
ar
X

iv
:1

01
1.

55
45

v1
  [

cs
.C

R
] 

 2
5 

N
ov

 2
01

0 On Functional Decomposition of

Multivariate Polynomials with

Differentiation and Homogenization1

Shangwei Zhao, Ruyong Feng and Xiao-Shan Gao

KLMM, Academy of Mathematics and Systems Science

Chinese Academy of Sciences, Beijing 100190, China

Abstract

In this paper, we give a theoretical analysis for the algorithms to

compute functional decomposition for multivariate polynomials based

on differentiation and homogenization which are proposed by Ye, Dai,

Lam (1999) and Faugère, Perret (2006, 2008, 2009). We show that a

degree proper functional decomposition for a set of randomly decom-

posable quartic homogenous polynomials can be computed using the

algorithm with high probability. This solves a conjecture proposed by

Ye, Dai, and Lam (1999). We also propose a conjecture such that the

decomposition for a set of polynomials can be computed from that of

its homogenization with high probability. Finally, we prove that the

right decomposition factors for a set of polynomials can be computed

from its right decomposition factor space. Combining these results

together, we prove that the algorithm can compute a degree proper

decomposition for a set of randomly decomposable quartic polynomi-

als with probability one when the base field is of characteristic zero,

and with probability close to one when the base field is a finite field

with sufficiently large number under the assumption that the conjec-

ture is correct.
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1 Introduction

Public key cryptography often relies on a hard mathematical problem. One
of the hard mathematical problems used in cryptosystems is the functional
decomposition problem (FDP) for multivariate polynomials [16]. The gen-
eral FDP for multivariate polynomials has been proved NP-hard by Dick-
erson (1989). Based on this fact, Patarin and Goubin (1997) proposed 2R
scheme which is based on the difficulty of decomposing a set of quartic poly-
nomials. In the original design, K denotes a finite field of q elements. The
private key consists of:

1. Three linear bijections r, s, t: Kn → Kn.

2. Two quadratic polynomial mappings ψ, φ: Kn → Kn.

The public key consists of:

1. The field K and n.

2. The composition of polynomial mapping π = t ◦ψ ◦ s ◦ φ ◦ r, which is
a set of polynomials of degree four.

In the encryption system, the quadratic polynomials are chosen from
the given S-boxes, which can be inverted easily. Given the composition of
two quadratic polynomials, if we know the private key, then we can obtain
the plaintext. Otherwise, it is difficult to invert the polynomials of degree
four directly. So, attack on the 2R scheme is reduced to the functional
decomposition of quartic polynomials.

Efficient algorithms for several special forms of FDP are known. Polynomial-
time algorithms are proposed for univariate decomposition of multivari-
ate polynomials and multivariate decomposition of univariate polynomials
[5, 6, 7]. Efficient algorithms for a kind of monomial decompositions of
rational functions are proposed in [1], which is further extended to a com-
plete decomposition algorithm for rational parametrization of ruled-surfaces
[13, 14].

Ye, Dai, and Lam (1999) proposed an efficient algorithm for decomposing
a set of n polynomials of degree four into two sets of quadratic polynomials
[19]. The key idea of computing the FDP is to differentiate f to obtain a set
of cubic polynomials and try to recover the right decomposition factors from
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these cubic polynomials. The idea of differentiation introduced in [19] is a
very powerful technique in tackling FDP of multivariate polynomials. In a
series of papers [8, 9, 10], Faugère and Perret made significant contributions
to this problem by integrating the idea of differentiation and fast Gröbner
basis computation. In particular, they proposed polynomial-time algorithms
for FDP of semi-regular multivariate polynomial sets. As a consequence,
the current known schemes based on FDP of multivariate polynomials are
considered broken.

As far as we know, the method based on differentiation and homogeniza-
tion is the only efficient approach to tackle some of the general FDP. But,
these algorithms make strong assumptions on the input polynomial sets and
these assumptions are expected to be valid and can be removed. This paper
focuses on the theoretical analysis of the decomposition algorithm based on
differentiation and homogenization. The main contribution is that the al-
gorithm can be used to compute a degree proper decomposition for a set of
randomly decomposable quartic homogeneous polynomials with probability
one when the base field is of characteristic zero, and with probability close
to one when the base field is a finite field with sufficiently large number in
polynomial time. And if the conjecture we proposed is correct, it holds for
nonhomogeneous case.

We show that a degree proper functional decomposition for a set of
randomly decomposable quartic homogenous polynomials can be computed
using the algorithm with high probability. This solves a conjecture proposed
by Ye, Dai, and Lam (1999). We also propose a conjecture such that the
decomposition for a set of polynomials can be computed from that of its
homogenization with high probability. Finally, we prove that the right de-
composition factors for a set of polynomials can be computed from its right
decomposition factor space. Combining these results together, we prove that
if the conjecture is correct then the algorithm can compute a degree proper
decomposition for a set of randomly decomposable quartic polynomials with
probability one when the base field is of characteristic zero, and with prob-
ability close to one when the base field is a finite field with sufficiently large
number.

The rest of this paper is organized as follows. In section 2, we give
the main result. In sections 3, 4 and 5, we prove our results for the three
major steps of the algorithm. In section 6, the algorithm is given and its
complexity is analyzed. In section 7, we conclude the paper by proposing
two open problems.
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2 Problem and main result

In this section, we will present the problem and give the main results of the
paper.

LetK be a field andR = K[x1, . . . , xn] the polynomial ring in indetermi-
nates x1, . . . , xn over K. For natural numbers u and m, the functional com-
position of two sets of multivariate polynomials g = (g1, . . . , gu)∈K[x1, . . . , xm]u

and h = (h1, . . . , hm)∈Rm is a set of polynomials in Ru:

(f1, . . . , fu) = (g1(h1, . . . , hm), . . . , gu(h1, . . . , hm)). (1)

That is,
f = g ◦ h

We call g and h the left and right decomposition factors of f respectively.
The decomposition is called nontrivial if both g and h contain nonlinear
polynomials.

The functional decomposition problem (FDP) of multivariate poly-
nomials is the inverse of the above functional composition procedure. That
is, given a set of u polynomials f = (f1, . . . , fu)∈Ru and a positive number
m, to find g = (g1, . . . , gu)∈ K[x1, . . . , xm]u and h = (h1, . . . , hm)∈Rm such
that f = g ◦ h.

