Cr
id
ex

Sm
ar
tH
D
D

H
ar
eb
ot

ZeroAccess

Winwebsec

SecurityShield

Zbot

Cridex

SmartHDD

Harebot

0.992 0.008

1.000

0.167 0.833

0.012 0.030 0.958

0.067 0.667 0.067 0.200

1.000

0.400 0.100 0.500

0

0.2

0.4

0.6

0.8

1

(a) Actual (b) Scaled

Figure 5: Confusion matrice for HMM-RF model

4.3 Comparison to Related Techniques

We compared the results obtained from our HMM-RF model with some related
techniques. Table 4 shows the accuracy and weighted F1-score obtained after
testing the following techniques on the same seven families of the Malicia dataset.

• Word2Vec-LSTM— For this model, we generated Word2Vec embeddings of
the opcodes, and then trained and LSTM model on the resulting sequence
of embedding vectors.

• BERT-LSTM — This is the same as the Word2Vec-LSTM model, ex-
cept that BERT was used to generate the embedding vectors, instead of
Word2Vec.

• Random Forest — For this model, we trained a Random Forest model
directly on the opcode sequences. We obtained the feature vectors by trun-
cating the resulting number sequence to a length 𝐿. Table 3 shows the
hyperparameters tested for Random Forest model, with those selected in
boldface.

12



• SVM — As with the previous model, this model was also trained on the
feature vectors obtained directly from the opcode sequences, but we used an
SVM classifier, instead of a Random Forest. The hyperparameters tested
and selected for SVM are shown in Table 3, where 𝐿 is the length of the
feature vectors and 𝐶 is the regularization parameter.

• HMM-SVM — This model is the most similar to our HMM-RF model, with
the only difference being that we trained an SVM as the classifier, rather
than using a Random Forest. We tested the HMM-SVM model with the
same lengths of hidden state sequences as HMM-RF. Table 3 shows the
tested and selected hyperparameters for our HMM-SVM model.

More information on the training of the LSTM models can be found in the
Appendix 5.

Table 3: Hyperparameters tested and selected

Technique Hyperparameter Values

RF

𝐿 25, 50, 100, 200
n estimators 1, 10, 100, 150
criterion gini, entropy, log loss

max features sqrt, log2, None

SVM

𝐿 25, 50, 100, 200
𝐶 0.5, 1, 5, 10

degree 2, 3, 4, 5
kernel linear, poly, rbf, sigmoid

HMM-SVM

𝐿 25, 50, 100, 200
𝐶 0.5, 1, 5, 10

degree 2, 3, 4, 5
kernel linear, poly, rbf, sigmoid

We observe that our HMM-RF slightly outperforms the HMM-SVM, with
Word2Vec-LSTM, Random Forest, and SVM models also performing reasonably
well. Only the BERT-LSTM embedding does poorly, which is perhaps at least
partially due to insufficient training data for the more complex BERT embedding
technique.

4.4 Comparison to Previous Work

In previous work, many experiments have been performed on the Malicia [24]
dataset. Here, we compare our results with previous work done on this same
dataset. In [41] malware scores were computed based on image processing. The
data was classified into five categories, four of which consisted of malware and
the last containing benign samples. The authors obtained an accuracy of 0.9285
with the 80-20 train-test split.

13



Table 4: Classification metrics of different techniques

Technique
Validation

Accuracy F1-score

Word2Vec-LSTM 0.9714 0.9658
BERT-LSTM 0.9181 0.9037
Random Forest 0.9702 0.9668
HMM-RF 0.9758 0.9732

SVM 0.9589 0.9535
HMM-SVM 0.9757 0.9727

The research in [17] focuses on accuracy as a function of the size of the train-
ing dataset; in the best cases they obtain accuracies of 0.9718 using 𝑘-Nearest
Neighbor (𝑘-NN) and 0.9726 using an Artificial Neural Network (ANN). In [43]
a Gaussian Mixture Model-Hidden Markov Model (GMM-HMM) approach for
malware classification was found to yield an accuracy of 0.9467. The research
presented in [5] achieves an accuracy of 0.9293 using transfer learning with image-
based techniques, based on the five most populous classes in the Malicia dataset.
We note in passing that in [5], higher accuracies are obtained using 𝑘-NN, but
these results show clear signs of overfitting.

