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Abstract Any potential damage may be severe once an accident occurs involving hazardous materials.

It is therefore important to consider the risk factor concerning hazardous material supply chains, in

order to make the best inventory routing decisions. In this paper, we address the problem of hazardous

material multi-period inventory routing with the assumption of a limited production capacity of a given

manufacturer. The goal is to achieve the manufacturer’s production plan, the retailer’s supply schedule

and the transportation routes within a fixed period. As the distribution of hazardous materials over a

certain period is essentially a multiple travelling salesmen problem, we formulate a loading-dependent

risk model for multiple-vehicle transportation and present an integer programming model to maximize

the supply chain profit. An improved genetic algorithm considering two dimensions of chromosomes

that cover the aforementioned period and supply quantity is devised to handle the integer programming

model. Numerical experiments carried out demonstrate that using the proposed multi-period joint

decision-making can significantly increase the overall profit of the supply chain as compared to the use

of single period decision repeatedly, while effectively reducing its risk.

Keywords Multi-period inventory routing problem, Integer programming model, Limited production

capacity, Genetic algorithm.
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1 Introduction

In recent years, with the development of economy, China has become a major Country in

the field of chemical production, sale and use. Chemical industry is an important pillar industry

of national economy, and there are tens of thousands of chemical manufacturing enterprises.

For instance, by 2016 the total output value of petrochemical and chemical industry in the

country had increased to about 14 trillion RMB according to the report of ‘Economic Analysis

of China Petroleum and Chemical Industry’, which surpassed the United States to have become

the number one nation in the world, in this regard. Ironically, hazardous materials have made a

significant contribution to the improvement of people’s living standards. Unfortunately, at the

same time they have brought about serious potential harms to human health and environment,

such as carcinogenesis, teratogenicity, environmental degradation and so on. Therefore, the

safety management of hazardous materials is vital to the sustainable development of the country

and the human society in general. Although China’s hazardous materials safety management

is improving continuously, the situation is still grim, and grave accidents frequently occur. For

example, on March 1, 2014, two hazardous material transportation vehicles collided in Shanxi

JinJi freeway, which killed 40 people, injured 12, and burned 42 cars. Worse still, on August

12, 2015, a fire caused by an explosion at a container terminal in Tianjin Binhai New Area,

killed 165 people and injured more than 798 people.

Thus, how to reduce the risk of any accidents caused by hazardous materials has become a

very important and urgent subject for safety management and chemical industrial development.

Generally speaking, accidents involving hazardous materials mainly occur from the following six

stages in their lifecycle: production, transportation, storage, sale, use and scrap. Among these,

hazardous material inventory and transportation form a very important part and have attracted

much attention. According to incomplete statistics, the number of accidents, deaths and injuries

during the period from 2011 to 2015 are 1058, 1275 and 4175, respectively, in China[1]. Fig.1

shows the proportion of the above six aspects in accidents, deaths and injuries. It can be

seen that the proportion of accidents occur in transportation and storage is indeed very high

(accounting for 46.7%, 41.8%, and 36.2%, respectively). Although a great deal has been spent

on the inventory and transportation processes regarding hazardous materials, accidents remain,

typically arising from leakage, explosion, poisoning and other reasons, which are harmful to life,

property and the environment. Consequently, an overall optimization mechanism is desirable

for the inventory and transportation of hazardous materials from a supply chain perspective,

considering not only the cost, but also the risk.

Inventory routing problem (IRP) mainly considers how to make decisions on suppliers and

customers’ inventory, and how to design the transportation routes. Considering limited produc-

tion capacity of any given manufacturer, we should pay particular attention to the production

plan and inventory arrangement. Hu, et al.[2] studied a hazardous material single period IRP

for a three-level supply chain system. However, from the viewpoint of long-term effects of in-

ventory and distribution, single period IRP does not take into account the continuity of time.

As such, we cannot simply utilise a single period decision repeatedly in an attempt to solve
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the hazardous material multi-period IRP. For example, in order to avoid shortage of hazardous

material supply over certain periods, sufficient amounts of the materials have to be produced

in advance to increase inventory, which will therefore affect the supply chain production, inven-

tory and transportation strategies. The use of IRP that considers multi-period is thus, more

realistic. While existing studies regarding hazardous material multi-period IRP normally focus

on profits, costs or service levels, they often ignore the risk issue on hazardous materials[3, 4].

In this investigation, we consider the risk factor during the process of multi-period inventory

and transportation.

Figure 1: Proportion of six stages within hazardous material lifecycle regarding accidents, deaths and

injuries

The contributions of this paper are summarized as follows: i) we consider multi-period joint

decision on hazardous material supply chains under a limited production capacity, focusing

on the formulation of manufacturer’s production plan, retailer’s supply schedule, and trans-

portation routing programming for the entire hazardous material lifecycle; ii) we formulate a

loading-dependent risk model for hazardous material multi-vehicle transportation, and propose

an integer programming model to deal with hazardous material IRPs. The remainder of this

paper is structured as follows. Section 2 provides a brief overview of the literature on IRP.

Section 3 presents the loading-dependent risk model for hazardous material multi-vehicle trans-

portation and describes the mathematical model for hazardous material multi-period IRP. A

genetic algorithm is devised in Section 4. Section 5 shows an illustrative example to demon-

strate the efficiency of the proposed model and solution algorithm. Section 6 concludes the

study.