It is shown that f always has a nontrivial decomposition when m > n,
which is easy to construct [4]. Then we assume that 1 ≤ m ≤ n. Moreover,
note that in cryptosystems, the field K is usually finite and we usually
consider the case that m = n. So in the following paper, assume that
m = n.

A basic idea of the differentiation approach is to compute the linear
space generated by the right factors of f from the linear space generated by
certain differentiations of the polynomials in f . For a polynomial sequence
f = (f1, . . . , fu) ∈ Ru with a decomposition like (1), let

R(f :h) = spanK{h1, . . . , hn}

be the linear space generated by hi over K, called a right factor space

of f .

Another idea of the approach is to use homogenization. More precisely,
we first compute a decomposition for the homogenization of f and then try to
recover a decomposition of f from this decomposition. Let df = max(dfi),
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dg = max(dgi), dh = max(dhi
). The homogenizations of f , g, h are

respectively defined as follows [9, 19]:

f∗ = (x
df
0 , x

df
0 f1(

x1
x0
, . . . ,

xn
x0

), . . . , x
df
0 fu(

x1
x0
, . . . ,

xn
x0

))

g∗ = (x
dg
0 , x

dg
0 g1(

x1
x0
, . . . ,

xn
x0

), . . . , x
dg
0 gu(

x1
x0
, . . . ,

xn
x0

))

h∗ = (xdh0 , x
dh
0 h1(

x1
x0
, . . . ,

xn
x0

), . . . , xdh0 hn(
x1
x0
, . . . ,

xn
x0

)).

Then the approach proposed in [8, 9, 10, 19] can be divided into three
major steps which will be explained later.

Algorithm FDPMP

• Compute a right factor space R(f∗:h∗) for the homogenization f∗ of f .

• Compute a right factor space R(f :h) from R(f∗:h∗).

• Compute an FDP for f from R(f :h).

We will show that there exists a complete polynomial time algorithm for
Step 3, while for Step 1, there exist probabilistic algorithms in certain cases.
We will discuss Steps 1, 2, 3 in the next three sections.

A decomposition f = g ◦ h satisfying the following condition

df = dg · dh (2)

is called a degree proper decomposition, where df , dg, and dh are the
degrees of f , g, and h respectively. All decompositions in this paper are
assumed to be degree proper unless mentioned otherwise. In this paper,
we will show that the scheme FDPMP can be developed into a polynomial
time decomposition algorithm for certain degree proper decompositions with
high probability for random homogeneous polynomials. Here, a set of poly-
nomials f is called random or randomly decomposable if f = g ◦ h and
g, h are random polynomials.

Theorem 2.1 Let f ∈ K[x1, . . . , xn]
n be a set of quartic homogeneous poly-

nomials, each polynomial is of the same degree, for n ≥ 5, we have a poly-

nomial time probabilistic algorithm to find a degree proper decomposition

f = g ◦ h for g, h ∈ K[x1, . . . , xn]
n. For a random decomposition f , the
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algorithm will give correct result with probability one when K is of char-

acteristic zero, and with probability close to one when K = Fq and q is a

sufficiently large number.

If the conjecture proposed in Step 2 is correct, then we have the following
theorem.

Theorem 2.2 Let f ∈ K[x1, . . . , xn]
n be a set of polynomials with degree

less than or equal to four, and at least one polynomial has degree four. As-

sume that Conjecture 5.4 is correct, then, for n ≥ 5, we have a polynomial

time probabilistic algorithm to find a degree proper decomposition f = g ◦ h
for g, h ∈ K[x1, . . . , xn]

n. For a random decomposition f , the algorithm

will give correct result with probability one when K is of characteristic zero,

and with probability close to one when K = Fq and q is a sufficiently large

number.

The main idea to prove the above result is to consider the generic
FDP. A generic polynomial of degree d in K[x1, . . . , xn] is of the form∑
ui1...inx

i1
1 · · · xinn (i1 + · · · + in ≤ d) where ui1...in are indeterminates. An

FDP f = g ◦ h is call a generic decomposition if g and h are generic
polynomials of degrees greater than one.

We will show that if f = g ◦ h is a generic FDP for two quadratic poly-
nomials g and h, then we can compute g and h with a polynomial number
of arithmetic operations in the coefficients fields of g and h. Furthermore,
when the coefficients of g and h specialize to concrete values in the base field
K, the algorithm still works with probability close to one.

Remark 2.3 Let N = n(n + 1)(n + 2). Then the coefficients of g and

h can be considered as an element of KN . For convenience, we can also

say that (g, h) is an element of K2N . From the above analysis, if K is of

characteristic zero, then the coefficients of g and h for which the algorithm

fails to compute the decomposition g ◦ h consists of an algebraic variety in

KN . In other words, these (g, h) is a subset of KN with dimensions lower

than 2N . In this sense, we say that the algorithm will succeed with probability

one. If K is a finite field, we will give an estimation of the size of the failure

subset and show that it is very small compared with N .
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3 Compute an FDP from a right factor space

In this section, we will show how to compute a decomposition for f from
its right factor space efficiently. We discuss this problem first, because the
result in this section will be used in Section 5. Also, among the three steps of
the Algorithm FDPMP, this is the only step that has a complete solution.

We first prove several basic properties for R(f :h).

Lemma 3.1 Two equivalent decompositions of f have the same right factor

space.

Proof. Suppose that f has two equivalent decompositions g ◦ h = g′ ◦ h′.
By the definition of equivalent decompositions, there exists a nonsingular
matrix A ∈ GLn(K) such that h′ = h · A. Therefore, spanK{h1, . . . , hn} =
spanK{h′1, . . . , h′n}.

The following result shows that the FDP of a set of polynomials can be
reduced to the FDP of several single polynomials. Denote the set of all right
factor spaces of F by SRF .

Lemma 3.2 If f = (f1, . . . , fu) ∈ Ru, then

SRf = ∩u
i=1SRfi . (3)

Proof. It is clear that SRf ⊆ ∩u
i=1SRfi . Assume that W ∈ ∩u

i=1SRfi

and h1, · · · , hm be a basis of W . Then there are gi ∈ K[x1, · · · , xm] such
that fi = gi(h1, · · · , hm). Hence W ∈ SRf .

Since computing the intersection of two linear spaces is easy, we may
reduce the FDP of f to the FDP of a single polynomial fi.

