
Constructing Basis Path Set by Eliminating Path Dependency
Juanping Zhu1* Qi Meng2 Wei Chen2 Yue Wang3 Zhi-ming Ma4

1. Yunnan University, 2. Microsoft Research Asia, 3. Beijing Jiaotong University, 4. Chinese Academy of Science

* Corresponding author

Abstract: The way the basis path set works in neural network remains mysterious, and the

generalization of newly appeared 𝒢-SGD algorithm to more practical network is hindered. The

Basis Path Set Searching problem is formulated from the perspective of graph theory, to find

the basis path set in a regular complicated neural network. Our paper aims to discover the

underlying cause of path dependency between two independent substructures. Algorithm

DEAH is designed to solve the Basis Path Set Searching problem by eliminating such path

dependency. The path subdivision chain is proposed to effectively eliminate the path

dependency inside the chain and between chains. The theoretical proofs and analysis of

polynomial time complexity are presented. The paper therefore provides one methodology to

find the basis path set in a more general neural network, which offers theoretical and

algorithmic support for the application of 𝒢-SGD algorithm in more practical scenarios.

Key Words: substructure path, basis path, path subdivision chain, path dependency, neural

network

1 Introduction

Neural network with ReLU activation function has been developed for a variety of tasks, such

as distribution estimation in statistics, machine translation and language modeling etc. [1,2].

How to train the weights of ReLU neural network in appropriate space affects the network

performance and efficiency. In order to handle the mismatch during optimizing neural networks

in positively scale-invariant space [3,4], Meng et al. [5] proposed to optimize the values of basis

path set in 𝒢-space of ReLU neural networks by stochastic gradient descent algorithm (SGD)

[6]. The experiments turned out that this novel 𝒢-SGD algorithm [5] with attractive low

dimensionality of basis path set significantly outperformed conventional SGD algorithm. In

addition, the performance superiority was approved recently in language modeling and machine

translation by adopting the concept of basis path set in transformer network [2]. It is promising

for 𝒢-SGD algorithm to be generalized to more practical neural networks and be applied widely

in applications.

In recent years many efforts have been invested into explaining and understanding the

overwhelming success of neural network learning methods [7-11]. Despite the experimental

success, 𝒢-SGD algorithm needs further theoretical investigation on how the inner mechanism

of basis paths works in neural networks. For instance, how to analyze the structure relationship

between the basis path set and the network and how does the different network structure affect

the algorithm searching for basis path set? On the other hand, the generalization of 𝒢-SGD

algorithm is currently hindered for the implementation of 𝒢-SGD algorithm [5] depends on the

structure of neural network, because currently 𝒢-SGD algorithm can only heuristically find the

basis path set in the simple fully connected network, which demands the width of all layer is

the same and there is no edge-skipping over layers. However, there are varieties of structures

in practical network such as ResNet and DenseNet with different combination of edge-skipping

over layers and ununiform layer width.

We resort to graph theory for theoretical support to understand basis path set like the way

explaining neural network in group operations and functional perspectives [12,13]. In the

perspective of graph theory, Zhu et al.[14] defined basis path and proposed one hierarchical

algorithm to find basis path set in each independent substructure. This hierarchical algorithm

[14] can handle the network with ununiform layer width and edge-skipping but requires that

there exist no shared layers between any two independent substructure paths, which is strict for

practical network.

This paper considers the graph-theory-based Basis Path Set Searching problem how to find

maximal independent path set in the graph of regular fully connected neural network with any

ununiform layer width and any edge-skipping without restriction. We first investigate the

combinatoric possibility that maximal independent substructures will bring up path dependency.

Then the paper proposes dependency eliminating algorithm based on hierarchical idea (DEAH)

to solve Basis Path Set Searching problem. The hierarchical idea is employed to decompose

the complicated neural network into maximally independent substructures and find basis path

set for each independent substructure in parallel. Then we need to eliminate the paths which

would cause the path dependency when we combine all these basis path sets together. To avoid

the enumeration of all possible substructure path pairs for the shared layers, we take advantage

of path subdivision chains in the algorithm designing. Lemmas and theorems are provided to

guarantee the algorithm can solve Basis Path Set Searching problem in polynomial time.

The contributions of this paper are the following: (i) the paper explains the structure relationship

of Basis Path Set Searching problem from graph theory perspective and provides one

polynomial algorithm; (ii) Algorithm DEAH can help overcome the hurdle of current 𝒢-SGD

algorithm and generalize 𝒢-SGD algorithm further; (iii) this paper provides one methodology

to find the basis path set in more general neural network, and it can offer theoretical and

algorithmic support for the application of 𝒢-SGD algorithm in more practical scenarios.

2 Preliminary

Regular fully connected neural network is a 𝐿-layer multi-layer perceptron with weighted

edges that can skip over different layers [14]. We denote 𝑖-th node in 𝑙-th layer as 𝑂𝑖
𝑙 and the

node set of the 𝑙-th layer as 𝑂𝑙. (𝑂𝑖
𝑙 , 𝑂

𝑖′
𝑙+𝑗

) is denoted as the directed edge from layer 𝑙 to

layer 𝑙 + 𝑗, which can skip layer 𝑙+1 till layer 𝑙 + 𝑗 − 1 as shown in Fig. 1, where 1 ≤ 𝑗 ≤
𝐿 − 𝑙, 1≤ 𝑖 ≤ |𝑂𝑙| and 1 ≤ 𝑖′ ≤ |𝑂𝑙+𝑗|. Within the same layers, the edges are fully connected.

