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STRONG CONVERGENCE THEOREMS FOR

NONEXPANSIVE MAPPINGS BY VISCOSITY

APPROXIMATION METHODS IN BANACH SPACES

Xiaolong QIN, Yongfu SU and Changqun WU

Abstract. In this paper, we introduce a modified Ishikawa iterative
process for a pair of nonexpansive mappings and obtain a strong con-
vergence theorem in the framework of uniformly Banach spaces. Our
results improve and extend the recent ones announced by Kim and Xu
[T.H. Kim, H.K. Xu, Strong convergence of modified Mann iterations,
Nonlinear Anal. 61 (2005) 51-60], Xu [H.K. Xu, Viscosity approxima-
tion methods for nonexpansive mappings. J. Math. Anal. Appl. 298
(2004) 279-291] and some others.

1. Introduction and Preliminaries

Let E be a real Banach space and let J denotes the normalized duality
mapping from E into 2E∗

given by

J(x) = {f ∈ E∗ : 〈x, f〉 = ‖x‖2 = ‖f‖2}, x ∈ E,

where E∗ denotes the dual space of E and 〈·, ·〉 denotes the generalized
duality pairing. Recall that a self mapping f : C → C is a contraction on
C if there esists a constant α ∈ (0, 1) such that

‖f(x) − f(y)‖ ≤ α‖x − y‖, x, y ∈ C.

We use ΠC to denote the collection of all contractions on C. That is, ΠC =
{f |f : C → C a contraction}. Note that each f ∈ ΠC has a unique fixed
point in C. Also, recall that T is nonexpansive if

‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ C.

A point x ∈ C is a fixed point of T provided Tx = x. Denote by F (T )
the set of fixed points of T ; that is, F (T ) = {x ∈ C : Tx = x}. Given
a real number t ∈ (0, 1) and a contraction f ∈ ΠC . We define a mapping
Ttx = tf(x) + (1 − t)Tx, x ∈ C. It is obviously that Tt is a contraction on
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C. In fact, for x, y ∈ C, we obtain

‖Ttx − Tty‖ ≤ ‖t(f(x) − f(y)) + (1 − t)(Tx − Ty)‖

≤ αt‖x − y‖ + (1 − t)‖Tx − Ty‖

≤ αt‖x − y‖ + (1 − t)‖x − y‖

= (1 − t(1 − α))‖x − y‖.

Let xt be the unique fixed point of Tt. That is, xt is the unique solution of
the fixed point equation

(1.1) xt = tf(xt) + (1 − t)Txt.

A special case has been considered by Browder [1] in a Hilbert space as
follows. Fix u ∈ C and define a contraction St on C by

Stx = tu + (1 − t)Tx, x ∈ C.

If we use zt to denote the unique fixed point of St, which yields that zt =
tu + (1 − t)Tzt.

In 1967, Browder [1] proved the following theorem.

Theorem 1.1 In a Hilbert space, as t → 0, zt converges strongly to a fixed
point of T that is closet to u, that is, the nearest point projection of u onto
F (T ).

Also, In 1967, Halpern [5] firstly introduced this iteration scheme

(1.2)

{

x0 = x ∈ C chosen arbitrarily,

xn+1 = αnu + (1 − αn)Txn,

which is the special cases of

(1.3)

{

x0 = x ∈ C chosen arbitrarily,

xn+1 = αnf(xn) + (1 − αn)Txn.

In [9], Moudafi proposed a viscosity approximation method of selecting
a particular fixed point of a given nonexpansive mapping in Hilbert spaces.
If H is a Hilbert space, T : C → C is a nonexpansive self-mapping on a
nonempty closed convex C of H and f : C → C is a contraction, he proved
the following theorems.

Theorem 1.2 (Moudafi [9]). The sequence {xn} generated by the scheme

xn =
1

1 + εn

Txn +
εn

1 + εn

f(xn)

converges strongly to the unique solution of the variational inequality:

x̄ ∈ F (T ), such that 〈(I − f)x̄, x̄ − x〉 ≤ 0, ∀x ∈ F (T ),

where {εn} is a sequence of positive numbers tending to zero.
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Theorem 1.3 (Moudafi [9]). With and initial z0 ∈ C defined the sequence
{zn} by

zn+1 =
1

1 + εn

Tzn +
εn

1 + εn

f(zn).

