Math. J. Okayama Univ. 50 (2008), 113-125

STRONG CONVERGENCE THEOREMS FOR
NONEXPANSIVE MAPPINGS BY VISCOSITY
APPROXIMATION METHODS IN BANACH SPACES

X1A0LONG QIN, YONGFU SU AND CHANGQUN WU

ABSTRACT. In this paper, we introduce a modified Ishikawa iterative
process for a pair of nonexpansive mappings and obtain a strong con-
vergence theorem in the framework of uniformly Banach spaces. Our
results improve and extend the recent ones announced by Kim and Xu
[T.H. Kim, H.K. Xu, Strong convergence of modified Mann iterations,
Nonlinear Anal. 61 (2005) 51-60], Xu [H.K. Xu, Viscosity approxima-
tion methods for nonexpansive mappings. J. Math. Anal. Appl. 298
(2004) 279-291] and some others.

1. Introduction and Preliminaries

Let E be a real Banach space and let J denotes the normalized duality
mapping from E into 2F° given by

J(@)={f e B*: {z,f) = |lzI” = If|*}, =e€E,

where E* denotes the dual space of E and (-,-) denotes the generalized
duality pairing. Recall that a self mapping f : C' — C' is a contraction on
C' if there esists a constant o € (0, 1) such that

1f(z) = fW)ll < allz —yll, yeC.

We use Il to denote the collection of all contractions on C. That is, Il =
{flf : C — C a contraction}. Note that each f € Il has a unique fixed
point in C. Also, recall that T' is nonexpansive if

[Tz — Tyl <[z -yl forallz,yeC.

A point z € C is a fixed point of T' provided Tx = x. Denote by F(T)
the set of fixed points of T'; that is, F(T') = {z € C : Tx = x}. Given
a real number ¢ € (0,1) and a contraction f € IIo. We define a mapping
Tix =tf(z) + (1 —t)Tz, z € C. It is obviously that T} is a contraction on
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C. In fact, for x,y € C, we obtain
[Tix — Tey|l < [[t(f(z) = f(y)) + (1 = )(Tz = Ty)||
< atllz — y| + (1 - t)|Ta - Ty
<atllz =yl + 1 —1)llz -y
=1 -tl—-a))lz—yl.

Let x; be the unique fixed point of T;. That is, x; is the unique solution of
the fixed point equation

(1.1) xy =1tf(xy) + (1 —t)Txy.

A special case has been considered by Browder [1] in a Hilbert space as
follows. Fix u € C' and define a contraction S; on C' by

Six=tu+ (1 —t)Tz, xe€C.

If we use z; to denote the unique fixed point of Sy, which yields that z; =
tu+ (1 —t)Tz.
In 1967, Browder [1] proved the following theorem.

Theorem 1.1 In a Hilbert space, as t — 0, z; converges strongly to a fized
point of T that is closet to u, that is, the nearest point projection of u onto
F(T).

Also, In 1967, Halpern [5] firstly introduced this iteration scheme

(1.2) {xo =z € C chosen arbitrarily,

Tnt1 = apu + (1 — ap)Tzy,

which is the special cases of

(1.3) {xo =x € C chosen arbitrarily,
Tnt1 = anf(xn) + (1 — ap)Tx,.

In [9], Moudafi proposed a viscosity approximation method of selecting
a particular fixed point of a given nonexpansive mapping in Hilbert spaces.
If H is a Hilbert space, T' : C' — (' is a nonexpansive self-mapping on a
nonempty closed convex C' of H and f: C — C is a contraction, he proved
the following theorems.

Theorem 1.2 (Moudafi [9]). The sequence {x,} generated by the scheme
1
Ty = ——1Tx,+ cn

B 1+e¢, 1+€nf($n)
converges strongly to the unique solution of the variational inequality:
z € F(T), such that (I — f)z,z —x) <0, Vo € F(T),

where {€,} is a sequence of positive numbers tending to zero.
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Theorem 1.3 (Moudafi [9]). With and initial zg € C' defined the sequence

{Zn} by
LT T f()
Zpe1 = —T'z Zn).
n+1 1+ €, n 1+ € n
Supposed that lim,_.o €, =0, and > 72 1 € = 0o and lim,,_~ |en1+1 — %| =0.