The approaches in [8, 19] are based on the idea of right factor space. But,
the power of this idea is not fully explained in previous work. For instance,
it is assumed that the rank of Rf is n in [9]. It is clear that this condition
is not necessarily correct since h can be a set of arbitrary polynomials. For
instance, if h = (

∑n
i=1 x

2
i , x

2
2, . . . , x

2
2) then the rank of Rf is always two for

any decomposition f = g ◦ h.
The following result shows that we can recover a right decomposition

factor for f from R(f :h) under any condition.
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Theorem 3.3 Let B = {b1, . . . , bk} be a basis of R(f :h) = spanK{h1, . . . , hn}.
If dim(R(f :h)) = k = n, then B is a right decomposition factor of f . If

dim(R(f :h)) = k < n, then (b1, . . . , bk, b1, . . . , b1) is a right decomposition

factor of f .

Proof. Firstly, assume that dim(R(f :h)) = n. Since {h1, . . . , hn} ∈ R(f :h)

and B is a basis of R(f :h), each hi can be expressed as a linear combination
of {b1, . . . , bn}. That is, there exists an invertible matrix P ∈ GLn(K) such
that (h1, . . . , hn) = (b1, . . . , bn) · P . Then f = g ◦ h = g(X · P ) ◦ (h · P−1) =
g(X · P ) ◦ (b1, . . . , bn), where X = (x1, . . . , xn). Therefore, B is also a right
decomposition factor of f .

Secondly, let dim(R(f :h)) = k < n. For the decomposition of f = g ◦ h,
since {h1, . . . , hn} ∈ R(f :h) and B is a basis of R(f :h), hi =

∑k
j=1 ai,jbj.

Therefore, we have

(h1, . . . , hn) = (b1, . . . , bk)




a11 . . . an1
...

. . .
...

a1k . . . ank


 .

and (aij)k×n contains a nonsingular k×k submatrix, or else dim(spanK{h1, . . . , hn}) <
k, a contradiction.

Suppose that

det




a11 . . . ak1
...

. . .
...

a1k . . . akk


 6= 0.

Then (h1, . . . , hn) = (b1, . . . , bk, hk+1, . . . , hn)A, where

A =




a11 . . . ak1
...

. . .
...

a1k . . . akk
In−k



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is an n× n invertible matrix. Moreover, let

B =




−ak+1,1 + 1 −ak+2,1 + 1 . . . −an,1 + 1
−ak+1,2 −ak+2,2 . . . −an,2

Ik
...

...
. . .

...
−ak+1,k −ak+2,k . . . −an,k

In−k




be an n× n invertible matrix. It is easy to see that

(b1, . . . , bk, b1, . . . , b1) = (b1, . . . , bk, hk+1, . . . , hn)B.

Hence,
(h1, . . . , hn) = (b1, . . . , bk, b1, . . . , b1)B

−1A.

SinceB−1A is nonsingular, there exists a g′′ such that f = g′′◦(b1, . . . , bk, b1, . . . , b1)
which is an equivalent form of f = g◦h. So we can choose (b1, . . . , bk, b1, . . . , b1)
as a right decomposition factor of f .

Note that the last n− k elements b1 in the right factor can be replaced

with any bi in Theorem 3.3.

Corollary 3.4 Corresponding to a given right factor space R(f :h), f has a

unique decomposition under the relation of equivalence.

Restricted to decomposition of quartic polynomials considered in Theo-
rem 2.2, we have the following result.

Theorem 3.5 Use the same assumption as Theorem 2.2. If R(f :h) is known,

we can compute g with O(n3ω) arithmetic operations in the field K, where

2 ≤ ω < 3.

Proof. Suppose R(f :h) = spanK(h1, . . . , hk) is known. Then a right de-
composition factor of f is also known by Theorem 3.3. To find g, we may
simply by solving a system of linear equations with the coefficients of g as
indeterminates. Note that g has nC2

n = O(n3) coefficients. Then we need
O((n3)ω) = O(n3ω) arithmetic operations in K to find g, where ω is the
matrix exponent [2] to measure the complexity of solving linear equations.
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4 Decomposition of a set of homogenous polyno-

mials

In this section, we consider the decomposition of f when each polynomial
of it is homogeneous of the same degree. More precisely, we will consider
the following problem: “Let f be a set of quartic homogeneous polynomials.
Find a decomposition f = g◦h where g, h are sets of quadratic homogeneous
polynomials.”

We may consider the problem in two steps. First, we compute the fol-
lowing linear space over K

Ṽf = spanK{ ∂fi
∂xj

: 1 ≤ i ≤ u, 1 ≤ j ≤ n}. (4)

Since f = g ◦ h and g consists of quadratic polynomials, it is clear that Ṽf
is contained in the following linear space.

Vf = spanK{xihj : 1 ≤ i, j ≤ n}. (5)

The following example shows that Ṽf could be a proper subset of Vf .

Example 4.1 Let f = (xy2z, x2y2 + xy2z, xy2z + y2z2), g = (xz, x2 +

xz, xz+z2), h = (xy, y2, yz). It is easy to check that f = g◦h. We have Ṽf =

spanK{xyz, y2z, yz2, xy2, x2y} and Vf = spanK{xyz, y2z, yz2, xy2, x2y, y3}.
Ṽf is a proper subset of Vf . Later in this section, we will see that h cannot

be recovered from its corresponding Ṽf in this example.

The idea of the algorithm is to compute Ṽf first, then try to recover Vf
from Ṽf , and finally compute R(f :h) from Vf . We will analyze the above
procedure in the following two subsections. The problem is divided into two
cases: u = n or u < n.

4.1 The case when u = n

We divide the procedure into two steps: to compute Vf from Ṽf and to
recover R(f :h) from Vf .

A. Compute Vf from Ṽf

10



When u = n, Ṽf is generated by n2 cubic polynomials, and dim(Ṽf ) ≤
dim(Vf ) ≤ n2. In the next theorem, we will show that the probability for

Ṽf = Vf is close to one under some conditions. The idea of the proof is
to find a nonsingular matrix A in some indeterminates such that if a set of
specialization of these indeterminates does not vanish |A| then Ṽf = Vf .

Theorem 4.2 For randomly chosen g and h, let f = g ◦ h. Then

1. Ṽf = Vf with probability one when the field K is of characteristic zero.

2. Ṽf = Vf with probability close to one when K = GF (q) and q is

sufficiently large.

Proof. Assume that

fi =
∑

1≤k,l≤n

a
(i)
k,lhkhl, (1 ≤ i ≤ n)

where a
(i)
k,l = a

(i)
l,k for 1 ≤ k, l ≤ n, and

hi =
∑

1≤k≤l≤n

b
(i)
k,lxkxl, (1 ≤ i ≤ n).