2 Literature review

The earliest IRPs focused on problems involving a single period. Bell, et al.[5] first studied

IRP to improve the distribution of Industrial Gases, and designed a Lagrangian relaxation

algorithm to solve the mixed integer programming problem for the application. Daganzo, et

al.[6] considered an IRP which transported items with different characteristics to a common

destination at different rates from a finite number of supply points. They proposed a method

for optimizing the number of transportation vehicles and the services provided by each. Chien,



4 HU HAO, et al.

et al.[7] formulated the IRP as one of mixed integer programming, and developed a Lagrangian-

based procedure to generate both good upper bounds and heuristic solutions. Zhao, et al.[8]

addressed an IRP in a three-echelon logistics system following a fixed partition strategy, and

established a variable large neighborhood search algorithm. Coelho and Laporte[9] proposed a

branch-and-cut algorithm for the solution of IRPs with multiple products and multiple vehicles.

Li, et al.[10] considered an IRP in which the objective is to minimize maximum route travel

time, and presented a tabu algorithm to improve the search quality for each iteration. Although

the single period IRPs take into account the joint decision of inventory and transportation, they

may not reflect the underlying long-term plan of addressing such problems.

Multi-period IRPs have become a hot topic over the past two decades. In particular,

Viswanathan and Mathur[11] considered a multi-period IRP involving one-warehouse, multi-

retailer and multi-product distribution, and presented a new heuristic algorithm for building

a stationary nested joint replenishment policy. Jaillet, et al.[3] dealt with a multi-period IRP

regarding the request for repeated distribution of a commodity, such as heated oil from depot

to customers, resolving the mathematical model based on Monte Carlo simulation. Zhao, et

al.[12] tackled a multi-period IRP with a fixed partition policy, and designed a tabu search algo-

rithm to find the retailers’ optimal partition regions. Cheng-Hong[13] studied an IRP involving

stochastic demands, via analyzing all of the cost, including the retailer’s stocking, shortage

penalty, and distribution center’s replenishment, holding, distribution, and designed a heuristic

algorithm by borrowing ideas from solving the conventional traveling-salesman problem. Huang

and Lin[14] proposed an integrated model to address an IRP with multi-item replenishment and

stochastic demands, and devised a modified ant colony optimization algorithm. Moin, et al.[15]

investigated two representations using GAs for a multi-product and multi-period IRP, and made

two significant modifications to the algorithm regarding its binary representation.

More recently, Al-E-Hashem and Rekik[16] proposed a multi-period multi-product IRP by

examining the specific interrelationship between the transportation cost and the greenhouse

gas emission level. For solving a multi-product and multi-period IRP in fuel delivery, Vidović,

et al.[4] proposed a mixed integer programming model and devised a heuristic approach, with

or without the consideration of fleet size costs. Roldán, et al.[17] investigated a multi-period

IRP under three different customer selection methods: big orders first, lowest storage first,

and equal quantity discount. Rahimi, et al.[18] studied a multi-period IRP by considering the

service level and the greenhouse gas emissions in the distribution of perishable products, and

applied a mechanism named NSGA-II to resolve the equivalent auxiliary crisp model. Although

such investigations into multi-period IRPs exist, contributions for multi-period IRP concerning

hazardous materials are rather scarce.

Different from ordinary goods, when dealing with the logistics of hazardous materials it is

necessary to consider the risk factors, which will directly affect the inventory and transporta-

tion decisions associated with such problems. Wei, et al.[19] developed a chance-constrained

programming model for the hazardous material IRP, and designed a GA to solve the mod-

el. Wei, et al.[20] first investigated fuzzy-randomness in location-scheduling programming for

hazardous material transportation, and formulated a modified particle swarm optimization
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algorithm to minimize the en route risks and site risks. Du, et al.[21] also reported a chance-

constrained programming model by assuming the distances between any two locations within

a supply chain network to be fuzzy variables. A hybrid intelligent algorithm integrating fuzzy

simulation and a GA was designed for solving the model. Du, et al.[22] studied a multi-depot ve-

hicle routing problem for hazardous material transportation, and proposed four different fuzzy

simulation-based heuristic algorithms, offering possible alternative solutions for the common

problem addressed. Hu, et al.[23] considered a time-dependent hazardous material vehicle rout-

ing problem to obtain the optimal route and the departure time, and designed an improved

GA to solve it. Last but not least, as indicated previously, Hu, et al.[2] studied a hazardous

material single period IRP for a three-level supply chain network, and designed an improved

GA whose chromosomes contain two types of gene to handle the proposed model. Nevertheless,

these developments do not integrate inventory and transportation of hazardous materials and

the consideration of risks from a multi-period perspective.

3 Problem definition and mathematical formulation

3.1 Problem description and notations

In this section, we consider a two-echelon hazardous material supply chain network including

a single manufacturer and multiple retailers. The retailers need to collect the daily demand

information for each specified period, and deliver such demand to the manufacturer. Then,

the manufacturer arranges the daily inventory according to the supply quantities requested by

the retailers, and designs the transportation routes. Suppose that in general, in the long run,

the production capacity of the manufacturer can meet the demand of the market, but there

may be a shortage of supply in certain periods. Therefore, in order to decrease the potential

shortage and its associated cost, the manufacturer needs to produce the materials in advance and

increase inventory. Such advanced production will inevitably affect the inventory, supply and

transportation decision of the supply chain over the entire sequence of the periods concerned.

The retailer’s inventory is also required to be higher than a basic value at the beginning of each

period, which mainly refers to a basic value set in response to some unexpected disasters. It

is mandatory and fixed by the government. Under the premise of joint decision-making, the

objective of the proposed multi-period IRP model (and the associated solution mechanism) is

to maximize the profit of the complete supply chain while effectively control the system risk in

each period. For this, practically working assumptions are made as listed below:

• The shortage at a certain retailer is allowed, but it will incur a shortage cost; replenishment

is unnecessary.