The research in [9] includes a large number of experiments involving Long
Short-Term Memory (LSTM) models and variants thereof. In this case, the
models are trained and tested on 20 malware families, but only three of these
families are from the Malicia dataset.

Table 5 summarizes the examples of previous work discussed in this section.
Although some of the accuracies in Table 5 are comparable to the accuracy that
we obtain, those results are for problems that are inherently easier, due to the
number of classes considered.

5 Conclusion and Future Work

In this paper, we focused our attention on a hybrid Hidden Markov Model-
Random Forest (HMM-RF) model. In this model, HMMs were trained on opcode
sequences derived from each of the seven malware families in our dataset. These
models were then used to determine the hidden state sequences for each sample,
and the resulting HMM hidden state sequence vectors were then used as fea-
ture vectors in a Random Forest classifier. We found that our HMM-RF model
outperformed several comparable techniques on the same dataset, although an
analogous HMM-SVM technique performed virtually the same, with respect to
accuracy. In contrast, techniques that did not use the HMM hidden state se-
quences as features performed measurably worse. This indicates that training an
HMM and using it to uncover the hidden states is valuable feature engineering
step. The hidden state sequence of HMMs are often used in NLP applications

14



Table 5: Comparison to previous work

Research Technique Classes Accuracy

Bhodia, et. al [5] Transfer Learning 2 0.9761
Bhodia, et. al [5] Transfer Learning 5 0.9293
Dang, et. al [9] MLP 20 0.6069
Dang, et. al [9] LSTM without embedding 20 0.4001
Dang, et. al [9] LSTM with embedding 20 0.5814
Dang, et. al [9] biLSTM 20 0.7946
Dang, et. al [9] biLSTM + embedding + CNN 20 0.8742

Jain [17] 𝑘-NN 3 0.9718
Jain [17] ANN 3 0.9726

Yajamanam et. al [41] Image processing 3 0.9300
Zhao, et. al [43] GMM-HMM 3 0.9467

Our research HMM-RF 5 0.9758

but, as far as the authors are aware, this approach has not previously been ap-
plied to malware-related problems. Our results indicate that this NLP-based
technique holds promise in the malware domain, and it would be worth investi-
gating in other domains as well.

There are many possible avenues for future work. Testing on larger and
more challenging datasets is always useful. Testing additional sequential learning
techniques on derived hidden state sequences is another area that deserves further
investigation. Recently, image-based analysis of malware has been shown to be
highly effective. Applying Convolutional Neural Networks to images derived from
hidden state sequences might provide a means of retaining the apparent feature
engineering advantage that we observed in this paper, while also providing the
improved classification results that have been observed using advanced image-
based learning models.

References

[1] Johnson Agbinya. Hidden Markov modelling (HMM) — An introduction. In
Applied Data Analytics — Principles and Applications, pages 17–34. River
Publishers, 2020.

[2] Chinmayee Annachhatre, Thomas Austin, and Mark Stamp. Hidden Markov
models for malware classification. Journal of Computer Virology and Hack-
ing Techniques, 11:59–73, 2015.

[3] Zahra Bazrafshan, Hashem Hashemi, Seyed Mehdi Hazrati Fard, and Ali
Hamzeh. A survey on heuristic malware detection techniques. In The
5th Conference on Information and Knowledge Technology, pages 113–120,
2013.

15



[4] J. Bergeron, Mourad Debbabi, J. Desharnais, M. Erhioui, Y. Lavoie, and
Nadia Tawbi. Static detection of malicious code in executable programs.
Int. J. of Req. Eng, 01 2009.

[5] Niket Bhodia, Pratikkumar Prajapati, Fabio Di Troia, and Mark Stamp.
Transfer learning for image-based malware classification. In Paolo Mori,
Steven Furnell, and Olivier Camp, editors, Proceedings of the 5th Interna-
tional Conference on Information Systems Security and Privacy, ICISSP
2019, pages 719–726, 2019. https://arxiv.org/abs/1903.11551.

[6] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[7] Adele Cutler, David Cutler, and John Stevens. Random forests. In C. Zhang
and Y.Q. Ma, editors, Ensemble Machine Learning, pages 157–175. Springer,
2011.