Supposed that limn→∞ εn = 0, and
∑

∞

n=1 ε = ∞ and limn→∞ | 1
εn+1

− 1
ε
| = 0.

Then {zn} converges strongly to the unique solution of the unique solutions
of the variational inequality:

x̄ ∈ F (T ) such that 〈(I − f)x̄, x̄ − x〉 ≤ 0, ∀x ∈ F (T ).

Recently Xu [14] studied the viscosity approximation methods proposed
by Moudafi [9] for nonexpansive mappings in a uniformly smooth Banach
space. More precisely, he proved following theorems.

Theorem 1.4 (Xu [14]). Let E be a uniformly smooth Banach space, C

a closed convex subset of E and T : C → C a nonexpansive mapping with
F (T ) 6= ∅, and f ∈ ΠC . Then the path {xt} defined by xt = tf(xt) + (1 −
t)Txt, t ∈ (0, 1), converges strongly to a point in F (T ). If we define Q :
ΠC → F (T ) by Q(f) = limt→0xt, the Q(f) solves the variational inequality

〈(I − f)Q(f), j(Q(f) − x)〉, f ∈ ΠC , x ∈ F (T ).

Theorem 1.5 (Xu [14]). Let E be a uniformly smooth Banach space, C

a closed convex subset of E and T : C → C a nonexpansive mapping with
F (T ) 6= ∅ and f ∈ ΠC . Assume that αn ∈ (0, 1) satisfies the following
conditions
(i) limn→∞ αn = 0;
(ii)

∑

∞

n=0 αn = ∞;
(iii) either limn→∞

αn+1

αn

= 1 or
∑

∞

n=0 |αn+1 − αn| ≤ ∞. Then the sequence

{xn} generated by

x0 ∈ C, xn+1 = αnf(xn) + (1 − αn)Txn, n = 0, 1, 2, . . .

converges strongly to a fixed point of T.

Two classical iteration processes are often used to approximate a fixed
point of a nonexpansive mapping. The first one is introduced by Mann [8]
and is defined as

(1.4) xn+1 = αnxn + (1 − αn)Txn, n ≥ 0,

where the initial guess x0 is taken in C arbitrarily and the sequence {αn}
∞

n=0

is in the interval [0, 1].
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The second iteration process is referred to as Ishikawa’s iteration process
[6] which is defined recursively by

(1.5)

{

yn = βnxn + (1 − βn)Txn,

xn+1 = αnxn + (1 − αn)Tyn,

where the initial guess x0 is taken in C arbitrarily, {αn} and {βn} are
sequences in the interval [0, 1]. But both (1.4) and (1.5) have only weak
convergence, in general (see [4] for an example). For example, Reich [11],
shows that if E is a uniformly convex and has a Fréhet differentiable norm
and if the sequence {αn} is such that αn(1 − αn) = ∞, then the sequence
{xn} generated by processes (1.4) converges weakly to a point in F (T ). (An
extension of this result to processes (1.5) can be found in [13].) Therefore,
many authors attempt to modify (1.4) and (1.5) to have strong convergence.
Recently, Kim and Xu [7] introduced the following iteration process in the
framework of Banach spaces.

(1.6)











x0 ∈ C chosen arbitrarily,

yn = βnxn + (1 − βn)Txn,

xn+1 = αnu + (1 − αn)yn.

More precisely, they proved the following theorem:

Theorem 1.6 (Kim and Xu [7]). Let C be a closed convex subset of a
uniformly smooth Banach space E and let T : C → C be a nonexpansive
mapping such that F (T ) 6= ∅. Give a point u ∈ C and given sequences {αn}
and {βn} in (0, 1), the following conditions are satisfied:
(i) αn → 0, βn → 0,

∑

∞

n=0 αn = ∞ and
∑

∞

n=0 βn = ∞,

(ii)
∑

∞

n=0 |αn+1 − αn| < ∞,
∑

∞

n=0 |βn+1 − βn| < ∞.