Then {z,} converges strongly to the unique solution of the unique solutions
of the variational inequality:

z € F(T) such that (I — f)z,z —x) <0, Vo € F(T).

Recently Xu [14] studied the viscosity approximation methods proposed
by Moudafi [9] for nonexpansive mappings in a uniformly smooth Banach
space. More precisely, he proved following theorems.

Theorem 1.4 (Xu [14]). Let E be a uniformly smooth Banach space, C
a closed convex subset of E and T : C — C a nonexpansive mapping with
F(T) # 0, and f € U¢g. Then the path {x;} defined by xy = tf(xy) + (1 —
)Tz, t € (0,1), converges strongly to a point in F(T). If we define Q :
Il — F(T) by Q(f) = limy—oxy, the Q(f) solves the variational inequality

(I = )R JIQ) —=x), fele, e F(T).

Theorem 1.5 (Xu [14]). Let E be a uniformly smooth Banach space, C
a closed convex subset of E and T : C — C a nonexpansive mapping with
F(T) # 0 and f € Tg. Assume that o, € (0,1) satisfies the following
conditions

(i) limy, o0ty = 0;
(i) 3= Ot = 003
(iii) either lim,
{z,} generated by

On 41
On

=1 o0r) > lant1 — an| < co. Then the sequence

x0 €C, zpi1=anf(zy)+ (1 —ay)Tz,, n=0,1,2,...
converges strongly to a fixed point of T.

Two classical iteration processes are often used to approximate a fixed
point of a nonexpansive mapping. The first one is introduced by Mann [8]
and is defined as

(1.4) Tpi1 = nZp + (1 —ap)Tx,, n >0,

where the initial guess xg is taken in C arbitrarily and the sequence {a, }2°
is in the interval [0, 1].
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The second iteration process is referred to as Ishikawa’s iteration process
[6] which is defined recursively by

{yn = Bnn + (1 = Bp) Ty,

(1.5)
Tpt1 = QpTp + (1 - an)Tyna

where the initial guess xg is taken in C arbitrarily, {«a,} and {f3,} are
sequences in the interval [0, 1]. But both (1.4) and (1.5) have only weak
convergence, in general (see [4] for an example). For example, Reich [11],
shows that if F is a uniformly convex and has a Fréhet differentiable norm
and if the sequence {a,} is such that a,(1 — «;,) = oo, then the sequence
{z} generated by processes (1.4) converges weakly to a point in F(T). (An
extension of this result to processes (1.5) can be found in [13].) Therefore,
many authors attempt to modify (1.4) and (1.5) to have strong convergence.
Recently, Kim and Xu [7] introduced the following iteration process in the
framework of Banach spaces.

xg € C' chosen arbitrarily,

(1'6) Yn = BnTn + (1 - ﬁn)Tl'na
Tnt1 = apt + (1 — an)yp-

More precisely, they proved the following theorem:

Theorem 1.6 (Kim and Xu [7]). Let C be a closed convex subset of a
uniformly smooth Banach space E and let T : C — C' be a nonexpansive
mapping such that F(T) # (). Give a point u € C' and given sequences {au, }
and {0B,} in (0,1), the following conditions are satisfied:
(i) o — 0, B, — 0, >0 oy, =00 and Y2 B = 00,
(i) 3 po |an41 — an| <00, 307 o [Bnt1 — Bnl| < 0.

Define a sequence {x,} in C' by (1.6). Then {x,} strongly to converges
to a fixed point of T'.