[8] Anusha Damodaran, Fabio Di Troia, Corrado Aaron Visaggio, Thomas H.
Austin, and Mark Stamp. A comparison of static, dynamic, and hybrid
analysis for malware detection. Journal of Computer Virology and Hacking
Techniques, 13(1):1–12, 2017.

[9] Dennis Dang, Fabio Di Troia, and Mark Stamp. Malware classification
using Long Short-Term Memory models. In Paolo Mori, Gabriele Lenzini,
and Steven Furnell, editors, Proceedings of the 7th International Conference
on Information Systems Security and Privacy, ICISSP, pages 743–752, 2021.
https://arxiv.org/abs/2103.02746.

[10] Ke-Lin Du and M.N.S Swamy. Recurrent neural networks. In Neural Net-
works and Statistical Learning, pages 337–353. Springer, second edition,
2019.

[11] Theodoros Evgeniou and Massimiliano Pontil. Support vector machines:
Theory and applications. In Machine Learning and Its Applications, pages
249–257, 2001.

[12] Monica Franzese and Antonella Iuliano. Hidden Markov models. In Shoba
Ranganathan, Michael Gribskov, Kenta Nakai, and Christian Schönbach,
editors, Encyclopedia of Bioinformatics and Computational Biology, pages
753–762. Academic Press, 2019. https://www.sciencedirect.com/

science/article/pii/B9780128096338204883.

[13] C. Fyfe. Artificial neural networks. In Bogdan Gabrys, Kauko Leiviskä, and
Jens Strackeljan, editors, Do Smart Adaptive Systems Exist?, pages 57–79.
Springer, 2006.

[14] Felan Carlo C. Garcia and Felix P. Muga II. Random forest for malware
classification. https://arxiv.org/abs/1609.07770, 2016.

[15] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neu-
ral Computation, 9(8):1735–1780, 1997.

[16] Mugdha Jain, William Andreopoulos, and Mark Stamp. CNN vs ELM for
image-based malware classification. https://arxiv.org/abs/2103.13820,
2021.

16

https://arxiv.org/abs/1903.11551
https://arxiv.org/abs/2103.02746
https://www.sciencedirect.com/science/article/pii/B9780128096338204883
https://www.sciencedirect.com/science/article/pii/B9780128096338204883
https://arxiv.org/abs/1609.07770
https://arxiv.org/abs/2103.13820


[17] Parth Jain. Machine learning versus deep learning for malware detection.
Master’s thesis, San Jose State University, 2019. https://scholarworks.
sjsu.edu/etd_projects/704/.

[18] Mahmoud Kalash, Mrigank Rochan, Noman Mohammed, Neil D. B. Bruce,
Yang Wang, and Farkhund Iqbal. Malware classification with deep convolu-
tional neural networks. In 2018 9th IFIP International Conference on New
Technologies, Mobility and Security, NTMS, pages 1–5, 2018.

[19] Michal Kruczkowski and Ewa Niewiadomska Szynkiewicz. Support vector
machine for malware analysis and classification. In 2014 IEEE/WIC/ACM
International Joint Conferences on Web Intelligence (WI) and Intelligent
Agent Technologies (IAT), volume 2, pages 415–420, 2014.

[20] Petro Liashchynskyi and Pavlo Liashchynskyi. Grid search, random search,
genetic algorithm: A big comparison for NAS. https://arxiv.org/abs/

1912.06059.

[21] Renjie Lu. Malware detection with LSTM using opcode language. http:

//arxiv.org/abs/1906.04593, 2019.

[22] Microsoft malware classification challenge (BIG 2015). https://www.

kaggle.com/c/malware-classification.

[23] Carlos Domenick Morales-Molina, Diego Santamaria-Guerrero, Gabriel
Sanchez-Perez, Hector Perez-Meana, and Aldo Hernandez-Suarez. Method-
ology for malware classification using a random forest classifier. In 2018
IEEE International Autumn Meeting on Power, Electronics and Comput-
ing, ROPEC, pages 1–6, 2018.

[24] Antonio Nappa, M. Zubair Rafique, and Juan Caballero. The MALICIA
dataset: identification and analysis of drive-by download operations. Inter-
national Journal of Information Security, 14:15–33, 2014.