Since graph theory provides one effective platform to investigate the paths in the graph

intuitively and theoretically [15-17], the paper would interpret neural network as a triple graph

𝐺 = (𝑉, 𝐸, 𝑤), where the finite node set 𝑉 = 𝑂0 ∪ … ∪ 𝑂𝑙 … ∪ 𝑂𝐿 comprising all nodes in

neural network 𝐺 and finite edge set 𝐸 ={ (𝑂𝑖
𝑙 , 𝑂

𝑖′
𝑙+𝑗

)| 0 ≤ 𝑙 ≤ 𝐿 − 1 and 1 ≤ 𝑗 ≤ 𝐿 − 𝑙 }

consisting of all directed fully connected edges between different layers. 𝑤(𝑂𝑖
𝑙 , 𝑂

𝑖′
𝑙+𝑗

) is the

weight of edge (𝑂𝑖
𝑙 , 𝑂

𝑖′
𝑙+𝑗

) ∈ 𝐸, and 𝑚 = |𝐸| is the number of edges in graph 𝐺 . Let set

𝑃 ={(𝑂𝑖∗
0 , 𝑂𝑖∗

1′
, … , 𝑂𝑖∗

𝑗′

… , 𝑂𝑖∗
𝐿) |0 < 1′ < 2′ …< 𝑗′ < 𝐿} consist of all paths from the input

layer to the output layer in network 𝐺[15,16], where 𝑂𝑖∗
𝑙 is denoted as some node without

specified position in the 𝑙-th layer for simplicity.

Definition 1 (independent path set)[14] Given path set 𝐵 ⊆ 𝑃, if there exists one path 𝑝 ∈ 𝐵

and another path 𝑞 ∈ 𝐵 ∖ {𝑝} such that we can reach path 𝑝 from path 𝑞 through finite steps

of path addition and path removal within 𝐵, we call path set 𝐵 is dependent. Otherwise, we

call path set 𝐵 is independent.

Definition 2 (maximal independent path set) [14] A path set 𝐵 ⊆ 𝑃 of neural network 𝐺 is

maximally independent, if including any other path 𝑝∗ ∈ 𝑃 ∖ 𝐵 would make 𝐵 ∪ 𝑝∗

dependent. Hence, a basis path set 𝐵 of neural network 𝐺 is a maximal independent subset

of 𝑃.

The definitions of basic path operations such as path addition and path removal [14] can be

found in Appendix A.

Definition 3 (substructure path)[14] Given fully connected neural network G and induced sub-

graph 𝐺′ with 𝑉(𝐺′) = (𝑂0, 𝑂1′
, … , 𝑂𝑖′

, … , 𝑂𝐿), where 1 ≤ 𝑖′ ≤ 𝐿 − 1. Let 𝑃(𝐺′) be the

path set from the input layer to the output layer in 𝐺′. If all paths in 𝑃(𝐺′) from the input to

the output pass through the same layers homogenously, then any path 𝑝 ∈ 𝑃(𝐺′) can be called

as the substructure path of neural network 𝐺. Substructure path 𝑝 can express the structure

information about sub-graph 𝐺′in network 𝐺.

Definition 4 (substructure path set) Define one induced sub-graph 𝐺𝑆 =(𝑉𝑆 , 𝐸𝑆) of fully

connected neural network 𝐺, which is a simplified network with only one node in each layer,

where 𝑉𝑆 = {one randomly selected 𝑂𝑖∗
𝑙 ∈ 𝑂𝑙|𝑙 = 0, … , 𝐿} and 𝐸𝑆 = {(𝑂𝑖∗

𝑙 , 𝑂𝑖∗
𝑘) ∈ 𝐸|𝑂𝑖∗

𝑙

∈ 𝑉𝑆, 𝑂𝑖∗
𝑘 ∈ 𝑉𝑆, 0 ≤ 𝑙 < 𝑘 ≤ 𝐿}. By breadth first search, we can get all substructure paths

starting from node 𝑂𝑖∗
0 to node 𝑂𝑖∗

𝐿 in 𝐺𝑆. Denote this substructure path set as 𝑃𝑆，which

can represent all substructure information of network 𝐺.

Definition 5 (maximal independent substructure path set) Given fully connected neural

network 𝐺 and substructure path set 𝑃𝑆 . The substructure path set 𝑃𝑖𝑛𝑑
𝑆 ⊂ 𝑃𝑆 is called

dependent, if there is one substructure path 𝑝 ∈ 𝑃𝑖𝑛𝑑
𝑆 and another path 𝑞 ∈ 𝑃𝑖𝑛𝑑

𝑆 ∖ {𝑝} such

that we can reach path 𝑝 from path 𝑞 through finite steps of path addition and path removal

within 𝑃𝑖𝑛𝑑
𝑆 . Otherwise, we call 𝑃𝑖𝑛𝑑

𝑆 is independent. A substructure path set 𝑃𝑖𝑛𝑑
𝑆 of 𝑃𝑆 is

maximally independent, if including any other path 𝑝∗ ∈ 𝑃𝑆 ∖ 𝑃𝑖𝑛𝑑
𝑆 would make 𝑃𝑖𝑛𝑑

𝑆 ∪ 𝑝∗

dependent.

There exists one special structure relationship between two independent substructure paths, i.e.,

path subdivision, which is the adaptation of graph subdivision [18-20] to the path.

Definition 6 (path subdivision) Given a substructure path set 𝑃𝑆 and one substructure path

𝑝 ∈ 𝑃𝑆 with one edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸(𝑝). If there exists one substructure path 𝑝′ ∈ 𝑃𝑆 with

sub-path (𝑢, 𝑥1, 𝑥2, … , 𝑥𝑘 , 𝑣), sub-path (𝑢, 𝑥1, 𝑥2, … , 𝑥𝑘 , 𝑣) is called the edge subdivision of

edge 𝑒 . We call 𝑒 the subdivided edge and 𝑥1, 𝑥2, … , 𝑥𝑘 the subdivision vertices.