In this paper, we use viscosity approximation methods to study strong
convergence of a pair of nonexpansive mappings in the framework of uni-
formly smooth Banach spaces. We introduce the composite iteration process
as follows:

Zn = YnZn + (1 — ) Toxy,
(1'7) Yn = BnTn + (1 - 6n)len>

Tnt1 = anf(xn) + (1 — an)yn,
where the sequence {«,} in (0,1) and {3,}, {7.} are sequences in [0,1]. We
prove, under certain appropriate assumptions on the sequences {«ay}, {6}

and {v,}, that {z,} defined by (1.7) converges to a common fixed point of
T1 and T5, which solves some variational inequality.
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If {v,} = 1 in (1.7) this can be viewed as a modified Mann iteration
process

Tnt+l1 = Oénf(xn) + (1 - an)yn-

If {v,} =1 and {8,} = 0in (1.7), then (1.7) reduces to (1.3) which consid-
ered by Xu [14].

It is our purpose in this paper is to introduce this composite iteration
scheme for approximating a common fixed point of two nonexpansive map-
pings by using viscosity methods in the framework of uniformly smooth
Banach spaces. we establish the strong convergence of the sequence {x,}

defined by (1.7). Our results improve and extend the ones announced by
Kim and Xu [7], Xu [14] and some others.

We need the following definitions and lemmas for the proof of our main
results.

The norm of F is said to be Gateaux differentiable (and E is said to be
smooth) if

' t—0 t

exists for each z,y in its unit sphere U = {x € F : ||z|| = 1}. It is said to
be uniformly Fréchet differentiable (and FE' is said to be uniformly smooth )
if the limit in (1.9) is attained uniformly for (z,y) € U x U.

Lemma 1.1 A Banach space E is uniformly smooth if and only if the duality

map J is single-valued and norm-to-norm uniformly continuous on bounded
sets of E.

Lemma 1.2 In a Banach space E, there holds the inequality
|z +ylI? < [lz]* + 2y, j(z +v)), z,yeE
where j(z +y) € J(z +y).

Lemma 1.3 ( Xu [15], [16]). Let {a,} be a sequence of nonnegative real
numbers satisfying the property

Op41 S (1 - ’Yn)an + YnOn, N 2 07

where {vp}o2y C (0,1) and {0, }7°, such that
(i) limy oo v = 0 and Y07 4 n = 00,
(ii) either limsup,, .. op <0 or >0 |non| < 0.

Then {an}o2, converges to zero.
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Recall that if C' and D are nonempty subsets of a Banach space E such
that C' is nonempty closed convex and D C C, then a map @ : C — D is
sunny ([2], [12]) provided Q(x+t(z — Q(x))) = Q(z) for all z € C and t > 0
whenever x + t(z — Q(x)) € C. A sunny nonexpansive retraction is a sunny
retraction,which is also nonexpansive. Sunny nonexpansive retractions play
an important role in our argument. They are characterized as follows [2, 3,
12]: if E'is a smooth Banach space, then @) : C — D is a sunny nonexpansive
retraction if and only if there holds the inequality

(x —Qx,J(y—Qx)) <0 forall x € C and ye D.

Reich [10] showed that if E is uniformly smooth and if D is the fixed
point set of a nonexpansive mapping from C' into itself, then there is a
sunny nonexpansive retraction from C' onto D and it can be constructed as
follows.

Lemma 1.4 (Reich [10]). Let E be a uniformly smooth Banach space and
let T : C — C be a nonexpansive mapping with a fixed point x+ € C of

the contraction C > x — tu+ (1 — t)Tx converging strongly ast — 0 to a
fized point of T. Define Q : C — F(T) by Qu =s — %ir% x¢. Then Q) is the
unique sunny nonexpansive retract from C onto F(T); that is, Q satisfies

the property
(u—Qu,J(z —Qu)) <0,uecC, ze€F(T).

Lemma 1.5 (Xu [14]). Let E be a uniformly smooth Banach space and let
T : C — C be a nonexpansive mapping with a fized point r+ € C of the
contraction C 3 x — tu + (1 — t)Tz converges strongly as t — 0 to a fized
point of T. Define Q : llc — F(T) by

(1.10) Qf:s—%ii]%a:t, felle.
Then Q(f) solves the variational inequality
(1.11) (I =DNR), J(Q(f) —p) <0, fellg,pe F(T).