[25] L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath. Malware im-
ages: Visualization and automatic classification. In Proceedings of the 8th
International Symposium on Visualization for Cyber Security, VizSec ’11,
2011.

[26] Huy Nguyen, Fabio Di Troia, Genya Ishigaki, and Mark Stamp. Genera-
tive adversarial networks and image-based malware classification. https:

//arxiv.org/abs/2207.00421, 2022.

[27] Keiron O’Shea and Ryan Nash. An introduction to convolutional neural
networks. https://arxiv.org/abs/1511.08458, 2015.

[28] Razvan Pascanu, Jack W. Stokes, Hermineh Sanossian, Mady Marinescu,
and Anil Thomas. Malware classification with recurrent networks. In 2015
IEEE International Conference on Acoustics, Speech and Signal Processing,
ICASSP, pages 1916–1920, 2015.

[29] D. Prokhorov. Echo state networks: Appeal and challenges. In Proceedings.
2005 IEEE International Joint Conference on Neural Networks, volume 3,
pages 1463–1466, 2005.

17

https://scholarworks.sjsu.edu/etd_projects/704/
https://scholarworks.sjsu.edu/etd_projects/704/
https://arxiv.org/abs/1912.06059
https://arxiv.org/abs/1912.06059
http://arxiv.org/abs/1906.04593
http://arxiv.org/abs/1906.04593
https://www.kaggle.com/c/malware-classification
https://www.kaggle.com/c/malware-classification
https://arxiv.org/abs/2207.00421
https://arxiv.org/abs/2207.00421
https://arxiv.org/abs/1511.08458


[30] Laura Raileanu and Kilian Stoffel. Theoretical comparison between the gini
index and information gain criteria. Annals of Mathematics and Artificial
Intelligence, 41:77–93, 2004.

[31] Lior Rokach and Oded Maimon. Decision trees. In The Data Mining and
Knowledge Discovery Handbook, pages 165–192. Springer, 2005.

[32] Claude Sammut and Geoffrey I. Webb. TF–IDF. In Encyclopedia of Machine
Learning, pages 986–987. Springer, 2010.

[33] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. https://arxiv.org/abs/1409.1556,
2015.

[34] Tanuvir Singh, Fabio Di Troia, Corrado Aaron Visaggio, Thomas Austin,
and Mark Stamp. Support vector machines and malware detection. Journal
of Computer Virology and Hacking Techniques, 12:203–212, 2016.

[35] Sonicwall cyber threat report. https://www.sonicwall.com/

medialibrary/en/white-paper/2023-cyber-threat-report.pdf, 2023.

[36] Mark Stamp. A revealing introduction to hidden Markov models. https:

//www.cs.sjsu.edu/~stamp/RUA/HMM.pdf, 2004.

[37] Mark Stamp. Introduction to Machine Learning with Applications in Infor-
mation Security. Chapman and Hall/CRC, 2nd edition, 2022.

[38] Svante Wold, Kim Esbensen, and Paul Geladi. Principal component analy-
sis. Chemometrics and Intelligent Laboratory Systems, 2(1):37–52, 1987.

[39] Stewart Wolpin. How does antivirus software work? https:

//www.usnews.com/360-reviews/privacy/antivirus/how-does-

antivirus-software-work.

[40] Wing Wong and Mark Stamp. Hunting for metamorphic engines. Journal
in Computer Virology, 2(3):211–229, 2006.

[41] Sravani Yajamanam, Vikash Raja Samuel Selvin, Fabio Di Troia, and Mark
Stamp. Deep learning versus gist descriptors for image-based malware clas-
sification. In Paolo Mori, Steven Furnell, and Olivier Camp, editors, Pro-
ceedings of the 4th International Conference on Information Systems Secu-
rity and Privacy, ICISSP, pages 553–561, 2018. http://www.cs.sjsu.edu/
faculty/stamp/papers/vikash.pdf.

[42] Ilsun You and Kangbin Yim. Malware obfuscation techniques: A brief sur-
vey. In Proceedings - 2010 International Conference on Broadband, Wireless
Computing Communication and Applications, BWCCA 2010, pages 297–
300, 11 2010.