Define a sequence {xn} in C by (1.6). Then {xn} strongly to converges
to a fixed point of T .

In this paper, we use viscosity approximation methods to study strong
convergence of a pair of nonexpansive mappings in the framework of uni-
formly smooth Banach spaces. We introduce the composite iteration process
as follows:

(1.7)











zn = γnxn + (1 − γn)T2xn,

yn = βnxn + (1 − βn)T1zn,

xn+1 = αnf(xn) + (1 − αn)yn,

where the sequence {αn} in (0,1) and {βn}, {γn} are sequences in [0,1]. We
prove, under certain appropriate assumptions on the sequences {αn}, {βn}
and {γn}, that {xn} defined by (1.7) converges to a common fixed point of
T1 and T2, which solves some variational inequality.
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If {γn} = 1 in (1.7) this can be viewed as a modified Mann iteration
process

(1.8)

{

yn = βnxn + (1 − βn)T1xn,

xn+1 = αnf(xn) + (1 − αn)yn.

If {γn} = 1 and {βn} = 0 in (1.7), then (1.7) reduces to (1.3) which consid-
ered by Xu [14].

It is our purpose in this paper is to introduce this composite iteration
scheme for approximating a common fixed point of two nonexpansive map-
pings by using viscosity methods in the framework of uniformly smooth
Banach spaces. we establish the strong convergence of the sequence {xn}
defined by (1.7). Our results improve and extend the ones announced by
Kim and Xu [7], Xu [14] and some others.

We need the following definitions and lemmas for the proof of our main
results.

The norm of E is said to be Gâteaux differentiable (and E is said to be
smooth) if

(1.9) lim
t→0

‖x + ty‖ − ‖x‖

t

exists for each x, y in its unit sphere U = {x ∈ E : ‖x‖ = 1}. It is said to
be uniformly Fréchet differentiable (and E is said to be uniformly smooth )
if the limit in (1.9) is attained uniformly for (x, y) ∈ U × U .

Lemma 1.1 A Banach space E is uniformly smooth if and only if the duality
map J is single-valued and norm-to-norm uniformly continuous on bounded
sets of E.

Lemma 1.2 In a Banach space E, there holds the inequality

‖x + y‖2 ≤ ‖x‖2 + 2〈y, j(x + y)〉, x, y ∈ E

where j(x + y) ∈ J(x + y).

Lemma 1.3 ( Xu [15], [16]). Let {αn} be a sequence of nonnegative real
numbers satisfying the property

αn+1 ≤ (1 − γn)αn + γnσn, n ≥ 0,

where {γn}
∞

n=0 ⊂ (0, 1) and {σn}
∞

n=0 such that
(i) limn→∞ γn = 0 and

∑

∞

n=0 γn = ∞,

(ii) either lim supn→∞
σn ≤ 0 or

∑

∞

n=0 |γnσn| < ∞.

Then {αn}
∞

n=0 converges to zero.
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Recall that if C and D are nonempty subsets of a Banach space E such
that C is nonempty closed convex and D ⊂ C, then a map Q : C → D is
sunny ([2], [12]) provided Q(x+ t(x−Q(x))) = Q(x) for all x ∈ C and t ≥ 0
whenever x + t(x −Q(x)) ∈ C. A sunny nonexpansive retraction is a sunny
retraction,which is also nonexpansive. Sunny nonexpansive retractions play
an important role in our argument. They are characterized as follows [2, 3,
12]: if E is a smooth Banach space, then Q : C → D is a sunny nonexpansive
retraction if and only if there holds the inequality

〈x − Qx, J(y − Qx)〉 ≤ 0 for all x ∈ C and y ∈ D.

Reich [10] showed that if E is uniformly smooth and if D is the fixed
point set of a nonexpansive mapping from C into itself, then there is a
sunny nonexpansive retraction from C onto D and it can be constructed as
follows.