In particular, if f = wu is a constant, then (1.10) is reduced to the sunny
nonexpansive retract from C onto F(T):

(1.12) (u—Qu,J(p— Qu)) <0,uecC,pe F(T).

2. Main Results

Theorem 2.1 Let C be a closed convex subset of a uniformly smooth Ba-
nach space E and let 11,75 : C' — C be a pair of nonexpansive mappings

such that F(T1Ty) = F(T1) (| F(T) # (). The initial guess zo € C' is chosen
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arbitrarily and given sequences {ay, }52 in (0,1) and {5, }52, and {v,}52,
in [0,1], the following conditions are satisfied

(1) D02 g o =00, an — 0;

(i) Bu — 0, 70 — 0;

(iii) ZZO:O |O‘n+1 - an| < 00, ZZO:O |ﬁn—|—1 _ﬁn| < oo and Z;O:O |’7n—|—1 _7n| <
00

Let {z,}°°; be the composite process defined by
Zn = MnTn + (1 — ) T2Zn,
Yn = /ann + (1 - ﬁn)lena
Tn+l = anf<$n> + (1 - an)yn~

Then {z,}>°; converges strongly to some common fixed point p € F(T7) N
F(T3) which solves the variational inequality

21 (= HRU),JQ() —p) <0, [fellg,pe F(T1)NF(Ty).

Proof. First we observe that {z,}°° is bounded. Indeed, taking a fixed
point p of F(T1) N F(T5), we note that
(2.2) 120 =PIl < wllzn — pll + (1 = ) [T2n — pl| < |20 — pll.
It follows that

lyn = Il < Bullzn —pll + (1 = Bu)[T120 — pl]
(2.3) < Bnllen —pll + (1 = Bo)llzn — pll

< [lzn —pl-
It follows from (2.3) that
[Zn11 = pll < anllf(zn) = pll + (1 — an)llyn — pll
< anllf(n) = T + anll ) — bl + (1 — an)fa — 7]

1
T @) =2l llzn = pll}-

< max{

Now, an induction yields
1
T @) =pl. llzo —pll}. =0,
which implies that {x,} is bounded, so are {Tyxz,}, {f(zn)} {yn}, {2} and

{Tl Zn}
Since condition (i), we obtain

(24) [, —p| < max{

(2.6) [Znt1 = ynll = anllf(2n) = ynll = 0, asn — oo

Next, we claim that

(2.6) [2n 1 =@ — 0.
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In order to prove (2.6) from

Tp+1 = anf(xn) + (1 - an)yna

Tn = an—lf(xn) + (1 - an—l)yn-
We have

TIp+1 — Tn :(1 - an)(yn - yn—l)
+ (an—1 = an)(Wn-1 — f(@n-1)) + an(f(xn) — f(Tn-1)).
It follows that
(2-7) me—l - xn” < (1 - O‘n)Hyn - yn—lH
+ |an—1 - an|||yn—1 - f(xn—l)“ + Ofan”-rn - xn—l”-

Similarly, Since

Yn = Bnxn + (1 — Bn)T12n,
{%—1 = Bn—1Zn-1+ (1 = Bp—1)T12n-1.
We obtain
Yn — Yn—1 = (1 - ﬁn)(len - len—l) + ﬁn(xn - xn—l)
+ (T12n-1 — Tn-1)(Bn-1 — Bn)-
It follow that
[Yn — yn—-1ll < (1 = Bl T12n — Trzn-1| + Ballzn — Tn-1l
+ 11201 — Tn—1l|Bn—1 — Bnl
< (1= Bu)llzn — 2n-1ll + Bullzn — xn-1]|
+ [[T12n-1 — Zn-1||Bn—1 — Bnl.