Furthermore, if 𝑝 − 𝑒 = 𝑝′ − (𝑢, 𝑥1, 𝑥2, … , 𝑥𝑘 , 𝑣), we call path 𝑝′ the path subdivision of

path 𝑝 and path 𝑝 the subdivided path. Especially, we denote by 𝑝′ the path obtained from

𝑝 by subdividing the edges 𝑒1, … , 𝑒𝑡 , … , 𝑒𝑇′ , where each edge 𝑒𝑡 ∈ 𝐸(𝑝) is subdivided once

for 𝑡 ∈ {1, … , 𝑇′}.

 𝑂𝑗′
𝑖′

 𝑆 𝑆′

 𝐼′ 𝐼

 𝑝1 𝑝2 𝑝1,1 𝑝1,2 𝑝2,1 𝑝2,2
 (a) (b)

Fig. 1 Example of path subdivision Fig. 2 Case 1 of path dependency

There is no edge subdivision in 𝑃𝑆in Fig. 1(a). In Fig. 1(b), edge (𝑂0, 𝑂2) is a subdivided

edge, because there exists sub-path (𝑂0, 𝑂1, 𝑂2) between 𝑂0 and 𝑂2 . Let 𝑝1 =
(𝑂0, 𝑂1, 𝑂2, 𝑂3, 𝑂4), 𝑝2 = (𝑂0, 𝑂2, 𝑂3, 𝑂4), 𝑝3 = (𝑂0, 𝑂1, 𝑂2, 𝑂4) and 𝑝4 = (𝑂0, 𝑂2, 𝑂4).

Substructure path 𝑝1 is the path subdivision of path 𝑝2, 𝑝3 and 𝑝4. Paths 𝑝2 and 𝑝3 are

the path subdivision of path 𝑝4 but 𝑝2 and 𝑝3 are not path subdivision of each other. Note

we use the layer to represent the random node in the layer when discussing the substructure

path, which is different from regular path expression.

Definition 7 (underlying substructure path) Given the substructure path set 𝑃𝑆, subset 𝑃′ ⊂
𝑃𝑆 and one substructure path 𝑝0 ∈ 𝑃′. We call 𝑝0 the underlying substructure path of 𝑃′ if

𝑂2

𝑂0

𝑂4

𝑂1

𝑂3

𝑃𝑆

𝑂2

𝑂0

𝑂4

𝑂1

𝑂3

𝑃𝑆

𝑝0 is the path subdivision of any substructure path 𝑝 ∈ 𝑃′ ∖ {𝑝0}.

3 Problem Statement

3.1 Basis Path Set Searching Problem

To solve the challenge related to basis path set in more general neural network mentioned in

section Introduction, this paper focuses on Basis Path Set Searching Problem, which is defined

as follows.

Given graph 𝐺 representing the regular fully connected network, we aim to find maximal

independent path set (basis path set) 𝐵 in graph 𝐺.

Here the regular fully connected network can be a network with unbalanced layers (the widths

of different layers are not equal) and with edges jumping over different layers.

3.2 Path Dependency between Two Independent Substructures

In graph theory, any path 𝑝 ∈ 𝑃 in fully connected network 𝐺 from the input layer to the

output layer can be represented by the basis path set 𝐵 with smaller cardinality [14]. One

hierarchical algorithm has been proposed [14] to decompose the fully connected network into

maximal independent substructures 𝑃𝑖𝑛𝑑
𝑆 , where each sub-graph 𝐺𝑟 induced from 𝑝𝑟 ∈ 𝑃𝑖𝑛𝑑

𝑆

can be treated as a fully connected graph without any edge-skipping. Here 𝐺𝑟 is the sub-graph

of 𝐺 by taking all edges from 𝐺 with the same layers as substructure path 𝑝𝑟 , in which

Algorithm Subroutine [14] (in Appendix C) can find basis path set 𝐵𝑟 accordingly. It is well-

known that hierarchical idea usually decomposes the complicated combinatorial optimization

problem into several independent and simpler sub-optimization problems [21-24] and solves

each sub-optimization problems separately. Since 𝑃𝑖𝑛𝑑
𝑆 is the maximal independent

substructure set and each independent substructure 𝑝𝑟 ∈ 𝑃𝑖𝑛𝑑
𝑆 has unique structure, intuitively

we would consider to simply combine these basis path sets 𝐵𝑟 together to form basis path set

B for network 𝐺. However, the basis paths from two independent substructures 𝑝𝑟 and 𝑝𝑠 in

our regular graph 𝐺 couldn’t guarantee they are path dependent, though their structures are

unique. After investigation, we found the underlying cause of path dependency is 𝐸(𝑝𝑟) ∩
𝐸(𝑝𝑠) ≠ ∅ (𝑟 ≠ 𝑠), i.e., there exist shared edges (layers) between 𝑝𝑟 and 𝑝𝑠 . The shared

edges offer the chance for basis paths to exchange the locations of the shared layers between

substructures and to cancel same unshared layers within the substructure for the structure

uniqueness. There are three typical cases to illustrate this combinatoric possibility, and we also

notice that the basis paths from each substructure must appear in pair to cancel the unique

unshared layers.

Case 1

In Fig. 2, substructure path 𝑝2 is the path subdivision of substructure path 𝑝1 in the layers of

𝐼. 𝑝1 and 𝑝2 share layers of 𝑆 and 𝑆′, and 𝑝1 and 𝑝2 are independent. Given basis paths

𝑝1,1, 𝑝1,2 ∈ 𝐵1, and 𝑝2,1, 𝑝2,2 ∈ 𝐵2. Any path can be represented by the remaining three paths,

such as 𝑝1,1 = 𝑝2,1 − 𝑝2,2 + 𝑝1,2 . The same sub-path 𝐼′ in 𝑝1,1 and 𝑝1,2 in the unshared

layers can be cancelled inside substructure 𝑝1, and the same sub-path 𝐼 in 𝑝2,1 and 𝑝2,2

can be cancelled inside substructure 𝑝2 too. In the shared layers, sub-path 𝑆 of 𝑝1,1 and

𝑝2,1can be swapped, and so does sub-path 𝑆′ of 𝑝1,2 and 𝑝2,2.