Then
∂fi
∂xj

=
∑

1≤k,l≤n

a
(i)
k,l(hk

∂hl
∂xj

+ hl
∂hk
∂xj

).

Let

Ui =

(
∂f1
∂xi

,
∂f2
∂xi

, · · · , ∂fn
∂xi

)
, Vi = (xih1, xih2, · · · , xihn) , for i = 1, · · · , n.

Let U = (U1, U2, · · · , Un)
T and V = (V1, V2, · · · , Vn)T . Each ∂fi

∂xj
can be

represented by a linear combination of {xkhl, 1 ≤ k, l ≤ n} over K and the

coefficients are expressions in a
(i)
k,l, b

(i)
k,l. So, there exists an n2 × n2 matrix A

such that U = A · V where the elements of A are polynomials in a
(i)
k,l, b

(i)
k,l.

We will prove the det(A) 6= 0. We make the following substitutions in A:

a
(i)
k,l = (k + l)i and b

(i)
k,l = δk,l and denote the new matrix by Ā, where

11



δk,l is the Kronecker’s delta. After making these substitutions, one has
fi =

∑
k,l(k + l)ix2kx

2
l and hi = x2i for 1 ≤ k, l, i ≤ n. Now we have

∂fi
∂xs

= 4
n∑

k=1

(s+ k)ixsx
2
k, for i, s = 1, · · · , n,

which imply that for all s = 1, · · · , n,



∂f1
∂xs

∂f2
∂xs

...

∂fn
∂xs




=




4(1 + s) 4(2 + s) . . . 4(n+ s)

4(1 + s)2 4(2 + s)2 . . . 4(n + s)2

...
...

...

4(1 + s)n 4(2 + s)n . . . 4(n + s)n




·




xsx
2
1

xsx
2
2

...

xsx
2
n



.

Therefore det(Ā) is the products of a constant and n Vandermonde deter-
minants, which is nonzero. Hence det(A) 6= 0. One can easily see that the

total degree of det(A) in a
(i)
k,l, b

(i)
k,l equals 2n

2.

When g and h specialize to concrete polynomials inK[x1, . . . , xn]
n, if A is

invertible then each element of Vf can be represented by a linear combination

of the elements of Ṽf . So, Vf = Ṽf .

When K is of characteristic zero, det(A) 6= 0 with probability one in
the sense explained in Remark 2.3. When K = GF (q), det(A) 6= 0 with

probability at least q−d
q

= q−2n2

q
which is close to one when q is sufficiently

large [15]. These conclude the theorem.

When Ṽf 6= Vf , Ye et al proposed a heuristic method to enlarge Ṽf , but

there is no theoretical guarantee that the enlarged Ṽf is equal to Vf [19].

B. Recover R(f :h) from Vf

In this subsection, we assume that the space Vf is known and show how
to recover R(f :h) from Vf . Given a vector space V ⊆ K[x1, · · · , xn] and a
set S ⊆ K[x1, · · · , xn], we define (V : S) = {h|∀s ∈ S, sh ∈ V }.

By the definition of Vf , xihj ∈ Vf for all i, j. Hence, hj ∈ (Vf : xi), and
then R(f :h) ⊆ (Vf : xi), for all i. So we have

R(f :h) ⊆ ∩i(Vf : xi) = (Vf : L),

where L is the linear space generated by the variables x1, . . . , xn.

12



Note that R(f :h) ⊆ (Ṽf : L) does not always hold. In Example 4.1,

(Ṽf : L) = {yz, xy} while R(f :h) = {yz, xy, y2}. (Ṽf : L) is a proper subset
of R(f :h). However, by Theorem 4.2, in the general case, R(f :h) ⊆ (Vf : L) =

(Ṽf : L) with probability one when K is of characteristic zero and close to
one when K = GF (q) and q is sufficiently large.

One may ask that whether R(f :h) = (Vf : L)? It is not always true as

shown by the following example.

Example 4.3 Let f = (x2y2, x4 + y4), g = (xy, x2 + y2) and h = (x2, y2).

(Vf : L) = spanK{xy, x2, y2}. R(f :h) is a proper subset of (Vf : L).

Ye et al proposed a conjecture which suggests that for random R(f :h), the two
spaces are equal with probability close to one no matter whether dim(R(f :h)) =
n or dim(R(f :h)) < n [19]. The conjecture is as follows:

Conjecture Y[19, p319] Let W be a linear space of dimension ≤ n
consisting of quadratic forms in n variables x1, . . . , xn, and L be the linear
space generated by x1, . . . , xn, V =

∑
1≤i≤n xiW . For randomly chosen W ,

the probability ρ that (V : L) =W is very close to one when n > 2.

It is one of the theoretical foundations of the differentiation approach.
The authors [19] did not prove it and just gave a justification with some
heuristic arguments. The work of Faugère and Perret is also based on this
basic fact. When the number of (Vf : L) equals n, they regarded (Vf : L) as
R(f :h) in their algorithm [8, 9].

We will give a proof of the conjecture when n ≥ 5. Actually, we will
extend the conjecture into a more general case that W and L are linear
spaces consisting of homogeneous polynomials with higher degree and give
a proof for this extension of the conjecture. The assumption n ≥ 5 is not
a strict limitation since in practical usages, n is much larger than five. The
number q is always large in 2R or 2R− scheme [8, 9]. Before proving the
conjecture, we need a technical lemma. Let P = (p1, · · · , pn) ∈ N

n. In
the following, we will always use XP to denote the monomial xp11 · · · xpnn
and M(d′, x1, · · · , xn) to denote the set of all monomials in x1, · · · , xn with
degree d′.

Lemma 4.4 Assume that hi =
∑

|P |=d a
(i)
P XP ∈ K[a

(i)
P , x1, · · · , xn] are ho-

mogeneous polynomials in x1, · · · , xn with degree d, where i = 1, · · · , n + 1

and a
(i)
P ∈ K. Assume that d′ < d and n ≥ 2d. Then if {mhi|m ∈
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M(d′, x1, · · · , xn), i = 1, 2, · · · , n + 1} are linearly dependent over K, then(
a
(i)
P

)
will vanish a set of polynomials with total degree at most n

(
n+d′−1

d′

)
.