Lemma 1.4 (Reich [10]). Let E be a uniformly smooth Banach space and
let T : C → C be a nonexpansive mapping with a fixed point xt ∈ C of
the contraction C 3 x 7→ tu + (1 − t)Tx converging strongly as t → 0 to a
fixed point of T . Define Q : C → F (T ) by Qu = s − lim

t→0
xt. Then Q is the

unique sunny nonexpansive retract from C onto F (T ); that is, Q satisfies
the property

〈u − Qu, J(z − Qu)〉 ≤ 0, u ∈ C, z ∈ F (T ).

Lemma 1.5 (Xu [14]). Let E be a uniformly smooth Banach space and let
T : C → C be a nonexpansive mapping with a fixed point xt ∈ C of the
contraction C 3 x 7→ tu + (1 − t)Tx converges strongly as t → 0 to a fixed
point of T . Define Q : ΠC → F (T ) by

(1.10) Qf = s − lim
t→0

xt, f ∈ ΠC .

Then Q(f) solves the variational inequality

(1.11) 〈(I − f)Q(f), J(Q(f) − p)〉 ≤ 0, f ∈ ΠC , p ∈ F (T ).

In particular, if f = u is a constant, then (1.10) is reduced to the sunny
nonexpansive retract from C onto F (T ):

(1.12) 〈u − Qu, J(p − Qu)〉 ≤ 0, u ∈ C, p ∈ F (T ).

2. Main Results

Theorem 2.1 Let C be a closed convex subset of a uniformly smooth Ba-
nach space E and let T1, T2 : C → C be a pair of nonexpansive mappings
such that F (T1T2) = F (T1)

⋂

F (T2) 6= ∅. The initial guess x0 ∈ C is chosen
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arbitrarily and given sequences {αn}
∞

n=0 in (0,1) and {βn}
∞

n=0 and {γn}
∞

n=0

in [0,1], the following conditions are satisfied
(i)

∑

∞

n=0 αn = ∞, αn → 0;
(ii) βn → 0, γn → 0;
(iii)

∑

∞

n=0 |αn+1 −αn| < ∞,
∑

∞

n=0 |βn+1 −βn| < ∞ and
∑

∞

n=0 |γn+1−γn| <

∞.
Let {xn}

∞

n=1 be the composite process defined by










zn = γnxn + (1 − γn)T2xn,

yn = βnxn + (1 − βn)T1zn,

xn+1 = αnf(xn) + (1 − αn)yn.

Then {xn}
∞

n=1 converges strongly to some common fixed point p ∈ F (T1) ∩
F (T2) which solves the variational inequality

(2.1) 〈(I − f)Q(f), J(Q(f) − p)〉 ≤ 0, f ∈ ΠC , p ∈ F (T1) ∩ F (T2).

Proof. First we observe that {xn}
∞

n=0 is bounded. Indeed, taking a fixed
point p of F (T1) ∩ F (T2), we note that

(2.2) ‖zn − p‖ ≤ γn‖xn − p‖ + (1 − γn)‖T2xn − p‖ ≤ ‖xn − p‖.

It follows that

(2.3)

‖yn − p‖ ≤ βn‖xn − p‖ + (1 − βn)‖T1zn − p‖

≤ βn‖xn − p‖ + (1 − βn)‖zn − p‖

≤ ‖xn − p‖.

It follows from (2.3) that

‖xn+1 − p‖ ≤ αn‖f(xn) − p‖ + (1 − αn)‖yn − p‖

≤ αn‖f(xn) − f(p)‖ + αn‖f(p) − p‖ + (1 − αn)‖xn − p‖

≤ max{
1

1 − α
‖f(p) − p‖, ‖xn − p‖}.

Now, an induction yields

(2.4) ‖xn − p‖ ≤ max{
1

1 − α
‖f(p) − p‖, ‖x0 − p‖}. n ≥ 0,

which implies that {xn} is bounded, so are {T2xn}, {f(xn)} {yn}, {zn} and
{T1zn}.
Since condition (i), we obtain

(2.6) ‖xn+1 − yn‖ = αn‖f(xn) − yn‖ → 0, as n → ∞.