• The number of vehicles is not restricted within each period.

• Vehicles depart from the manufacturer location to meet retailers’ demands and return to

the manufacturer at the end of the trip.
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• It is possible for each retailer to be visited once and only once, when its inventory level

falls to or below the reorder point.

Notationally, the proposed hazardous material multi-period IRP model adopts the following for

shorthand:

Notation system

N set of retailers, N = {1, 2, · · · , n},

M set of manufacturer and retailers, M = {0}
⋃
N ,

T number of periods,

P production capacity of the manufacturer in each period,

V transportation capacity of a single vehicle,

I0 initial inventory of the manufacturer,

It inventory level of the manufacturer in period t,

ht0 unit mass inventory holding cost of the manufacturer in period t,

ct unit mass production cost of the manufacturer in period t,

µ unit mass inventory risk of the manufacturer,

Ui inventory capacity of retailer i,

U∗i maximum shortage level of retailer i,

ui basic inventory quantity of retailer i at the beginning of each period,

sti unit mass sale price of retailer i in period t,

I0i initial inventory of retailer i,

Iti inventory level of retailer i in period t,

Oti shortage level of retailer i in period t,

hti unit mass inventory holding cost of retailer i in period t,

lti unit mass shortage cost of retailer i in period t,

dti demand of retailer i in period t,

c fixed transportation cost of a single vehicle,

cij unit mass variable transportation cost on arc (i, j),

αi unit mass inventory risk of retailer i,

βij unit mass transportation risk on arc (i, j).

Decision variables

pt production quantity of the manufacturer in period t,

qti supply quantity from the manufacturer to retailer i in period t,

xtij 1 if arc from i to j is active in period t; 0 otherwise.



INVENTORY FULFILLING AND ROUTING PROBLEM FOR HAZARDOUS MATERIALS 7

Auxiliary variables

xktij 1 if arc from i to j is active by running vehicle k in period t; 0 otherwise,

yt number of vehicles required in period t,

rkti the ith retailer on the transportation route of vehicle k in period t

ztk number of retailers served by vehicle k in period t,

wtk set of retailers served by vehicle k in period t.

3.2 Computation of risk

Transportation risk is usually expressed as a product of accident probability and consequence
[24, 25]. Meanwhile, accident consequence could be measured as the total number of exposed

people in an accident. The more quantity of hazardous materials a vehicle loads, the more

number of exposed people there will be in the event of an accident. Therefore, in order to

control the transportation risk more accurately, any change of the loading is required to be

considered, which means that the transportation risk is in general a dynamic term. As not all

the retailers are served in each period, the distribution of hazardous materials is essentially a

multi-vehicle travelling salesmen problem. If we can determine the retailers served by vehicle k

and their service order, we should be able to compute the transportation risk of a given route.

The following risk modeling reflects these observations.

Firstly, we need to calculate the transportation loading of each arc in the route of vehicle

k. Considering the general case where there are more than one vehicle starting from the

manufacturer location, the first retailer served by each vehicle in period t can be captured as

follows:

r1t1 = min

(
arg max
j∈N

(xt0j)

)
,

rkt1 = min

(
arg max

j∈N\
⋃k−1

m=1{rmt
1 }

(xt0j)

)
, k = 2, 3, ..., yt,

and the ith retailer served by vehicle k in period t can be expressed as

rkti = arg max
j∈N

(xt
rkt
i−1j

), i = 2, 3, ..., ztk.

Furthermore, in period t, the loading of vehicle k on arc (m− 1,m) is

vkt =

ztk∑
i=m

qtrkt
i
,

and the transportation risk of vehicle k on arc (m− 1,m) is βrkt
m−1r

kt
m
vkt, where 1 ≤ m ≤ n.

The transportation risk of vehicle k in period t can be estimated as

yt∑
k=1

ztk∑
m=1

βrkt
m−1r

kt
m
vkt.

The inventory risk is also calculated by inventory quantity and unit mass inventory risk, which

can be expressed as

R′t = µIt +

n∑
i=1

αiI
t
i .
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Therefore, the total risk from the manufacturer to its retailers in period t can be expressed as

Rt = R′t +

yt∑
k=1

ztk∑
m=1

ztk∑
i=m

βrkt
m−1r

kt
m
qtrkt

i
.

3.3 Formulation of overall problem

For enterprises, the pursuit of economic profit maximization is usually the first goal. Given

the often changing sale price of the hazardous materials, in order to obtain the most economic

benefits, any manufacturer wishes to accurately control the daily output while reducing any

associated costs. The profit of a supply chain network within a certain period t can be expressed

as

Lt =

n∑
i=1

sti min{It−1i + qti , d
t
i} − ctpt − ht0It −

n∑
i=1

htiI
t
i −

n∑
i=1

ltiO
t
i − cyt

−
yt∑
k=1

ztk∑
m=1

ztk∑
i=m

crkt
m−1r

kt
m
qtrkt

i
,

where

n∑
i=1

sti min{It−1i + qti , d
t
i} is the revenue of the supply chain, ctpt is the production cost at

the manufacturer, ht0I
t+

n∑
i=1

htiI
t
i is the inventory cost,

n∑
i=1

ltiO
t
i is the shortage cost at the retail-

ers, cyt and

yt∑
k=1

ztk∑
m=1

ztk∑
i=m

crkt
m−1r

kt
m
qtrkt

i
are fixed transportation cost and variable transportation

cost, respectively.