Proof. Let us consider a
(i)
P as indeterminates for a moment. Assume that

H =
∑
cm,imhi where cm,i are indeterminates. Regarding H as a poly-

nomial in x1, · · · , xn, one can see that H is a polynomial with
(
n+d+d′−1

d+d′

)

monomials whose coefficients are polynomials in cm,i, a
(i)
P . Setting H = 0,

one can get a system of the equations as follows: A~c = 0, where A is a(
n+d+d′−1

d+d′

)
by n

(
n+d′−1

d′

)
matrix with entries linearly in the a

(i)
P , and ~c =

(cm1,1, · · · , cmj ,i, · · · ). By the computation, one can show that
(
n+d+d′−1

d+d′

)
>

n
(
n+d′−1

d′

)
. Hence A is of full rank if and only if {mhi|m ∈M(d′, x1, · · · , xn), i =

1, . . . , n+ 1}, are linearly independent. To prove A is of full rank, one only
need to prove this for a specialization of A. Since n ≥ 2d, let h1 = xd1, h2 =
xd2, . . . , hn = xdn, hn+1 = x1x2 · · · xd + xd+1xd+2 · · · x2d. It leads to a spe-
cialization of the matrix A. Denote this specialization by Ā. We claim
that Ā is of full rank, which is equivalent to claim that the polynomials
mxdj ,m(x1 · · · xd + xd+1 · · · x2d),m ∈ M(d′, x1, · · · , xn), j = 1, · · · , n, are
linearly independent. Assume that

H̄ =
∑

m,i

c̄m,imx
d
i +

∑

m

b̄mm(x1 · · · xd + xd+1 · · · x2d) = 0

where c̄m,i, b̄m ∈ K. For convenience, denote ∂xq11 · · · ∂xqnn by ∂m where
m = xq11 · · · xqnn . One can see that

∂d+d′(H̄)

∂mxdi
=

{
∗c̄m,i ∀ m′ ∈M,m′x1 · · · xd 6= mxdi and m′xd+1 · · · x2d 6= mxdi ;

∗c̄m,i + ∗b̄m′ ∃ m′ ∈M s.t. m′x1 · · · xd = mxdi or m′xd+1 · · · x2d = mxdi ;

∂d+d′(H̄)

∂mh
=

{
∗b̄m h = x1 · · · xd and ∀ m′ ∈M ∀ i, mx1 · · · xd 6= m′xdi ;

∗c̄m′,i + ∗b̄m h = xd+1 · · · x2d and ∃ m′ ∈M ∃ i s.t. mx1 · · · xd = m′xdi ;

where ∗ denote positive integers. Since ∂d+d′(H̄)
∂m̃

= 0 for all monomials m̃,

the claim is proved. Therefore A is of full rank. Now consider the a
(i)
P as

the elements in K. If {mhi|m ∈ M(d′, x1, · · · , xn), i = 1, 2, · · · , n + 1} are
linearly dependent, which implies that A~c = 0 has a nontrivial solution,

then
(
a
(i)
P

)
must vanish the determinants of all n

(
n+d′−1

d′

)
by n

(
n+d′−1

d′

)

submatrices of A. This completes the proof.
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Let h = (h1, h2, · · · , hn) where the hi are homogeneous polynomials with
the same degrees in K[x1, · · · , xn] and let dh be the degree of hi. Denote

U(h, d′) = spanK{mhi|m ∈M(d′, x1, · · · , xn), i = 1, 2, · · · , n}.

Let W = spanK{h1, · · · , hn}. Then we have

Theorem 4.5 For randomly chosen h1, h2, · · · , hn, if d′ < dh and n > 2dh,

then the probability ρ that (U(h, d′) : xd
′

1 ) = W is one when the field K is

of characteristic zero and close to one when K = GF (q) with q sufficiently

large.

Proof. Assume that hi =
∑

|P |=dh
a
(i)
P XP ∈ K[x1, · · · , xn], where the

a
(i)
P ∈ K. Denote U = {H ∈ U(h, d′)| xd′1 |H}. For ∑iGihi ∈ U , let

Gi = G̃0,ix
d′

1 + G̃1,ix
d′−1
1 + . . .+ G̃d′−2,ix

2
1 + G̃d′−1,ix1 + G̃d′,i

and

hi = h̃0,ix
dh
1 + h̃1,ix

dh−1
1 + . . .+ h̃dh−2,ix

2
1 + h̃dh−1,ix1 + h̃dh,i,

where G̃0,i, G̃1,i, . . . , G̃d′,i are homogeneous polynomials in x2, . . . , xn with

degree 0, 1, . . . , d′ respectively and h̃0,i, h̃1,i, . . . , h̃dh ,i are homogeneous poly-
nomials in x2, . . . , xn with degree 0, 1, . . . , dh respectively. Since

∑
iGihi ≡

0 mod xd
′

1 , we have

∑

i

Gihi ≡
∑

i

(
xd

′−1
1

(
G̃1,ih̃dh,i + G̃2,ih̃dh−1,i + . . . + G̃d′,ih̃dh−d′+1,i

)

+xd
′−2

1

(
G̃2,ih̃dh,i + G̃3,ih̃dh−1,i + . . . + G̃d′,ih̃dh−d′+2,i

)
+ . . .

+x21

(
G̃d′−2,ih̃dh,i + G̃d′−1,ih̃dh−1,i + G̃d′,ih̃dh−2,i

)

+x1

(
G̃d′−1,ih̃dh,i + G̃d′,ih̃dh−1,i

)
+ G̃d′,ih̃dh,i

)

≡ 0 mod xd
′

1 .
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Therefore,
∑

i

(
G̃1,ih̃dh,i + G̃2,ih̃dh−1,i + . . . + G̃d′,ih̃dh−d′+1,i

)
= 0, (6)

∑

i

(
G̃2,ih̃dh,i + G̃3,ih̃dh−1,i + . . . + G̃d′,ih̃dh−d′+2,i

)
= 0, (7)

...∑

i

(
G̃d′−2,ih̃dh,i + G̃d′−1,ih̃dh−1,i + G̃d′,ih̃dh−2,i

)
= 0, (8)

∑

i

(
G̃d′−1,ih̃dh,i + G̃d′,ih̃dh−1,i

)
= 0, (9)

∑

i

G̃d′,ih̃dh,i = 0. (10)

Assume that for each 1 ≤ k ≤ d′, {mxdi |m ∈M(k, x2, · · · , xn), i = 2, · · · , n}
are linearly independent. Then by the equalities (6) - (10), one has G̃j,i = 0

for j = 1, · · · , d′ and i = 1, · · · , n. Therefore U = {∑i G̃0,ihi} ⊆ W . Note
that (U(h, d′) : xd

′

1 ) = U . Hence (U(h, d′) : xd
′

1 ) = W . By Lemma 4.4, the

a
(i)
P such that for some k ≤ d′, {mhi|m ∈M(k, x2, · · · , xn), i = 1, · · · , n} are

linearly dependent are the zeroes of some polynomials with degree at most

(n− 1)
(
n+d+k−2

d+k

) (
≤ (n − 1)

(
n+d+d′−2

d+d′

)
, N

)
.