Next, we claim that

(2.6) ‖xn+1 − xn‖ → 0.
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In order to prove (2.6) from
{

xn+1 = αnf(xn) + (1 − αn)yn,

xn = αn−1f(xn) + (1 − αn−1)yn.

We have

xn+1 − xn =(1 − αn)(yn − yn−1)

+ (αn−1 − αn)(yn−1 − f(xn−1)) + αn(f(xn) − f(xn−1)).

It follows that

‖xn+1 − xn‖ ≤ (1 − αn)‖yn − yn−1‖(2.7)

+ |αn−1 − αn|‖yn−1 − f(xn−1)‖ + ααn‖xn − xn−1‖.

Similarly, Since
{

yn = βnxn + (1 − βn)T1zn,

yn−1 = βn−1xn−1 + (1 − βn−1)T1zn−1.

We obtain

yn − yn−1 = (1 − βn)(T1zn − T1zn−1) + βn(xn − xn−1)

+ (T1zn−1 − xn−1)(βn−1 − βn).

It follow that

(2.8)

‖yn − yn−1‖ ≤ (1 − βn)‖T1zn − T1zn−1‖ + βn‖xn − xn−1‖

+ ‖T1zn−1 − xn−1‖|βn−1 − βn|

≤ (1 − βn)‖zn − zn−1‖ + βn‖xn − xn−1‖

+ ‖T1zn−1 − xn−1‖|βn−1 − βn|.

On the other hand, from
{

zn = γnxn + (1 − γn)T2xn,

zn−1 = γn−1xn−1 + (1 − γn−1)T2zn−1,

we also can obtain

zn − zn−1 =(1 − γn)(T2xn − T2xn−1) + γn(xn − xn−1)

+ (γn−1 − γn)(T2xn−1 − xn−1),

which yields that

(2.9) ‖zn − zn−1‖ ≤ ‖xn − xn−1‖ + |γn−1 − γn|‖T2xn−1 − xn−1‖.

Substituting (2.9) into (2.8), we get
(2.10)

‖yn − yn−1‖ ≤ (1 − βn)(‖xn − xn−1‖ + |γn−1 − γn|‖T2xn−1 − xn−1‖)

+ βn‖xn − xn−1‖ + ‖T1zn−1 − xn−1‖|βn−1 − βn|.
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That is,

(2.11)
‖yn − yn−1‖ ≤ ‖xn − xn−1‖ + |γn−1 − γn|‖T2xn−1 − xn−1‖

+ ‖T1zn−1 − xn−1‖|βn−1 − βn|.

Similarly, substitute (2.11) into (2.7) yields that
(2.12)

‖xn+1 − xn‖ ≤ (1 − αn)(‖xn − xn−1‖ + |γn−1 − γn|‖T2xn−1 − xn−1‖

+ ‖T1zn−1 − xn−1‖|βn−1 − βn|)

+ |αn−1 − αn|‖yn−1 − f(xn−1)‖ + ααn‖xn − xn−1‖

≤ (1 − (1 − α)αn)‖xn − xn−1‖

+ M1(|αn−1 − αn| + |βn−1 − βn| + |γn−1 − γn|),

where M1 is a constant such that

M1 ≥ max{‖yn−1 − f(xn−1)‖, ‖xn−1 − T2xn−1‖, ‖xn−1 − T1zn−1‖}

for all n. By assumptions (i)-(iii), we have that

lim
n→∞

αn = 0,

∞
∑

n=1

(1 − α)αn = ∞,

and
∞
∑

n=1

(|βn − βn−1| + |αn − αn−1| + |γn − γn−1|) < ∞.