Case 2

In Fig. 3, both substructure paths 𝑝2 and 𝑝3 have edge subdivision in each other but they are

not path subdivision to each other. 𝑝2 and 𝑝3 share layers at 𝑆 and 𝑆′, so sub-path 𝑆′ in

𝑝2,1 and 𝑝3,1 can be swapped and 𝑆 in 𝑝2,2 and 𝑝3,2 can be swapped. In the unshared

layers, sub-path 𝐼′ + 𝐽′ in 𝑝2,1 and 𝑝2,2 can be cancelled, and 𝐼 + 𝐽 in 𝑝3,1 and 𝑝3,2 can

be cancelled too.

 𝑆′

 𝑆

 𝐽′ 𝐽

 𝐼

 𝐼′

 𝑃𝑆 𝑝1 𝑝2 𝑝3 𝑝2,1(𝑝𝑟

𝑡𝑖
′1) 𝑝2,2(𝑝𝑟

𝑡𝑖
′2) 𝑝3,1(𝑝𝑟𝑡𝑗

1) 𝑝3,2(𝑝𝑟𝑡𝑗
2) 𝑝4 𝑝5 𝑝6 𝑝0

 (a) (b) (c)

Fig. 3 Case 2 of path dependency

Case 3

In Fig. 4, substructure paths 𝑝2 and 𝑝1 have no edge subdivision in each other, but 𝑝1 and

𝑝2 have layers of 𝑆 and 𝑆′ in common. In the unshared layers, same sub-path 𝐼 in 𝑝1,1 and

𝑝1,2 can be cancelled from each other, and sub-path 𝐼′ in 𝑝2,1 and 𝑝2,2 can be cancelled too.

In the shared layers, sub-path 𝑆 in 𝑝1,1 and 𝑝2,1 and 𝑆′ in 𝑝1,2 and 𝑝2,2can be swapped.

 𝐼 𝐼′

 𝑂𝑗∗
𝑖∗

 𝑆 𝑆

 𝑆′′ 𝑆′ 𝑆′ 𝑆′′

 𝑆′ 𝑆
 𝑝1 𝑝2 𝑝1,1 𝑝1,2 𝑝2,1 𝑝2,2 𝑝1 𝑝2 𝑝3 𝑝1,1 𝑝1,2 𝑝2,1 𝑝2,2 𝑝3,1 𝑝3,2

 Fig. 4 Case 3 of path dependency Fig. 5 Elimination of path dependency

Property 1 If 𝐸(𝑝𝑟) ∩ 𝐸(𝑝𝑠) ≠ ∅ (𝑟 ≠ 𝑠), then the path set 𝐵𝑟 ∪ 𝐵𝑠 is not path independent.

Claim 1 Given two independent substructure paths 𝑝1 and 𝑝2 with their shared layers 𝑆∗ =
𝐸(𝑝1) ∩ 𝐸(𝑝2), basis paths 𝑝1,1, 𝑝1,2 ∈ 𝐵1 with 𝑆 ∈ 𝐸(𝑝1,1) and 𝑆′ ∈ 𝐸(𝑝1,2) at the shared

layers 𝑆∗. If 𝑝1,1 − ∑ 𝑒𝑒∈𝑆 =𝑝1,2 − ∑ 𝑒𝑒∈𝑆′ at the unshared layers, then there must exist basis

paths 𝑝2,1, 𝑝2,2 ∈ 𝐵2 such that 𝑆 ∈ 𝐸(𝑝2,1) and 𝑆′ ∈ 𝐸(𝑝2,2) at the layers of 𝑆∗ and

𝑝2,1 − ∑ 𝑒𝑒∈𝑆 =𝑝2,2 − ∑ 𝑒𝑒∈𝑆′ .

Proof: We will prove this claim from two cases.

Case 1. Unshared layers of 𝐼 appear at the top of shared layers of 𝑆∗. As shown in Fig. 4, let

𝐼 = 𝑝1,1 − ∑ 𝑒𝑒∈𝑆 =𝑝1,2 − ∑ 𝑒𝑒∈𝑆′ . According to the properties of the direct path [14], the first

edge in 𝐼 must be direct path, because it accepts two different sub-paths 𝑆 and 𝑆′ from its

incident node, denoted as 𝑂𝑗∗
𝑖∗

. Moreover, there must exist one direct path starting from 𝑂𝑗∗
𝑖∗

 in

𝐵2 regarding 𝑝2. Pick up one sub-path starting with this direct path, denoted as 𝐼′. Here we

demand the rule to randomly select paths in Algorithm Subroutine be the same while

constructing all basis path set. So sub-paths 𝑆 and 𝑆′ ending at 𝑂𝑗∗
𝑖∗

 must be included in

some basis paths of 𝑝2 and 𝐼′ will accept both 𝑆 and 𝑆′ in 𝑝2,1 and 𝑝2,2 as shown in Fig.

4.

Case 2. If the shared layers of 𝑆∗ is at the top of unshared layers of 𝐼 as shown in Fig. 2, 𝑆

and 𝑆′ are two different sub-paths starting from 𝑂𝑗′
𝑖′

 in 𝐵1. According to the same rule to

randomly select paths, 𝑆 and 𝑆′ must exist as layers of two basis paths in 𝐵2. We can pick

up the direct path ending at 𝑂𝑗′
𝑖′

 which can be concatenated by 𝑆 and 𝑆′ at 𝑂𝑗′
𝑖′

.