Aiming at hazardous material IRPs, we add a new objective function which is targeted at

minimizing the risk of a two-echelon supply chain network. Thus, we could formulate a bi-

objective model to solve the problem. While in general, different types of hazardous material

possess different hazard levels, and the chemical manufacturers always pursue the maximum

profit possible subject to consideration of different risk levels. Thus, we could select the popular

ε-constraint method to constrain the system risk. The ε-constraint method was originally

proposed by Haimes[26], and is one of the best known approaches for solving multi-objective

problems. In this method, one objective is selected as the main objective and other objectives

are transformed into model constraints. In real-world practice, achieving the maximum profit is

normally the goal. Hence, we can transform the risk aspect into a constraint condition imposed

over the model. As such, we propose the following integer programming model:
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max L =

T∑
t=1

n∑
i=1

sti ·min{It−1i + qti , d
t
i} −

T∑
t=1

ctpt −
T∑
t=1

ht0I
t −

T∑
t=1

n∑
i=1

htiI
t
i −

T∑
t=1

n∑
i=1

ltiO
t
i

−
T∑
t=1

cyt −
T∑
t=1

yt∑
k=1

ztk∑
m=1

ztk∑
i=m

crkt
m−1r

kt
m
qtrkt

i

s.t. µIt +

n∑
i=1

αiI
t
i +

yt∑
k=1

ztk∑
m=1

ztk∑
i=m

βrkt
m−1r

kt
m
qtrkt

i
≤ εt , t = 1, 2, · · · , T (1)

It = It−1 + pt −
n∑
i=1

qti , t = 1, 2, ..., T (2)

Iti = (It−1i + qti − dti)+, t = 1, 2, ..., T, i ∈ N (3)

Oti = (It−1i + qti − dti)−, t = 1, 2, ..., T, i ∈ N (4)

θ∑
t=1

n∑
i=1

qti ≤ I0 +

θ∑
t=1

pt, θ = 1, 2, · · · , T (5)

Iti ≤ Ui, t = 1, 2, ..., T, i ∈ N (6)

Oti ≤ U∗i , t = 1, 2, ..., T, i ∈ N (7)

qti ≤ Ui − It−1i , t = 1, 2, ..., T, i ∈ N (8)

qti ≥ max{ui − It−1i , 0}, t = 1, 2, ..., T, i ∈ N (9)

pt ≤ P, t = 1, 2, ..., T (10)

ztk∑
i=1

qtrkt
i
≤ V, t = 1, 2, ..., T, k = 1, 2, ..., yt (11)

r1t1 = min

(
arg max
j∈N

(xt0j)

)
, t = 1, 2, ..., T (12)

rkt1 = min

(
arg max

j∈N\
⋃k−1

m=1{rmt
1 }

(xt0j)

)
, t = 1, 2, ..., T, k = 2, 3, ..., yt (13)

rkti = arg max
j∈N

(xtrkt
i−1j

), t = 1, 2, ..., T, i = 2, 3, ..., ztk, k = 1, 2, ..., yt (14)

n∑
j=0

xtji −
n∑
j=0

xtij = 0, t = 1, 2, ..., T, i ∈M (15)
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n∑
j=0

xtij = sgn(qti), t = 1, 2, ..., T, i ∈ N (16)

yt =

n∑
j=1

xt0j , t = 1, 2, ..., T (17)

ztk =

n∑
i=0

n∑
j=0

xktij − 1, t = 1, 2, ..., T, k = 1, 2, ..., yt (18)

xtij =

yt∑
k=1

xktij , t = 1, 2, ..., T, i ∈M, j ∈M (19)

wtk ∈ {rkti |rkti ∈ {1, 2, · · · , n}, i = 1, 2, · · · , ztk}, t = 1, 2, ..., T, k = 1, 2, ..., yt (20)∑
i,j∈S

xktij ≤ |S| − 1, 2 ≤ |S| ≤ ztk, S ⊂ wtk, t = 1, 2, ..., T, k = 1, 2, ..., yt (21)

pt ≥ 0, qti ≥ 0, t = 1, 2, ..., T, i ∈ N (22)

xtij = {0, 1}, xktij = {0, 1}, t = 1, 2, ..., T, k = 1, 2, ..., yt, i ∈M, j ∈M. (23)

In this model, constraint (1) is the ε-constraint of risk, where εt is a value between the

maximum and minimum risk of the supply chain addressed, which is usually determined empir-

ically, by considering the type and hazard level of hazardous materials. Constraints (2) and (3)

define the inventory level at the manufacturer and retailers in period t, respectively. Constraint

(4) specifies the shortage level at the retailers in period t. Constraint (5) guarantees that the

cumulative supply quantity for retailers in each period is not more than the sum of initial in-

ventory and cumulative production quantities of the manufacturer. Constraint (6) ensures that

the inventory level of retailers can not be greater than the inventory capacity. Constraint (7)

ensures that the shortage level of retailers can not be greater than the maximum shortage level.

Constraint (8) describes the supply quantity ceiling of retailer i in period t. Constraint (9) im-

poses that retailer i must be served in period t if its inventory quantity in the previous period is

lower than a basic inventory quantity. If we replace hazardous materials by general cargo, the

safety inventory is not necessary because the model assumes the demands are known in advance

without any uncertainty. Constraint (10) shows the production capacity for the manufacturer.