Hence, Lemma 1.3 is applicable to (2.12) and we obtain (2.6) holds. Observe
that
(2.13)
‖T1T2xn − xn‖

≤ ‖xn − xn+1‖ + ‖xn+1 − yn‖ + ‖yn − T1zn‖ + ‖T1zn − T1T2xn‖

≤ ‖xn − xn+1‖ + ‖xn+1 − yn‖ + βn‖xn − T1zn‖ + ‖zn − T2xn‖

≤ ‖xn − xn+1‖ + ‖xn+1 − yn‖ + βn‖xn − T1zn‖ + γn‖xn − T2xn‖.

Since assumption limn→∞ βn = limn→∞ γn = 0, (2.5) and (2.6), we know

(2.14) ‖T1T2xn − xn‖ → 0.

Put T = T1T2. Since T1 and T2 are nonexpansive, we have T is also nonex-
pansive. Next, we claim that

(2.15) lim sup
n→∞

〈f(q) − q, J(xn − q)〉 ≤ 0,

where q = Qf = s−limt→0 xt with xt being the fixed point of the contraction
x 7→ tf(x) + (1 − t)Tx, where T = T1T2. From xt solves the fixed point
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equation
xt = tf(xt) + (1 − t)Txt.

Thus we have

‖xt − xn‖ = ‖(1 − t)(Txt − xn) + t(f(xt) − xn)‖.

It follows from Lemma 1.2 that

(2.16)

‖xt − xn‖
2 ≤ (1 − t)2‖Txt − xn‖

2 + 2t〈f(xt) − xn, J(xt − xn)〉

≤ (1 − 2t + t2)‖xt − xn‖
2 + fn(t)

+ 2t〈f(xt) − xt, J(xt − xn)〉 + 2t‖xt − xn‖
2,

where

(2.17) fn(t) = (2‖xt − xn‖ + ‖xn − Txn‖)‖xn − Txn‖ → 0, as n → 0.

It follows that

(2.18) 〈xt − f(xt), J(xt − xn)〉 ≤
t

2
‖xt − xn‖

2 +
1

2t
fn(t).

Let n → ∞ in (2.18) and note (2.17) yields

(2.19) lim sup
n→∞

〈xt − f(xt), J(xt − xn)〉 ≤
t

2
M2,

where M2 > 0 is a constant such that M2 ≥ ‖xt − xn‖
2 for all t ∈ (0, 1) and

n ≥ 1. Taking t → 0 from (2.19), we have

lim sup
t→0

lim sup
n→∞

〈xt − f(xt), J(xt − xn)〉 ≤ 0.

So, for any ε > 0, there exists a positive number δ1 such that, for t ∈ (0, δ1),
we get

(2.20) lim sup
n→∞

〈xt − f(xt), J(xt − xn)〉 ≤
ε

2
.

On the other hand, since xt → q as t → 0, from Lemma 1.1, there exists
δ2 > 0 such that, for t ∈ (0, δ2) we have

|〈f(q) − q, J(xn − q)〉 − 〈xt − f(xt), J(xt − xn)〉|
≤ |〈f(q) − q, J(xn − q)〉 − 〈f(q) − q, J(xn − xt)〉|

+|〈f(q) − q, J(xn − xt)〉 − 〈xt − f(xt), J(xt − xn)〉|
≤ |〈f(q) − q, J(xn − q) − J(xn − xt)〉|

+|〈f(q) − f(xt) − q + xt, J(xn − q)〉|
≤ ‖f(q) − q‖‖J(xn − q) − J(xn − xt)‖

+‖f(q) − f(xt) − q + xt‖‖xn − q‖
< ε

2
.

Picking δ = min{δ1, δ2},∀t ∈ (0, δ), we have

〈f(q) − q, J(xn − q)〉 ≤ 〈xt − f(xt), J(xt − xn)〉 +
ε

2
.



STRONG CONVERGENCE THEOREMS FOR NONEXPANSIVE MAPPINGS 123

That is,

lim sup
n→∞

〈f(q) − q, J(xn − q)〉 ≤ lim sup
n→∞

〈xt − f(xt), J(xt − xn)〉 +
ε

2
.

It follows from (2.21) that

lim sup
n→∞

〈f(q) − q, J(xn − q)〉 ≤ ε.