Other locations of shared layers 𝑆∗ are the combination of Case 1 and Case 2. ∎

Claim 2 The path dependency couldn’t happen among three or more than three independent

substructures, if we eliminate the paths which cause path dependency when combing the basis

path sets of two independent substructures.

Proof: The analysis of path dependency indicates that basis paths from one substructure must

appear in pair to cancel unshared layers for the structure uniqueness. Suppose the path

dependency happens among three independent substructure paths, i.e., 𝑝1, 𝑝2 and 𝑝3 as

shown in Fig.5. Assume 𝑝1,1 − 𝑝1,2 + 𝑝2,1 − 𝑝2,2 = 𝑝3,1 − 𝑝3,2 , where 𝑝1,1, 𝑝1,2 ∈ 𝐵1 ,

𝑝2,1, 𝑝2,2 ∈ 𝐵2 , and 𝑝3,1, 𝑝3,2 ∈ 𝐵3 . The common layers 𝐸(𝑆) ⊂ 𝐸(𝑝1,1) and 𝐸(𝑆) ⊂
𝐸(𝑝2,1) must appear in pair for swapping. The same for 𝐸(𝑆′) ⊂ 𝐸(𝑝2,2) and 𝐸(𝑆′) ⊂
𝐸(𝑝3,1), and 𝐸(𝑆′′) ⊂ 𝐸(𝑝1,2) and 𝐸(𝑆′′) ⊂ 𝐸(𝑝3,2). The unshared layers 𝑝1,1 − ∑ 𝑒𝑒∈𝑆

and 𝑝1,2 − ∑ 𝑒𝑒∈𝑆′′ must appear the same to cancel the unique structure. So do 𝑝2,1 − ∑ 𝑒𝑒∈𝑆

and 𝑝2,2 − ∑ 𝑒𝑒∈𝑆′ pair and 𝑝3,1 − ∑ 𝑒𝑒∈𝑆′ and 𝑝3,2 − ∑ 𝑒𝑒∈𝑆′′ pair. When we consider

eliminating the paths which cause path dependency between two independent substructures, we

must delete at least one basis path from corresponding two pairs. For example, if 𝑝1,1 and

𝑝3,2 stay, 𝑝1,2 must be discarded when considering 𝑝1 and 𝑝3. Therefore, it is impossible to

either take swapping for the shared layers or cancel the unshared layers for the basis path from

the third substructure such as 𝑝2 . So, the assumption couldn’t happen and Claim 2 holds.

∎

Claim 2 indicates that we only need to consider the path dependency between any two

independent substructures. However, it would be expensive if we enumerate all two

substructure path pairs with the shared layers in graph 𝐺 . In Case 2 of analysis of path

dependency, the maximal independent substructure path set could be {𝑝0, 𝑝1, 𝑝2, 𝑝3} in Fig.

3(a) and it can also be {𝑝0, 𝑝4, 𝑝5, 𝑝6} as in Fig. 3(c), where 𝑝5 is the path subdivision of 𝑝4,

𝑝6 is the path subdivision of 𝑝5 and the underlying substructure path 𝑝0 is the path

subdivision of 𝑝4, 𝑝5 and 𝑝6 . {𝑝0, 𝑝4, 𝑝5 , 𝑝6} can form one chain from path subdivision.

Motivated by this, path subdivision chain is proposed to avoid complicated enumeration.

Definition 8 (path subdivision set) Given the substructure path set 𝑃𝑆 of fully connected

network 𝐺 and subset 𝑃′ ⊂ 𝑃𝑆, the path subdivision set 𝑈𝑟 of substructure path 𝑝𝑟 ∈ 𝑃′ is

defined as {𝑝 ∈ 𝑃′|𝑝 is the subdivision of 𝑝𝑟}.

Definition 9 (path subdivision chain) Given set {𝑈𝑟|𝑟 = 1, … , |𝑃′|} of path subdivision sets

on 𝑃′ ⊂ 𝑃𝑆. Based on set containment relationship, we can get 𝑇 path subdivision chains, i.e.,

the 𝑡 -th chain 𝑈𝑡1
⊃ 𝑈𝑡2

… ⊃ 𝑈𝑡𝑗
… ⊃ 𝑈𝑡𝑠𝑡

, where ∑ 𝑠𝑡
𝑇
𝑡=1 ≥ |𝑃′| and 𝑈𝑡𝑗

∈ {𝑈𝑟|𝑟 =

1, … , 𝑅} is the 𝑗-th set of the 𝑡-th chain.

Fig.3(c) can form one path subdivision chain 𝑈4 ⊃ 𝑈5 ⊃ 𝑈6 ⊃ 𝑈0 but Fig.3(a) needs 3 chains

such as 𝑈1 ⊃ 𝑈0, 𝑈2 ⊃ 𝑈0 and 𝑈3 ⊃ 𝑈0, though 𝑝1, 𝑝2 and 𝑝3 have subdivision layers in

each other. Obviously, path subdivision set 𝑈0 = ∅. Some properties and lemmas about the

path subdivision chain can be found in Appendix B.

4 Dependency Eliminating Algorithm Based on Hierarchical

Idea (DEAH)

Algorithm HBPS [14] initiated one inspiring hierarchical idea to decompose the complicated

graph 𝐺 into several independent substructures but the restriction is there doesn’t exist shared

layers between any two maximal independent substructures, which may cause the path

dependency. However, one practical fully connected network allows edge-skipping over

different layers and shared layers between different substructures. To solve Basis Path Set

Searching problem in regular graph 𝐺 , we propose Algorithm DEAH to overcome the

restriction of Algorithm HBPS to find basis path set in more practical network by eliminating

path dependency.