Constraint (11) restricts the vehicles’ transportation capacity. Constraints (12)-(14) dictates

the way in which retailer i be served by vehicle k in period t. Constraint (15) indicates the

flow conservation. Constraint (16) depicts the relationship between arc (i, j) and the supply

quantity in period i. Constraint (17) represents the number of vehicles in period t. Constraint

(18) states the number of retailers served by vehicle k in period t. Constraint (19) links up two

related variables. Constraint (20) gives the set of corresponding retailers served by each vehicle

k in period t. Constraint (21) implements a sub-tour elimination over the vehicles. Constraints

(22) and (23) present basic domain ranges.
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4 Model solution and solution algorithm

Since an IRP is a NP-hard problem[27], it is generally impracticable to be solved via tra-

ditional operations, even just for moderately sized problems. Instead, evolutionary algorithms

have shown feasibility and have been widely exploited to solve such problems[28, 29]. In par-

ticular, for the present multi-period IRPs, the change of supply quantities in each period will

affect the decision in the later periods, thus we design a genetic algorithm to work with the

above-proposed model, aiming at identifying satisfactory solutions.

4.1 Retailers assignment

Retailers that are to be served and the corresponding supply quantities will directly affect

their inventory level and also, the manufacturer’s production plan, the number of vehicles

and the transportation routing, in any future period. As reflected in Fig.2, if inventory levels

I01 , I
0
3 , I

0
4 , ..., I

0
n fall to or below the basic inventory quantity, the respective retailers will be

served in period 1, where the supply quantities are set to q11 , q
1
3 , q

1
4 , ..., q

1
n. The rest of the

retailers are likely to be supplied as well. After meeting the market demands, a new inventory

level of each retailer is obtained and the retailers that need to be served in period 2 are identified.

Once the retailers’ supply quantities are determined, the distribution of hazardous materials is

essentially a basic multi-traveling salesman problem. If the actual calculation scale is small, we

can use enumeration method or branch and bound algorithm[30]; if the calculation scale is large,

we can use heuristic algorithm for each cycle of distribution[31, 32]. There will be no detailed

description here. To reflect this observation, we take those retailers which are served and the

corresponding supply quantities as the basis upon which to design the chromosome structure,

as shown in Fig.3.

Figure 2: Operating process at retailers

From this determination of the delivery scheduling we can make a decision regarding the

production plan.



12 HU HAO, et al.

Figure 3: Chromosome structure

4.2 Production plan assignment

The production plan of the manufacturer is formulated on the basis of the supply schedule

of the retailers in each period. Due to limited production capacity, the manufacturer needs to

produce in advance to satisfy the demand beyond the production capacity in certain periods.

Fig.4 shows the production plan assignment, where a green block means overcapacity in the

period, and a red block means insufficient capacity that needs to be produced in advance. Once

the retailer’s supply quantity in each period is determined, the manufacturer’s production

quantity in each period can be obtained by minimizing the manufacturer’s total production

and inventory costs, which is a simple linear programming problem and can be easily solved by

MATLAB.

Figure 4: Production plan assignment

min C =

T∑
t=1

ctpt +

T∑
t=1

ht0I
t

s.t. It = It−1 + pt −
n∑
i=1

qti , t = 1, 2, ..., T

θ∑
t=1

n∑
i=1

qti ≤ I0 +

θ∑
t=1

pt, θ = 1, 2, · · · , T

pt ≤ P, t = 1, 2, ..., T

pt ≥ 0, t = 1, 2, ..., T.
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4.3 Initialization Process

Let pop size denote the size of population generated by retailers assignment process. The

initialization process can then be summarized as given in Table 1.

Table 1 GA initialization process

Step 1. Define an integer number pop size as the number of chromosomes. Set i = 1 and j = 1.

Step 2. For period j, find retailers whose inventory level is lower than a given threshold, and ran

-domly generate supply quantity for these retailers (ui − It−1
i < qti ≤ Ui − It−1

i ); the retail

-er of which inventory is higher than the given threshold is randomly selected to supply (If

the retailer is supplied, 0 ≤ qti ≤ Ui − It−1
i ) .

Step 3. If new inventory level does not exceed inventory capacity of retailers, set j = j + 1; other

-wise, go to step 2.

Step 4. If j ≤ T , go to step 2.

Step 5. Set i = i+ 1. If i ≤ pop size, set j = 1 and go to step 2.

Step 6. Return initial chromosomes.

4.4 Evaluation Function

Let Vi be a feasible chromosome. Arrange the chromosomes in descending sort according to

the target value, and calculate the fitness values. The evaluation function is defined as follows:

eval(Vi) = a(1− a)i−1, i = 1, 2, ..., pop size

where a is a real number taking value in interval (0, 1). Thus, by computing the above equations,

pop size objective values are obtained for all chromosomes.

4.5 Selection Process

We employ the classical method of spinning the roulette wheel to select chromosomes for

constructing a population. For any i = 1, 2, · · · , pop size, calculate

γi =

i∑
j=1

eval(Vj).

Then, generate a random number r ∈ (0, γpop size] and select the ith chromosome Vi if γi < r ≤
γi+1. Repeat the above process pop size times to obtain the required pop size chromosomes.

4.6 Crossover Process

First, select chromosomes for crossover using a random number r and crossover probability

pc, with the selected ones denoted by v1, v2, ..., vc. Divide them into pairs ((v1, v2), (v3, v4), ...).

Without losing generality, we illustrate the crossover operation with (vl, vl+1). Second, consider

the real-world problem in that for two different chromosomes, even the same retailer may have

different supply strategies in different periods. Therefore, if retailer k within parents vl and
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vl+1 are both served in period j, the crossover operator regarding the supply quantities can be

designed as follows:

λqjk,l + (1− λ)qjk,l+1, (1− λ)qjk,l + λqjk,l+1, λ ∈ (0, 1).

Finally, we check the feasibility for each child before accepting it. The crossover process can be

summarized in Table 2.

Table 2 Crossover procedure

Step 1. Set crossover probability pc and i = 1.

Step 2. Randomly generate r ∈ (0, 1).