Hence when K is of characteristic zero, the probability that (U(h, d′) :
xd

′

1 ) =W is one; whenK = GF (q), the probability that (U(h, d′) : xd
′

1 ) =W
is at least q−N

q
which is close to one when q is sufficiently large [15].

Remark 4.6 In general, when K is algebraically closed, Theorem 4.5 does

not hold for sufficiently large integer d′. For randomly chosen h1, · · · , hn, the
set of zeroes of {h1, · · · , hn} in P(K)n−1 is empty, where P(K)n−1 is n− 1

dimension projective space over K. Then by the Projective Weak Nullstel-

lensatz Theorem (Theorem 8, p.374, [3]), there is some integer r such that <

x1, · · · , xn >r⊆< U(h, r− dh) >. Let d′ = r− dh. Then M(r, x1, · · · , xn) ⊆
U(h, d′), which implies that M(dh, x1, · · · , xn) ⊆ (U(h, d′) : xd

′

1 ). However,

in general, W 6= spanK(M(dh, x1, · · · , xn)).

Corollary 4.7 Conjecture Y is correct over K when n ≥ 5, where K

is of characteristic zero or is a finite field consisting of a sufficiently large
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number of elements.

As a consequence of Theorem 4.2 and Corollary 4.7, we have the following

result.

Theorem 4.8 If f is a random decomposition and n ≥ 5, then (Ṽf : L) =

R(f :h) with probability one when K is of characteristic zero and with proba-

bility close to one when q is sufficiently large where K = GF (q).

Therefore, we can recover R(f :h) from Ṽf directly with high probability if
the FDP of f is randomly chosen.

Faugère and Perret assumed that Ṽf = Vf in their papers, since they
assumed that the decomposition is random, the dimension of R(f :h) spanned

by h1, . . . , hn is n, and dim(Ṽf ) ≥ dim(Vf ) [8].

Theorem 4.9 Under the same assumptions as Theorem 4.8. If Ṽf is known,

we can compute R(f :h) with complexity O(n3ω) arithmetic operations in K

with probability one when K is of characteristic zero and with probability

close to one when q is sufficiently large when K = GF (q).

Proof. It suffices to randomly choose a linear polynomial l in x1, . . . , xn and
compute (Ṽf : l) to obtain R(f :h). Without loss of generality, assume that
l = x1 + c2x2 + · · ·+ cnxn. Denote it by X =Ml · Y .

For all f ∈ K[x1, . . . , xn], defineMl(f) = f |X=Ml·Y , M
−1
l (g) = g|

Y =M−1

l
·X ,

where g ∈ K[y1, . . . , yn]. ThenM
−1
l Ml(f) = f , andMl(f1f2) =Ml(f1)Ml(f2).

So Ml(l) = l|X=Ml·Y = y1. Let Ml(Ṽf ) = {p|X=Ml·Y : for all p ∈ Ṽf}.
Then we have r ∈ (Ṽf : l) ⇔ rl ∈ Ṽf ⇔Ml(rl) ∈Ml(Ṽf ) ⇔Ml(r)Ml(l) ∈

Ml(Ṽf ) ⇔ Ml(r) ∈ (Ml(Ṽf ) : Ml(l)) ⇔ Ml(r) ∈ (Ml(Ṽf ) : y1) ⇔ r ∈
M−1

l (Ml(Ṽf ) : y1). That is, (Ṽf : l) =M−1
l (Ml(Ṽf ) : y1).

So in order to compute (Ṽf : l), we can first transform the polynomials

in Ṽf by a nonsingular coordinate substitution X =Ml ·Y to obtainMl(Ṽf ),

and then compute (Ml(Ṽf ) : y1). Finally, transform (Ml(Ṽf ) : y1) to (Ṽf : l)
by the inverse transformation Y =M−1

l ·X. The main arithmetic complexity

relies on the computation of (Ml(Ṽf ) : y1).

We construct a matrix S to represent the polynomials of Ml(Ṽf ) in
a basis of monomials of degree three. Each row of S corresponds to the
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coefficients of each polynomial of Ml(Ṽf ) with respect to the monomials
of degree three. Suppose that the monomials are sorted so that the last
n(n+ 1)/2 columns of S correspond to monomials which can be divided by
y1. Then perform linear elimination to S, we can obtain polynomials which
can be divided by y1, denoted by ti, i = 1, . . . , k, if n ≥ 5, then k ≤ n [10].
Then (Ml(Ṽf ) : y1) = {ti/y1, i = 1, . . . , k}. Note that S is an n2 × C3

n+2

matrix. Then we need O((n3)ω) = O(n3ω) arithmetic operations to compute
(Ml(Ṽf ) : y1). The whole arithmetic complexity of computing (Ṽf : l) is also
O(n3ω).

4.2 The case when u < n

We now consider the case of u < n. In this case, Faugère and Perret extended
Ṽf and Vf to new linear spaces Ṽfd and Vfd:

Ṽfd = spanK{m∂fi
∂xj

: m ∈M(d), 1 ≤ i ≤ u, 1 ≤ j ≤ n}, (11)

Vfd = spanK{m′hj : m
′ ∈M(d+ 1), 1 ≤ i, j ≤ n}, (12)

where M(d) represents the set of monomials of degree d. It is obvious that

Ṽfd ⊆ Vfd. The authors [8, 9] required dim(Ṽfd) ≥ dim(Vfd) by choosing a

proper integer d, which means Ṽfd = Vfd.

Assume Vfd is known, and try to recover R(f :h) from Vfd. By the defini-

tion of Vfd, mhj ∈ Vfd for all m ∈M(d+1) and j. Hence, hj ∈ (Vfd : xd+1
i ),

and then R(f :h) ⊆ (Vfd : xd+1
i ), for all i. Hence, R(f :h) ⊆ ∩i(Vfd : xd+1

i ).
The approach in [8, 9, 10] makes use of this property, and recovers R(f :h) by

computing the quotient (Vfd : xd+1
i ) for some i. The authors [8, 9, 10] chose

that i = n.