Step 1 of Algorithm DEAH employs hierarchical idea to decompose the complicated network

𝐺 into |𝑃𝑖𝑛𝑑
𝑆 |maximal independent substructures. Compute path subdivision set 𝑈𝑟 for 𝑝𝑟 ∈

𝑃𝑆 and sort {𝑈𝑟} with |𝑈𝑟| in descending order as {𝑈𝑟𝑖
|𝑖 = 0,1 … , |𝑃𝑆| − 1} with 𝑈𝑟0

=

𝑈0. Starting from 𝑖 = 0, get the first |𝑃𝑖𝑛𝑑
𝑆 | substructure paths from {𝑝𝑟𝑖

|𝑖 = 0,1 … , |𝑃𝑆| − 1}

such that they are independent. The purpose of this step is to avoid Case 2 in path dependency

analysis and stretch the path subdivision chains as long as possible in Step 3. We must pay

attention to |𝑈𝑟𝑖−1
| = |𝑈𝑟𝑖

| when 𝑅𝑎𝑛𝑘({𝑈𝑟0
, 𝑈𝑟

1′ , … 𝑈𝑟
𝑘′ … , 𝑈𝑟𝑖−1

, 𝑈𝑟𝑖
}) > 𝑅𝑎𝑛𝑘

({𝑈𝑟0
, 𝑈𝑟

1′ , … 𝑈𝑟
𝑘′ … , 𝑈𝑟𝑖−1

}) . In this case, if there exists some 𝑈𝑟𝑗
(𝑗 < 𝑖 − 1) such that

𝑈𝑟𝑖−1
⊂ 𝑈𝑟𝑗

 and 𝑈𝑟𝑖
⊂ 𝑈𝑟𝑗

and substructure paths 𝑝𝑟𝑖−1
and 𝑝𝑟𝑖

 have edge subdivision in

each other, we skip 𝑈𝑟𝑖
 and go to 𝑈𝑟𝑖+1

. This step rules out the possibility of Case 2 of path

dependency (shown in Fig. 3(a)). This is because the chain with 𝑈𝑟𝑖−1
would split into two

chains but we can manipulate to form one chain instead by simply skipping 𝑈𝑟𝑖
.

Step 2 finds basis path set 𝐵𝑟 by calling Algorithm Subroutine for each 𝐺𝑟 induced by 𝑝𝑟 ∈
𝑃𝑖𝑛𝑑

𝑆 in parallel, which can be treated as a simple network without edge-skipping. Step 3 is to

eliminate the path dependency between different substructure path pairs, by constructing

multiple path subdivision chains to avoid enumeration as discussed in Section 3. We scan the

selected path subdivision sets in {𝑈𝑟|𝑟 = 0,1, … , |𝑃𝑖𝑛𝑑
𝑆 | − 1} with |𝑈𝑟|in descending order to

stretch the 𝑡-th chain 𝑈𝑡1
⊃ 𝑈𝑡2

… ⊃ 𝑈𝑡𝑗
… ⊃ 𝑈𝑡𝑠𝑡

⊃ 𝑈0 as long as possible, and start one

new chain starting from 𝑈𝑟 if 𝑈𝑟 couldn’t be contained in some ready chain. Once the

multiple chains are established, the next step is to eliminate the path dependency. Algorithm

DEAH divides the selected path subdivision sets into two groups. The first group includes the

sets which are not the first set in any chain. The second group consists of the first set in all

chain. For each set 𝑈𝑡𝑗+1
 in the first group in 𝑡-th chain, call Algorithm SDVChain (in

Appendix C) to discard the paths from path set 𝐵𝑡𝑗+1

′ based on original basis path set 𝐵𝑡𝑗
.

Here we emphasize 𝐵𝑡𝑗+1

′ instead of original 𝐵𝑡𝑗+1
 because 𝑈𝑡𝑗+1

 may appear in different

chains and paths in 𝐵𝑡𝑗+1

′ can be discarded from multiple chains. For 𝑈0, what we should do is

to keep discarding paths from 𝐵0
′ based on 𝑈𝑡𝑠𝑡

 for all 𝑡-th chain. The rule for Algorithm

SDVChain to keep one path in 𝐵𝑡𝑗+1

′ is that the shared layers with 𝐵𝑡𝑗
 have the most

concurrency and the unshared layers appear at least twice in 𝐵𝑡𝑗+1

′ according to Claim 1. For

𝑈𝑡1
 in some 𝑡-th chain from the second group, enumerate all 𝑡′-th chain to find the last set

𝑈𝑡𝑖∗
′ (𝑡′ ≠ 𝑡) such that 𝑝𝑡𝑖∗

′ shares layers with 𝑝𝑡1
 and discard the paths from 𝐵𝑡1

′ based on

original 𝐵𝑡𝑖∗
′ . The aim of stretching path subdivision chain as long as possible is to reduce the

enumeration as much as possible and the trick of path subdivision chain is that we only have to

consider the path dependency between the consecutive sets in the chain .

To find the maximal independent substructure path set 𝑃𝑖𝑛𝑑
𝑆 from 𝑃𝑆 in Step 1, we borrow

the concept of adjacent matrix in graph theory [15-17] and define adjacent matrix 𝑀𝑟 for path

𝑝𝑟 ∈ 𝑃𝑆 as

𝑀𝑟(𝑗, 𝑙) = {
1, if there is edge from 𝑗 − th layer to the 𝑙 − th layer
0, otherwise

𝑗 = 0,1, … , 𝐿
𝑙 = 0,1, … , 𝐿

.