(2.8)

On the other hand, from

Zn = nTn + (1 — ) Tox,,
{Zn—l = Yn-1Zn—1 + (1 — Yn-1)T22n-1,
we also can obtain
zn = Zn-1 =(1 = W) (Taxy, — Toxn—1) + Wn(Tn — Tn-1)
+ (Yn—1 — Vo) (ToTp—1 — Tn—1),
which yields that

(2.9) 120 = 2n-1ll < [|zn — Zp—1ll + [Yn-1 = W[ T22n-1 — Zn-1].
Substituting (2.9) into (2.8), we get
(2.10)

”yn - yn—1H < (1 - ﬁn)(Hxn - wn—lH + |7n—1 - Vn“|T2$n—1 - xn—IH)
+ 5n||33n - xn—1|| + ||T1Zn—1 - l'n—1|||ﬁn—1 — 5n|-
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That is,
”yn - yn—l” S ”mn - xn—l“ + h/n—l - ’Yn|HT2xn—1 - xn—l”
+ ||len—1 - xn—lmﬁn—l - Bn|

Similarly, substitute (2.11) into (2.7) yields that
(2.12)
|11 — @nl| < (1 = an)([lon — 2n-1ll + -1 = Wl T22n—1 — 2n-1]]

+ | T12n-1 — Zp—1[l[Bn—1 — Bnl)

+ an—1 = anlllyn—1 — f(@n-1)|| + aan||zn — 21|
< (1= (1 —=a)an)|zn — zp]

+ Mi(|an—1 — an| + |Bn-1 = Bal + [Yn—1 — Mnl)>

where M7 is a constant such that

(2.11)

My > max{|yn—1 — f(@n-1)|, |[Tn-1 — Toxn-1|; [|Tn-1 — T1zn-1]}

for all n. By assumptions (i)-(iii), we have that

00
nh_)ngo oy =0, Z(l —a)a, = o0,
n=1
and
00
Z(|Bn - ﬁn—1| + |an - an—1| + |’Yn - 7n—1|) < 0.
n=1

Hence, Lemma 1.3 is applicable to (2.12) and we obtain (2.6) holds. Observe
that

(2.13)

[T 2w, — 24|

< [z = Zng1ll + l2ns1 = yull + llyn — Trznl| + [ T12n — T1 T2, ||
< |lwn — ng1ll + |ons1 = ynll + Ballzn — Trznll + (|20 — Town||
< zn = 2pp1ll + lzna1 — yull + Ballen — Tizal|l + yullon — Towa|.
Since assumption lim,, ., B, = lim, 7, = 0, (2.5) and (2.6), we know
(2.14) | Ty Tox,, — x| — O.
Put T'=T3T5. Since T and T5 are nonexpansive, we have T is also nonex-
pansive. Next, we claim that
(2.15) limsup(f(q) — ¢, J(xn — q)) <0,

n—oo

where ¢ = Qf = s—lim;_g x; with x; being the fixed point of the contraction
x +— tf(x) + (1 —t)Tx, where T' = T1T5. From z; solves the fixed point
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equation
Thus we have
[zt = 2nll = [|(1 = )T — @n) + £(f (21) — 0]
It follows from Lemma 1.2 that
e = zall® < (1= )| Ty — @nl|® + 26f () — 0, (w1 — 20))
(2.16) < (1 =26+ 8%) ||z — x| ® + fult)
+2U(f (we) — 4, J (e — ) + 2t[|zy — an27
where
(2.17)  fo(t) = 2llze — zp|| + |z — Txn||)||xn — Tzy|| — 0, as n — 0.
It follows that
t 1
(2.18) (o= fl@), T (@ = 2n)) < gllwe = wnll® + o Fu(t).
Let n — oo in (2.18) and note (2.17) yields
t
(219) lim Sup<xt - f(xt>7 J(xt - xn)> < _M27
n—oo 2
where My > 0 is a constant such that My > ||z; — 2,,]|? for all t € (0,1) and
n > 1. Taking t — 0 from (2.19), we have
lim sup lim sup(z; — f(x¢), J (2 — zp,)) < 0.

t—0 n—oo

So, for any € > 0, there exists a positive number §; such that, for ¢t € (0, 1),
we get

(2.20) limsup(xy — f(x¢), J(xr — x0)) <

n—oo

Mlm

On the other hand, since x; — ¢ as t — 0, from Lemma 1.1, there exists
d2 > 0 such that, for ¢ € (0,02) we have