In the case that dg = dh = 2, Theorem 4.5 fails.

However, in the general case, if the degrees of g and h are more than 2,
then from Theorem 4.5, we can compute R(f :h) by computing the quotient

(Vfd : xd+1
i ) when d+ 1 < dh.

From the above discussion, we can see that the results listed above pro-
vide a theoretical guarantee for the previous work [8, 9, 10, 19] in certain
sense.
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5 Recover the decomposition of f from f ∗

In this section, we study the relationship between the FDPs of a set of
polynomials f and that of its homogenization f∗. We will show that with
high probability, we can recover a decomposition for f from a decomposition
of f∗.

For a general FDP f = g ◦ h, the following result gives the connection

between the FDP of f and the FDP of its homogenization f∗.

Lemma 5.1 If f = g ◦ h, then x
dgdh−df
0 f∗ = g∗ ◦ h∗, where dg, dh, df are

the degrees of g, h, f respectively.

Proof. If f = g ◦ h, we have dg · dh ≥ df . Hence,

fi(
x1
x0
, . . . ,

xn
x0

) = gi(h1(
x1
x0
, . . . ,

xn
x0

), . . . , hn(
x1
x0
, . . . ,

xn
x0

)).

Then

g∗ ◦ h∗ = (x
dgdh
0 , x

dgdh
0 g1(h1(

x1
x0
, . . . ,

xn
x0

), . . . , x
dgdh
0 hn(

x1
x0
, . . . ,

xn
x0

)),

. . . , x
dgdh
0 gu(h1(

x1
x0
, . . . ,

xn
x0

), . . . , hn(
x1
x0
, . . . ,

xn
x0

)))

= (x
dgdh
0 , x

dgdh
0 f1(

x1
x0
, . . . ,

xn
x0

), . . . , x
dgdh
0 fu(

x1
x0
, . . . ,

xn
x0

))

= x
dgdh−df
0 (x

df
0 , x

df
0 f1(

x1
x0
, . . . ,

xn
x0

), . . . , x
df
0 fu(

x1
x0
, . . . ,

xn
x0

))

= x
dgdh−df
0 f∗.

As a consequence, we have (f ◦ g)∗ = f∗ ◦ g∗ if df · dg = dh [9, 19].

By a homogeneous decomposition f = g ◦ h, we mean that each com-
ponent of f , g, and h are homogeneous of the same degree df , dg, and dh
respectively. It is clear that a homogenous decomposition is always degree
proper.

The following result gives a necessary and sufficient condition for f to

have an FDP in terms of its homogenization f∗.

Theorem 5.2 Let f = (f1, . . . , fu) ∈ Ru. Then, f has a decomposition if

and only if there exist natural numbers s, t such that xs0f
∗ = g′ ◦ h′ is a

homogeneous decomposition and xt0 ∈ spanK{h′0, . . . , h′n}.
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Proof. If f has a decomposition f = g ◦ h, let s = x
dgdh−df
0 , g′ = g∗, h′ =

h∗, t = dh in Lemma 5.1. Then the conclusion holds.

We now prove the other direction. If there are natural numbers s, t such
that xs0f

∗ = g′◦h′ is a homogeneous decomposition and xt0 ∈ spanK{h′0, . . . , h′n},
then deg(h′) = t, deg(g′) =

s+df
t
, and we can choose g′, h′ such that xs0f

∗

has the following homogeneous decomposition form by Theorem 3.3:

xs0f
∗ = (x

s+df
0 , x

s+df
0 f1(

x1
x0
, . . . ,

xn
x0

), . . . , x
s+df
0 fu(

x1
x0
, . . . ,

xn
x0

))

= (x
s+df

t

0 , g′1, . . . , g
′
n) ◦ (xt0, h′1, . . . , h′n))

and deg(g′i) =
s+df

t
, deg(h′i) = t. Let x0 = 1. We have

f = (f1, . . . , fu)

= (g′1(1, x1, . . . , xn), . . . , g
′
u(1, x1, . . . , xn)) ◦ (h′1(1, x1, . . . , xn), . . . , h′n(1, x1, . . . , xn)),

which is a decomposition of f .

As a consequence of Lemma 5.1 and Theorem 5.2, we have

Corollary 5.3 Let f = (f1, . . . , fu) ∈ Ru. Then, f has a degree proper

decomposition if and only if there is a natural number t such that f∗ has a

homogeneous decomposition f∗ = g′ ◦ h′ and xt0 ∈ spanK{h′0, . . . , h′n}.

In order to use the idea of homogenization, we need to solve the following
problem.

Conjecture 5.4 For all homogeneous decompositions of f∗ = G ◦ H, we

have xdH0 ∈ spanK{H0, . . . ,Hn}.

If the conjecture is true, we may conclude that to compute a degree
proper decomposition of f is equivalent to compute a homogeneous decom-
position of f∗. Therefore, we can obtain a right factor space R(f :h) of f from
R(f∗:h∗) in the same way with the method in the proofs of Theorem 5.2.

Theorem 5.5 Conjecture 5.4 has a positive answer in the field of complex

numbers if the degrees of f∗, G and H are 4,2,2 respectively and n = 2.

Proof . In the field K = C, if G is nondegenerate, we can assume that G
has the following standard form G = x20 + x21 + x22 by nonsingular linear
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substitution (If G is degenerate, then we can assume that G = x20 + x21 or
G = x20, it is easy to see that the Conjecture holds in either case).

Firstly, we claim that we can assume H0 = x20 + c0, H1 = b1x0 + c1, and
H2 = b2x0 + c2 where ci are quadratic homogeneous polynomials and bi are
linear homogeneous polynomials in variables x1 and x2. Since we consider
the decomposition over the field of complex numbers, we may assume that
Hk = akx

2
0 + Gk(k = 0, 1, 2), where Gk does not contain x20. Since x40 =

H2
0 +H

2
1 +H

2
2 , a

2
0+a

2
1+a

2
2 = 1. Without loss of generality, we may assume

a20 + a21 6= 0. Let H ′
0 = a1H1√

a2
0
+a2

1

+ a0H0√
a2
0
+a2

1

and H ′
1 = a0H1√

a2
0
+a2

1

− a1H0√
a2
0
+a2

1

. We

have
H2

0 +H2
1 = (H ′

0)
2 + (H ′

1)
2

and H ′
1 does not contain the term x20. Repeat the above procedure one more

time, we obtain three new polynomials H ′′
0 ,H

′′
1 ,H

′′
2 such that H ′′

1 and H ′′
2

do not contain x20. Since x
4
0 = H2

0 +H2
1 +H2

2 , we have H ′′
0 = x20 + b0x0 + c0.