Reshape 𝑀𝑟 to substructure path vector 𝛼𝑟 = [𝑀𝑟(0, :), … , 𝑀𝑟(𝑗, :), … , 𝑀𝑟(𝐿, :)], so each

𝑝𝑟 can be expressed as a 0-1 substructure path vector 𝛼𝑟 with (𝐿 + 1)2elements. It is easy to

calculate the maximal independent path set 𝑃𝑖𝑛𝑑
𝑆 from 𝑃𝑆 by implementing linear algebra

method, but it is infeasible to get basis path set 𝐵 in 𝑃 in this way, because 𝐺𝑆 is the

simplest network with only one node in each layer and the size of regular network 𝐺 is too

huge. To find the path subdivision and edge subdivision between two independent substructure

paths, straightforward 𝐿 + 1 -dimensional incident vector 𝛽𝑟 for substructure path 𝑝𝑟 is

defined as

𝛽𝑟(𝑙) = {
1, if 𝑝𝑟 passes through the 𝑙 − 𝑡ℎ layer
0, otherwise

, where 𝑙 = 0,1, … , 𝐿.

For 𝑝𝑟 and 𝑝𝑡 , let 𝑋 = 𝛽𝑟 − 𝛽𝑡 . If 𝑋 contains 1 and -1, then 𝑝𝑟 and 𝑝𝑡 are not path

subdivision to each other. If 𝑋 contains only 0 and -1, 𝑝𝑡 is path subdivision of 𝑝𝑟.

Algorithm DEAH

Input: Fully connected neural network 𝐺 = (𝑉, 𝐸) with 𝐿 + 1 layers

Output: Path set 𝐵 of neural network 𝐺

% Step 1. (The upper level) %

Select randomly node 𝑂𝑖∗
𝑙 at the 𝑙-th (𝑙 = 0, … , 𝐿) layer of graph 𝐺. Set node subset 𝑉𝑆 =

{𝑂𝑖∗
0 , … , 𝑂𝑖∗

𝑙 , … , 𝑂𝑖∗
𝐿 } and edge subset 𝐸𝑆 = {(𝑂𝑖∗

𝑗
, 𝑂𝑖∗

𝑙) ∈ 𝐸|𝑂𝑖∗
𝑗

∈ 𝑉𝑆, 𝑂𝑖∗
𝑙 ∈ 𝑉𝑆}. Let 𝑃𝑆 be

the path set from 𝑂𝑖∗
0 to 𝑂𝑖∗

𝐿 by breadth-first searching in 𝐺𝑆 =(𝑉𝑆, 𝐸𝑆).

For each path 𝑝𝑟 ∈ 𝑃𝑆do

 Construct substructure path vector 𝛼𝑟 and incident vector 𝛽𝑟.

End For

Calculate 𝑅 = 𝑅𝑎𝑛𝑘({𝛼𝑟}) by numerical linear algebra method.

For r= 1: |𝑃𝑆| do

 Let 𝑈𝑟 = ∅. For each t∈ {1, … , |𝑃𝑆|}, let 𝑋 = 𝛽𝑟 − 𝛽𝑡. If 𝑋 contains only 0 and -1, set

𝑈𝑟 = 𝑈𝑟 ∪ {𝑡}.

End For

Pick up 𝑝𝑟0
∈ 𝑃𝑆 with 𝑈𝑟0

= ∅. Sort |𝑈𝑟1
| ≥ |𝑈𝑟2

|…≥ |𝑈𝑟𝑅−1
| … ≥ |𝑈𝑟

|𝑃𝑆|−1
| ≥ |𝑈𝑟0

|.

Set 𝑖 = 1 and 𝐴 = {𝛼𝑟0
}.

While |𝐴| < 𝑅 do % Rule out the possibility of Case 2 in the cause analysis of path dependency.

 If Rank(𝐴 ∪ {𝛼𝑟𝑖
})= Rank(𝐴)+1 and |𝑈𝑟𝑖−1

| ≠ |𝑈𝑟𝑖
|, let 𝐴 = 𝐴 ∪ {𝛼𝑟𝑖

}. If Rank(𝐴 ∪

{𝛼𝑟𝑖
})= Rank(𝐴)+1 but |𝑈𝑟𝑖−1

| = |𝑈𝑟𝑖
|, let 𝑋 = 𝛽𝑟𝑖−1

− 𝛽𝑟𝑖
. If there is no 0 between any 1 and

-1 in 𝑋 or no 𝑈𝑟𝑗
 (𝑗 < 𝑖 − 1) such that 𝑟𝑖, 𝑟𝑖−1 ∈ 𝑈𝑟𝑗

, let 𝐴 = 𝐴 ∪ {𝛼𝑟𝑖
}.

 Let 𝑖 = 𝑖 + 1.

End While

Output 𝐴 as {𝑈𝑟|𝑟 = 0,1, … , 𝑅 − 1} with 𝑈0 = ∅ and |𝑈𝑟|in descending order, {𝛽𝑟} and

𝑃𝑖𝑛𝑑
𝑆 = {𝑝𝑟}.

%Step 2. (The lower level) % Get basis path set 𝐵𝑟 for 𝑝𝑟.

For each 𝑝𝑟 ∈ 𝑃𝑖𝑛𝑑
𝑆 do % Induce sub-graph 𝐺𝑟 with the same structure as 𝑝𝑟.

Let 𝐿𝑟 = {𝑙|𝑂𝑖∗
𝑙 ∈ 𝑝𝑟}, 𝑉𝑟 = {𝑂𝑙 ⊂ 𝑉|𝑙 ∈ 𝐿𝑟} and 𝐸𝑟 = {(𝑂

𝑖

𝑙𝑗 , 𝑂
𝑖′

𝑙𝑗+1) ∈ 𝐸|𝑂
𝑖

𝑙𝑗 ∈ 𝑂𝑙𝑗,

𝑂
𝑖′

𝑙𝑗+1 ∈ 𝑂𝑙𝑗+1 }. Set 𝐺𝑟 = (𝑉𝑟, 𝐸𝑟). Call Subroutine (𝐺𝑟) and output basis path set 𝐵𝑟.