Step 3. If r ≤ pc, select a chromosome as a parent and set i = i+ 1.

Step 4. If i ≤ pop size, go to step 2.

Step 5. Denote selected parents by v1, v2, ..., vL, divide them into pairs, and set l = 1 and k = 1.

Step 6. Randomly select a period j ∈ [1, T ], and randomly generate a real number λ ∈ (0, 1); if

retailer k within parents vl and vl+1 are both served in period j, produce two new supply

quantities λqjk,l + (1− λ)qjk,l+1 and (1− λ)qjk,l + λqjk,l+1; if both supply quantities are fea

-sible for retailer k in period j, replace supply quantities of parents with them, else, retain

them and generate supply strategy as with initialization process for retailer k after period j.

Step 7. Set k = k + 1; if k ≤ n, go to step 6.

Step 8. Update chromosomes and set l = l + 2; if l ≤ L, set k = 1 and go to step 6.

Step 9. Return chromosomes.

4.7 Mutation Process

Let Pm denote the mutation probability. Select the chromosomes using Pm and a random

number r. For each retailer within the selected chromosome, randomly select a period to perform

mutation. If retailer k in parents is served in period j, the mutation operator is applied such

that

qjk = qjk + λmin{(qjk − ui + Ij−1k ), (Uk − Ij−1k − qjk)}.
The mutation process is summarized in Table 3.

Table 3 Mutation procedure

Step 1. Set mutation probability pm, i = 1 and k = 1.

Step 2. Randomly generate r ∈ (0, 1).

Step 3. If r ≤ pm, randomly select a mutation period j ∈ [1, T ], and randomly generate λ ∈ [−0.5,

0.5]; if retailer k is served in period j, replace its supply quantities qjk with qjk where qjk =

qjk + λmin{(qjk − ui + Ij−1
k ), (Uk − Ij−1

k − qjk)}; generate supply strategy as with initializati

-on process for retailer k after period j.

Step 4. Set k = k + 1; if k ≤ n, go to step 2.

Step 5. Update chromosomes and set i = i+ 1; if i ≤ pop size, set k = 1 and go to step 2.

Step 6. Return chromosomes.
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A new generation of population is generated after the evaluation, selection, crossover and

mutation operations. Repeat this cycle G times, and we may obtain a satisfactory solution with

the smallest fitness value.

5 Numerical experiments

To illustrate the efficacy of the proposed model, we apply it to two multi-period hazardous

material IRP case studies. We first describe the problem-related data in detail and then discuss

the numerical results.

5.1 Experimental data

This experimental investigation considers a two-echelon supply chain IRP with a single

manufacturer and eight retailers. The data in Table 4 shows the unit mass sale prices of the

product at individual retailers. The unit mass variable transportation costs of the hazardous

materials are listed in Table 5. The unit mass inventory risks of the hazardous materials at the

manufacturer and retailers are given in Table 6. The unit mass transportation risks of hazardous

materials among the manufacturer and retailers are presented in Table 7. The demands of the

retailers are shown in Table 8.

Table 4 Unit mass sale prices of retailers (×103 dollars)

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

R1 3.725 3.725 3.725 3.725 3.825 3.825 3.825 3.825 3.825 3.825

R2 3.8 3.8 3.8 3.8 4.025 4.025 4.025 4.025 4.025 4.025

R3 3.75 3.75 3.75 3.75 3.8 3.8 3.8 3.8 3.8 3.8

R4 3.625 3.625 3.625 3.625 3.875 3.875 3.875 3.875 3.875 3.875

R5 3.825 3.825 3.825 3.825 3.9 3.9 3.9 3.9 3.9 3.9

R6 3.875 3.875 3.875 3.875 4.025 4.025 4.025 4.025 4.025 4.025

R7 3.7 3.7 3.7 3.7 3.9 3.9 3.9 3.9 3.9 3.9

R8 3.8 3.8 3.8 3.8 3.975 3.975 3.975 3.975 3.975 3.975
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Table 5 Unit mass variable transportation costs (dollar per ton)

M R1 R2 R3 R4 R5 R6 R7 R8

M 0 25 26 25 30 23 32 26 27

R1 25 0 51 31 38 46 31 18 15

R2 26 51 0 41 39 15 48 49 50

R3 25 31 41 0 54 28 53 16 42

R4 30 38 39 54 0 47 13 50 26

R5 23 46 15 28 47 0 52 39 49

R6 32 31 48 53 13 52 0 46 17

R7 26 18 49 16 50 39 46 0 31

R8 27 15 50 42 26 49 17 31 0

Table 6 Unit mass transportation risks among manufacturer and retailers (×10−2)

M R1 R2 R3 R4 R5 R6 R7 R8

M 0 17.25 26.125 18.125 26.5 25.25 25.75 24.875 30.125

R1 17.375 0 43.75 17 25.625 27.75 21.625 12 11.375

R2 26.25 43.875 0 25.125 22.125 12.375 25.375 38.125 38.875

R3 17.75 17 25.5 0 38 22.375 44.125 23 30.125

R4 26.875 25.5 22.625 38.25 0 32.625 17.875 33.875 27.875

R5 25.125 27.375 12.25 22.5 33 0 33.125 40.5 38.75

R6 25.875 21.375 25.125 44.125 17.375 33 0 38 27.125

R7 25 12.125 37.875 23 34.125 40.625 38.375 0 27.625

R8 30.25 11.5 39 30.125 28.375 39.125 27.25 27.25 0

Table 7 Unit mass inventory risks of manufacturer and retailers (×10−2)