Since ε is chosen arbitrarily, we have

(2.21). lim sup
n→∞

〈f(q) − q, J(xn − q)〉 ≤ 0

Finally, we show that xn → q strongly and this concludes the proof.
Indeed, using Lemma 1.2 again we obtain

‖xn+1 − q‖2 = ‖(1 − αn)(yn − q) + αn(f(xn) − q)‖2

≤ (1 − αn)2‖yn − q‖2 + 2αn〈f(xn) − q, J(xn+1 − q)〉

≤ (1 − αn)2‖xn − q‖2

+ 2αn〈f(xn) − f(q), J(xn+1 − q)〉 + 2αn〈f(q) − q, J(xn+1 − q)〉

≤ (1 − αn)2‖xn − q‖2 + 2αnα‖xn − q‖‖xn+1 − q‖

+ 2αn〈f(q) − q, J(xn+1 − q)〉

≤ (1 − αn)2‖xn − q‖2 + αnα(‖xn − q‖2 + ‖xn+1 − q‖2)

+ 2αn〈f(q) − q, J(xn+1 − q)〉.

Therefore, we obtain

‖xn+1 − q‖2

≤
1 − (2 − α)αn + α2

n

1 − ααn

‖xn − q‖2 −
2αn

1 − ααn

〈f(q) − q, J(xn+1 − q)〉

≤
1 − (2 − α)αn

1 − ααn

‖xn − q‖2 −
2αn

1 − ααn

〈f(q) − q, J(xn+1 − q)〉 + M2α
2
n

= (1 −
2(1 − α)αn

1 − ααn

)‖xn − q‖2

+
2(1 − α)αn

1 − ααn

(
M2(1 − ααn)αn

2(1 − α)
+

1

1 − α
〈f(q) − q), J(xn+1 − q)〉.

Now we apply Lemma 1.3 and use (2.21) to see that ‖xn − q‖ → 0. This
completes the proof.

As corollaries of Theorem 2.1, we have the following.

Corollary 2.2 Let C be a closed convex subset of a uniformly smooth Ba-
nach space E and let T1 : C → C be a nonexpansive mapping such that
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F (T1) 6= ∅. The initial guess x0 ∈ C is chosen arbitrarily and given se-
quences {αn}

∞

n=0 in (0,1) and {βn}
∞

n=0 in [0,1], the following conditions are
satisfied
(i)

∑

∞

n=0 αn = ∞, αn → 0, ;
(ii) βn < a, for some a ∈ [0, 1);
(iii)

∑

∞

n=0 |αn+1 − αn| < ∞,
∑

∞

n=0 |βn+1 − βn| < ∞.
Let {xn}

∞

n=1 be the composite process defined by (1.8), then {xn}
∞

n=1 con-
verges strongly to some fixed point p ∈ F (T1) which Q(f) solves the varia-
tional inequality

〈(I − f)Q(f), J(Q(f) − p)〉 ≤ 0, f ∈ ΠC , p ∈ F (T1).

Proof. By taking {γn} = 1, we can obtain the desired conclusion. This
completes the proof.

Corollary 2.3 (Xu [14]). Let E be a uniformly smooth Banach space, C

a closed convex subset of E and T : C → C a nonexpansive mapping with
F (T ) 6= ∅, and f ∈ ΠC . Assume that αn ∈ (0, 1) satisfies the following
conditions
(i) limn→∞ αn = 0;
(ii)

∑

∞

n=0 αn = ∞;
(iii)

∑

∞

n=0 |αn+1 − αn| ≤ ∞. Then the sequence {xn} generated by

x0 ∈ C, xn+1 = αnf(xn) + (1 − αn)Txn, n = 0, 1, 2, . . .

converges strongly to Q(f), which solves the variational inequality

〈(I − f)Q(f), J(Q(f) − p)〉 ≤ 0, f ∈ ΠC , p ∈ F (T ).

Proof. By taking {γn} = 1 and {βn}=0, we can obtain the desired conclu-
sion. This completes the proof.
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