[43] Jing Zhao, Samanvitha Basole, and Mark Stamp. Malware classification
with GMM-HMM models. In Paolo Mori, Gabriele Lenzini, and Steven
Furnell, editors, Proceedings of the 7th International Conference on In-
formation Systems Security and Privacy, ICISSP, pages 753–762, 2021.
https://arxiv.org/abs/2103.02753.

18

https://arxiv.org/abs/1409.1556
https://www.sonicwall.com/medialibrary/en/white-paper/2023-cyber-threat-report.pdf
https://www.sonicwall.com/medialibrary/en/white-paper/2023-cyber-threat-report.pdf
https://www.cs.sjsu.edu/~stamp/RUA/HMM.pdf
https://www.cs.sjsu.edu/~stamp/RUA/HMM.pdf
https://www.usnews.com/360-reviews/privacy/antivirus/how-does-antivirus-software-work
https://www.usnews.com/360-reviews/privacy/antivirus/how-does-antivirus-software-work
https://www.usnews.com/360-reviews/privacy/antivirus/how-does-antivirus-software-work
http://www.cs.sjsu.edu/faculty/stamp/papers/vikash.pdf
http://www.cs.sjsu.edu/faculty/stamp/papers/vikash.pdf
https://arxiv.org/abs/2103.02753


Appendix

In this Appendix, we discuss our two LSTM models in more detail. The first
of these models relies on Word2Vec embeddings, while the second uses BERT
embeddings. We chose Word2Vec and BERT embeddings for our experiments to
leverage the benefits of transfer learning and semantic representation.

Table 6 depicts the summary of our LSTM models. We trained our LSTM
models on fixed-length opcode sequence. Note that an LSTM can be trained
on a variable length input sequence. However, a fixed length was chosen for
efficient parallel processing. We experimented with the length parameter, which
we denote as 𝑘. For opcode sequence of length greater than 𝑘, we simply truncate,
while in the rare cases where the opcode sequence is of length less than 𝑘, we pad
the sequence with zeros. Note that our “vocabulary” is of size 426, that is, there
are 426 unique opcodes. Also, we generate embedding vectors of length 100. The
value of 100 was chosen after experimenting with different values of length.

Table 6: Summary of the LSTM models

Criteria Word2Vec-LSTM BERT-LSTM

Trainable Parameters 16,359 96,519
Non-trainable Parameters 42,500 121,344

Total Parameters 58,859 217,863

Based on the experiments summarized in Table 7, we found that length 𝑘 =
2500 gave us the best results for both LSTM models. Hence, we use this value
of 𝑘 for both the Word2Vec-LSTM and BERT-LSTM results reported in this
paper. It can be observed that the length of the observation sequence taken into
consideration for LSTM models (i.e.,𝑘) is significantly greater than other models
such as HMM-RF (i.e., 𝐿). This is because of the fact that LSTM models excel
at understanding context over a large sequence of inputs, whereas in HMM-RF,
we have already captured these long-term dependencies while training the HMM.

Table 7: Accuracy of LSTM models as a function of sequence length

𝑘 Word2Vec-LSTM BERT-LSTM

1000 0.9708 0.9150
2500 0.9714 0.9181
5000 0.9696 0.9119

Figure 6 shows accuracy and loss graphs for the Word2Vec-LSTM model,
while Figure 7 shows the analogous graphs for the BERT-LSTM model. These
graphs show that Word2Vec-LSTM model is very well-behaved, with no indi-
cation of overfitting. On the other hand, the BERT-LSTM model is not as
well-behaved.

19



Figure 6: Accuracy and loss graphs for Word2Vec-LSTM model

Figure 7: Accuracy and loss graphs for BERT-LSTM model

20


	Introduction
	Background
	Hidden Markov Model (HMM)
	Random Forest
	Literature Review
	Malware Classification using HMM
	Malware Classification using SVM
	Malware Classification using Random Forest
	Malware Classification using RNN and LSTM
	Malware Classification using CNN

	Methodology
	Dataset and Preprocessing
	Experimental Design

	Experiments and Results
	HMM Training and Hidden States
	HMM-RF Training
	Results

	Comparison to Related Techniques
	Comparison to Previous Work

	Conclusion and Future Work