M R1 R2 R3 R4 R5 R6 R7 R8

2 3.2 3.6 4.2 3.6 3.8 3.2 3.6 3.5
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Table 8 Demands of retailers (ton)

R1 R2 R3 R4 R5 R6 R7 R8

period 1 10 14 10 6 8 14 8 11

period 2 13 7 10 14 8 8 10 6

period 3 7 11 7 14 12 12 14 9

period 4 6 13 14 14 7 13 12 10

period 5 12 11 11 12 6 10 10 14

period 6 11 12 10 9 11 12 14 13

period 7 8 11 8 10 6 11 10 8

period 8 14 10 14 15 12 14 11 12

period 9 6 8 10 11 8 7 12 13

period 10 15 14 14 12 14 16 12 6

The following parameters are used in the experimentation: the production capacity of the

manufacturer is P = 80 ton per day; the starting inventory at the manufacturer is I0 = 120 ton;

the starting inventory level, the basic inventory quantity and the inventory capacity at retailer i

are I0i = 10 ton, ui = 6 ton and Ui = 60 ton, respectively; the maximum shortage level U∗i = 60

ton; the transportation capacity of a single vehicle is V = 50 ton; the number of the periods

is T = 10; the risk boundary value and the unit mass production cost of the manufacturer at

period t are εt = 65 and sti = 1775 dollars, respectively; the unit mass inventory holding cost

at the manufacturer is ht0 = 10 dollars per ton; the unit mass inventory holding cost and the

unit mass shortage cost at retailer i in period t are hti = 20 dollars per ton and lti = 80 dollars

per ton, respectively; and the fixed transportation cost of a single vehicle is c = 200 dollars

(i = 1, 2, · · · , 8; t = 1, 2, · · · , 10). The parameters of the genetic algorithm are set as follows:

G = 200, pop size = 50, Pc = 0.8, Pm = 0.2.

5.2 Results and discussions

By running GA-based method as proposed, the optimum results are obtained as shown in

Tables 9 and 10. Fig.5 shows the convergence process. The maximum profit of the supply chain

system is 1.8485×106 dollars. In particular, Table 9 gives the retailers’ supply schedule in each

period, and Table 10 shows the transportation routes and supply chain network risk in each

period. Fig.6 describes the manufacturer’s arrangement for inventory in advance. From the

results of Table 10, it can be seen that the system risk in each period is less than 65, and the

total risk is 394.334.
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Figure 5: Convergence curve of GA

Table 9 Retailers’ supply schedule in each period (ton)

R1 R2 R3 R4 R5 R6 R7 R8

period 1 0 0 0 0 0 0 0 0

period 2 28 12 17 32 26 23 28 30

period 3 0 23 8 0 0 0 0 0

period 4 5 0 6 11 10 27 22 0

period 5 8 10 19 18 0 0 0 35

period 6 22 20 14 0 15 12 22 0

period 7 0 0 0 12 9 9 0 0

period 8 21 16 18 20 0 25 23 9

period 9 0 16 9 12 20 0 0 23

period 10 9 0 6 0 0 7 8 0

period 3period 2 period 10period 1

manufacturer

period 4 period 5 period 6 period 7 period 8 period 9

10 50

Figure 6: Arrangement for inventory in advance
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Table 10 Transportation route, production plan and supply chain network risk in each period

transportation route production plan system risk

period 1 - 0 2.6920

period 2 M → R2 → R1 →M,M → R5 → R6 →M, 76 63.2685

M → R4 →M,M → R7 →M,M → R8 → R3 →M

period 3 M → R2 → R3 →M 69 50.7418

period 4 M → R3 → R1 →M,M → R4 →M,M → R5 →M, 80 60.0635

M → R6 →M,M → R7 →M

period 5 M → R1 → R8 →M,M → R2 →M,M → R3 →M, 80 54.1760

M → R4 →M

period 6 M → R1 → R7 →M,M → R2 →M,M → R3 →M, 80 33.0175

M → R5 →M,M → R6 →M

period 7 M → R4 → R6 →M,M → R5 →M 80 62.8852

period 8 M → R1 → R8 →M,M → R2 →M,M → R3 →M, 80 33.5500

M → R4 →M,M → R6 →M,M → R7 →M

period 9 M → R3 →M,M → R4 →M,M → R5 → R2 →M, 80 25.4800

M → R8 →M

period 10 M → R1 → R7 →M,M → R3 →M,M → R6 →M 30 8.4595

In order to reflect the effectiveness of the proposed model, we compare the above results

with those of the following two cases: i) the results obtained using the single period decision

repeatedly; and ii) the results for multi-period problems, whose risk function is defined by the

total risks of all periods. Case 1 is obvious, but more specifically, case 2 involves a new risk

function, which can be expressed as follows:

R =

T∑
t=1

µIt +

T∑
t=1

n∑
i=1

αiI
t
i +

T∑
t=1

yt∑
k=1

ztk∑
m=1

ztk∑
i=m

βrkt
m−1r

kt
m
qtrkt

i

(24)

The optimum results for case 1 are summarized in Tables 11 and 12, and the maximum

profit of the supply chain network is 1.7554 × 106 dollars, which decreases by 93,100 dollars

as compared to that of the proposed model. As can be seen from Table 12, the network risk

in each period is low. The reason for this is that the manufacturer tries to meet the retailers’

demands in the current period and minimizes inventory as much as possible. Due to the limited

production capacity, the retailers may face significant shortages of supplies in certain periods,

thereby leading to the reduction of profits. From this regard the results confirm that it is

practically more effective to address multi-period IRPs.
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Table 11 Retailers’ supply schedule of case 1 (ton)