Comparing the coefficients of x30, we have b0 = 0. Thus, the claim is proved.

Since x40 = H2
0 +H2

1 +H2
2 , we have −c0(c0 + 2x20) = H2

1 +H2
2 = (H1 +

iH2)(H1 − iH2). We will discuss it in the following two cases.

(1) When c0 + 2x20 is irreducible, then there exist constants α, β ∈ K
such that H1 + iH2 = α(c0 + 2x20),H1 − iH2 = βc0, or H1 − iH2 = α(c0 +
2x20),H1 + iH2 = βc0. In either case, we have x20 ∈ spanK{H1,H2}.

(2) When c0+2x20 is reducible, then there exists a linear polynomial p in
variables x1, x2 such that c0+2x20 = (

√
2x0+ p)(

√
2x0− p) where c0 = −p2.

If H1+ iH2 has a factor
√
2x0+p or

√
2x0−p, without loss of generality,

assume
√
2x0+p is a factor of H1+iH2, then there exists constants α, β ∈ K

such that H1+iH2 = αp(
√
2x0+p) andH1−iH2 = βp(

√
2x0−p). Then p2 ∈

spanK{H1,H2}. SinceH0 = x20+c0 = x20−p2, then p2 ∈ spanK{H0,H1,H2}.
If c0 + 2x20 is a factor of H1 + iH2, then the same as the case (1), x20 ∈

spanK{H1,H2}.
The above discussion shows that x20 ∈ spanK{H0, H1,H2}.
The proof of Conjecture 5.4 is still open.

6 Algorithm and complexity

Let f ∈ K[x1, . . . , xn]
n be a set of polynomials with degrees less than or

equal to four, and at least one polynomial has degree four. We now give the
algorithm to find a degree proper decomposition of f . We prove that it is
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a polynomial time algorithm with high successful probability if Conjecture
5.4 is correct. Note that the algorithm is essentially the same as that given
in [19]. Our main contribution is the analysis of the algorithm.

Algorithm FDPMP4.

Input: f ∈ K[x1, . . . , xn]
n be a set of polynomials with degrees less

than or equal to four, and at least one polynomial has degree four.

Output: g, h ∈ K[x1, . . . , xn]
n such that f = g ◦ h is a degree proper

decomposition of f . The algorithm may fail even if such a decomposition
exists.

Step 1. Let f∗0 (x0, x1, . . . , xn) := x40, f
∗
i (x0, x1, . . . , xn) := x40fi(

x1

x0
, . . . , x1

x0
), 1 ≤

i ≤ n, and Ṽf := spanK{∂f∗

i

∂xj
: i, j = 0, 1, . . . , n}.

Step 2. Compute R∗
(f :h) := (Ṽf : l) as stated in the proof of Theorem

4.9.

Step 3. Set x0 = 1 in R∗
(f :h) to obtain R(f :h): R(f :h) := R∗

(f :h)|x0=1.

Step 4. Perform linear elimination to the generators of R(f :h) to obtain
a basis (h1, . . . , hk) of R(f :h). If k = n, then h = (h1, . . . , hn); otherwise
h = (h1, . . . , hk, h1, . . . , h1).

Step 5. Compute the coefficients of g by solving a system of linear
equations as shown in Theorem 3.5.

Theorem 6.1 Algorithm FDPMP4 needs O(n3ω) arithmetic operations

in the field K, where 2 ≤ ω < 3. For a random decomposition f , the

algorithm computes the decomposition with probability one when K is of

characteristic zero, and with probability close to one when K = GF (q) q

is a sufficiently large number under the assumption that Conjecture 5.4 is

correct.

Proof. Assume that Conjecture 5.4 is correct, the complexity of the
whole algorithm depends on Step 2 and Step 5, both of them cost O(n3ω)
arithmetic operations by Theorem 3.5 and Theorem 4.9. Then we have a
polynomial time algorithm to find a degree proper decomposition f = g ◦ h
for g, h ∈ K[x1, . . . , xn]

n with probability one when K is of characteristic
zero, and with probability close to one when K = GF (q) q is a sufficiently
large number.

This proves Theorem 2.2.
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7 Conclusion and problems

In this paper, we give a theoretical analysis for the approaches of computing
functional decomposition for multivariate polynomials based on differentia-
tion and homogenization proposed in [8, 9, 10, 19]. We show that a degree
proper functional decomposition for a set of quartic homogenous polynomials
can be computed using the algorithm with high probability from randomly
decomposable polynomials. We proposed a conjecture such that the decom-
position for a set of polynomials can be computed from its homogenization
with high probability. Finally, we prove that the right decomposition factors
for a set of polynomials can be computed from its right decomposition factor
space. Combining these results together, we show that the algorithm can
compute a degree proper decomposition for a set of quartic randomly de-
composable polynomials with high probability if the conjecture we proposed
is correct. Conjecture 5.4 seems to be correct while it is unsolved.

Despite of the significant progresses, the general FDP for multivariate
polynomials is widely open. Some of the basic problems related to FDP
of multivariate polynomials are not resolved. We will give two basic open
problems below.

The first problem is about the existence of an algorithm for FDP.

Problem 7.1 Given f ∈ Rn, to find an FDP for f is decidable or not.

Note that in a decomposition f = g ◦ h, the degrees of g and h could be
arbitrarily high. Consider the following two transformations:

T1 : (x1, . . . , xn) ⇒ (x1 + p, x2 . . . , xn)

T2 : (x1, . . . , xn) ⇒ (x1 − p, x2 . . . , xn)

where p is a polynomial in x2, . . . , xn of any degree. Then T1 ◦ T2 =
(x1, . . . , xn). For any decomposition f = g ◦ h, f = (g ◦ T1) ◦ (T2 ◦ h) is
also a decomposition of f . Therefore, one way to solve Problem 7.1 is to
find the smallest possible degrees of g and h if a decomposition exists.

The second problem is about the computational complexity of FDP. In
this aspect, even the simplest case is not resolved.

Problem 7.2 Let f ∈ Rn be a set of quartic polynomials. Estimate the

complexity of computing an FDP of f over a finite field K = Fq. In partic-

ular, does there exist a polynomial-time algorithm for Boolean polynomials?
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Remark: Faugère et al [11] also proved the correctness of section 4
of our paper, but the corresponding part of our work was independently
finished and used a different method.
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