[(f(q) = q, J(@n — q)) — (xt — f(x4), J(xp — 20))|
< [(flg) —q,J(xn —q)) — (f(q) — ¢, J(zn — 71))|
+(f(q) = @, J(xn — ) — (Tt — f(20), J (24 — 1))
< [f(q) —q,J(xn — q) — (x5 — x¢))|
+1(f(q) = f(xs) — g+ x4, J(xn — q)))]
< |If(q) = aqlllJ(@n — q) — J(zr, — ¢)]]
Jr||f(q f(xe) — g+ 2|z — ¢
< 2

Picking § = min{dy,d2},Vt € (0,9), we have
(f(@) = q, J(xn —q)) < (xe = fla), J(2 — xn)) +

(NN e
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That is,
) . €
limsup(f(q) — ¢, J(xn — q)) < limsup(z; — f(xy), J (2 — x0)) + 3
n—oo n—oo

It follows from (2.21) that
limsup(f(q) — ¢, J(zn — q)) < e

n—oo

Since € is chosen arbitrarily, we have

(2.21). limsup(f(q) — ¢, J(xn, — q)) <O

n—oo

Finally, we show that x,, — ¢ strongly and this concludes the proof.
Indeed, using Lemma 1.2 again we obtain

|zns1 = ql” = (1 = an)(yn — q) + an(f(zn) — )|
< (1= an)?llyn — alI* + 200 (f (20) — ¢, J (011 — q))
< (1= an)?[|lzn — glf?
+ 200 (f(zn) — f(@), J(@nt1 — @) + 200 (f(q) — ¢, T (Tnt1 — q))
< (1= an)?l|lzn — ql” + 2anal|zn — gl 201 — g
+ 2an(f(q) — ¢, J (Tn41 — @)
< (1= an)?[lzn — ql* + ana(zn — ql* + 21 — ql?)
+ 200 (f(q) — ¢, J (Tnt1 — q))-

Therefore, we obtain

fonss ~ al?
Im@rdonton, g 2 ) - g S - )
< B g - 2 (1(0) — 4. T — ) + Mo
- (- A g2
i 2 B0 T 7() ~ ), e — ),

Now we apply Lemma 1.3 and use (2.21) to see that ||z, — ¢|| — 0. This
completes the proof.

As corollaries of Theorem 2.1, we have the following.

Corollary 2.2 Let C be a closed convex subset of a uniformly smooth Ba-
nach space E and let T} : C' — C' be a nonexpansive mapping such that
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F(Ty) # 0. The initial guess xg € C is chosen arbitrarily and given se-
quences {a, }>%, in (0,1) and {8,}°2, in [0,1], the following conditions are
satisfied

(1) D02 om =00, a, — 0,;

(i) B, < a, for some a € [0, 1);

(i) D= [om+1 — an| <00, 3207 ¢ Bt — Bal < o0

Let {z,}72, be the composite process defined by (1.8), then {x,}°°; con-
verges strongly to some fixed point p € F(T7) which Q(f) solves the varia-
tional inequality

(I =), J(Q(f) —p) <0, [ellg,pe F(T).

Proof. By taking {7,} = 1, we can obtain the desired conclusion. This
completes the proof.

Corollary 2.3 (Xu [1}]). Let E be a uniformly smooth Banach space, C
a closed convex subset of E and T : C — C a nonexpansive mapping with
F(T) # 0, and f € Tg. Assume that o, € (0,1) satisfies the following
conditions
(i) lim,, o o, = 0;
(i1) S0y o = o0
(iii) Y 07 o |oms1 — o] < 00. Then the sequence {x,} generated by

x0g €C, zp1=anf(zy)+ (1 —an)Tz,, n=0,1,2,...
converges strongly to Q(f), which solves the variational inequality

(I =R, JQf) —p) <0, fellg,pe F(T).

Proof. By taking {7,} = 1 and {3, }=0, we can obtain the desired conclu-
sion. This completes the proof.
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