R1 R2 R3 R4 R5 R6 R7 R8

period 1 0 4 0 0 0 4 0 1

period 2 13 7 10 14 8 8 10 6

period 3 7 11 7 14 12 12 14 9

period 4 6 13 14 6 7 13 11 10

period 5 11 11 6 12 6 10 10 14

period 6 6 12 6 6 11 12 14 13

period 7 8 11 8 10 6 11 10 8

period 8 6 10 6 9 12 14 11 12

period 9 6 8 10 11 8 7 12 13

period 10 6 14 6 6 14 16 12 6

Table 12 Transportation route, production plan and supply chain network risk of case 1

transportation route production plan system risk

period 1 M → R2 →M,M → R6 → R8 →M 0 5.1158

period 2 M → R1 → R7 →M,M → R4 → R6 →M, 0 21.157

M → R3 → R8 →M,M → R5 → R2 →M

period 3 M → R1 → R8 →M,M → R4 → R6 →M, 51 24.8645

M → R5 → R2 →M,M → R7 → R3 →M

period 4 M → R3 → R2 → R5 →M,M → R6 → R4 →M, 80 22.922

M → R7 → R1 → R8 →M

period 5 M → R1 → R8 → R7 →M,M → R4 → R6 →M, 80 24.3882

M → R2 → R5 → R3 →M

period 6 M → R1 → R8 →M,M → R5 → R2 →M, 80 24.4707

M → R6 → R4 →M,M → R7 → R3 →M

period 7 M → R2 → R1 →M,M → R3 → R5 →M, 72 20.4345

M → R6 → R4 →M,M → R7 → R8 →M

period 8 M → R2 → R3 →M,M → R6 → R4 →M, 80 24.6032

M → R7 → R1 →M,M → R8 → R5 →M

period 9 M → R4 → R6 →M,M → R5 → R2 →M, 75 22.3645

M → R7 → R1 →M,M → R8 → R3 →M

period 10 M → R3 → R1 →M,M → R5 → R2 →M, 80 22.622

M → R6 → R4 →M,M → R7 → R8 →M

In order to compare the proposed model with the situation as described in case 2, we again

employ the ε-constraint method and set ε = 650. By running the GA, the optimum results
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for case 2 are summarized in Tables 13 and 14. The maximum profit of the supply chain

network is 1.8531 × 106 dollars, which increases by 4,600 dollars compared with that of the

proposed, a factor of 0.25%. However, the total network risk in case 2 is 470.9582, increased

19.43% as compared to the proposed model. Indeed, the risks are rather high in certain periods,

significantly more than 65 (see period 2, period 3 and period 5). Overall, the proposed model

performs much better. As such, we should take the proposed approach to solve the given

hazardous material multi-period IRP.

Table 13 Retailers’ supply schedule of case 2 (ton)

R1 R2 R3 R4 R5 R6 R7 R8

period 1 0 0 0 0 0 0 0 0

period 2 21 11 24 21 24 11 14 19

period 3 12 28 0 0 0 21 10 0

period 4 0 0 11 27 20 0 24 21

period 5 7 10 13 0 0 11 0 0

period 6 12 6 18 27 0 29 15 22

period 7 9 29 0 0 19 0 9 0

period 8 16 0 13 7 0 8 19 22

period 9 9 12 20 22 19 22 0 0

period 10 6 0 0 0 0 0 13 8

6 Conclusion

In this paper, we have investigated hazardous material multi-period IRPs with the assump-

tion of limited production capacity by the manufacturer concerned. An integer programming

model has been proposed to maximize the overall profit of given multi-period supply chain

networks. To solve the resulting integer programming model, an improved genetic algorithm

has been devised to help searching for a quality solution. The main contributions of this study

are as follows: (i) the necessity of the multi-period joint decision for hazardous material IRPs

is revealed; and (ii) an original loading-dependent risk model for multi-vehicle travelling sales-

men problem is formulated. Numerical experiments have been carried out, demonstrating that

multi-period joint decision can effectively improve the profits of a given supply chain, while the

proposed risk model helps reducing the overall risk of the supply chain.

Future research may be conducted in several direction. First, more real-life factors will be

considered, such as traffic restriction, more flexible distribution mode, customer satisfaction,

and third-party logistics. Second, it would be useful to improve the efficiency of the proposed

solution method for large-scale multi-period IRPs. Last but not least, it would be interesting

to extend the proposed model to deal with more complex supply chain structures, such as

three-level supply chain networks.
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Table 14 Transportation route, production plan and supply chain network risk of case 2

transportation route production plan system risk

period 1 - 0 2.692

period 2 M → R1 → R8 →M,M → R3 →M,M → R7 →M, 64 81.92

M → R4 → R6 →M,M → R5 → R2 →M

period 3 M → R1 →M,M → R6 → R2 →M, 80 68.0075

M → R7 →M

period 4 M → R3 → R5 →M,M → R4 →M, 80 57.6665

M → R7 →M,M → R8 →M

period 5 M → R2 →M,M → R3 → R1 →M, 80 75.569

M → R6 →M

period 6 M → R1 → R8 →M,M → R2 →M,M → R3 →M, 80 52.3922

M → R4 →M,M → R6 →M,M → R7 →M

period 7 M → R1 → R7 →M,M → R2 →M,M → R5 →M 80 47.9548

period 8 M → R1 → R8 →M,M → R3 →M,M → R4 →M, 80 47.635

M → R6 →M,M → R7 →M

period 9 M → R1 →M,M → R3 →M,M → R4 →M, 80 28.832

M → R6 →M,M → R5 → R2 →M

period 10 M → R1 → R8 →M,M → R7 →M 24 8.2892
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