End For

%Step 3. % Eliminate path dependency from the union of basis paths.

Set 𝑋 = ∅ and let 𝑡 = 0.

For 𝑟 = 1: 𝑅 do % If 𝑈𝑟 doesn’t belong to any chain, start a new chain.

 If 𝑟 ∉ 𝑋 , let 𝑡 = 𝑡 + 1 and 𝑈𝑡1
= 𝑈𝑟 . Find path subdivision chain 𝑈𝑡1

⊃ 𝑈𝑡2
… ⊃

𝑈𝑡𝑗
… ⊃ 𝑈𝑡𝑠𝑡

⊃ 𝑈0 by searching {𝑈𝑟|𝑟 = 𝑟 + 1, … , 𝑅 − 1} in order, till we couldn’t stretch

the chain further. Let 𝑌𝑡 = {𝑡1, … , 𝑡𝑗, … , 𝑡𝑠𝑡
} and 𝑋 = 𝑋 ∪ 𝑌𝑡.

End For

Let 𝑇 = 𝑡.

For 𝑡 = 1: 𝑇 do

Let 𝐵0
′ = 𝐵0 and 𝐵𝑡𝑗

′ =𝐵𝑡𝑗
 for all 𝑗. % Initialization for Algorithm SDVChain.

Let 𝑆ℎ𝑡 = {𝑟|𝐸(𝑝𝑟1
) ∩ 𝐸(𝑝𝑡1

) ≠ ∅, 𝑟 < 𝑡 } and 𝑄𝑡 = {𝑡𝑗
∗| the last 𝑡𝑗

∗ satisfying

𝐸(𝑝𝑡1
) ∩ 𝐸(𝑝𝑡𝑗

∗) ≠ ∅,𝑗 ≠ 1, 𝑡′ ≠ 𝑡}. Let 𝑄𝑡 = 𝑄𝑡\𝑌𝑡. % One element may appear in multiple chains

End For

For 𝑡 = 1: 𝑇 do

 Call SDVChain({𝐵𝑡𝑗

′ }𝑗=1
𝑠𝑡 , {𝐵𝑡𝑗

}𝑗=1
𝑠𝑡 , {𝑝𝑡𝑗

}𝑗=1
𝑠𝑡 , {𝛽𝑡𝑗

}𝑗=1
𝑠𝑡 , 𝐵0

′ , 𝑝0, 𝛽0, G), and output

updated shrunk path set {𝐵𝑡𝑗

′ }𝑗=2
𝑠𝑡 and discarded path set 𝐷0

′ . Let 𝐵0
′ = 𝐵0

′ ∖ 𝐷0
′ .

For each 𝑘 ∈ {1, … , |𝑄𝑡|}, call SDVChain(𝐵𝑄𝑡(𝑘)
′ , 𝐵𝑄𝑡(𝑘), 𝑝𝑄𝑡(𝑘), 𝛽𝑄𝑡(𝑘),𝐵𝑡1

′ , 𝑝𝑡1
, 𝛽𝑡1

, G),

output discarded path set 𝐷𝑡1
 and let 𝐵𝑡1

′ = 𝐵𝑡1

′ ∖ 𝐷𝑡1
.% 𝑄𝑡(𝑘) is the 𝑘-th element of 𝑄𝑡.

End For

Output path set 𝐵 =∪𝑡=1
𝑇 (∪𝑗=1

𝑠𝑡 𝐵𝑡𝑗

′) ∪ 𝐵0
′ . ∎

Theorem 1 Given fully connected neural network 𝐺 and 𝑇 path subdivision chains from

Algorithm DEAH in 𝐺，i.e., 𝑈𝑡1
⊃ 𝑈𝑡2

… ⊃ 𝑈𝑡𝑗
… ⊃ 𝑈𝑡𝑠𝑡

⊃ 𝑈0 with 𝑡 = 1, … , 𝑇. 𝐵𝑡𝑗
 is the

original basis path set of substructure path 𝑝𝑡𝑗
 and 𝐵𝑡𝑗

′ is the shrunk path set of 𝐵𝑡𝑗
 after path

discarding from Algorithm DEAH. Then the set 𝐵 =∪𝑡=1
𝑇 (∪𝑗=1

𝑠𝑡 𝐵𝑡𝑗

′) ∪ 𝐵0
′ is path

independent and any path 𝑝 ∈ 𝐵𝑡𝑗
∖ 𝐵 or 𝑝 ∈ 𝐵0 ∖ 𝐵 can be represented by 𝐵.

Proof: We now study the path independency between 𝑝𝑘 and 𝑝𝑙 from three cases.

Case 1 𝑘 = 𝑡𝑗 (𝑗 ≠ 1), 𝑙 = 𝑡𝑖
′ (𝑖 ≠ 1) and 𝑡 ≠ 𝑡′. In this case 𝑈𝑘 and 𝑈𝑙 are not the first

sets in the 𝑡-th and 𝑡′-th chain respectively. Let 𝐵𝑡𝑗

′ be the shrunk path set of 𝐵𝑡𝑗
 based on

𝐵𝑡𝑗−1
 and 𝐵

𝑡𝑖
′

′ be the shrunk path set of 𝐵𝑡𝑖
′ based on 𝐵𝑡𝑖−1

′ from the algorithm. We will

prove that 𝐵𝑡𝑗

′ ∪ 𝐵
𝑡𝑖

′
′ from two different chains is path independent. Because of no path

dependency within the same chain according to Lemma 1 (in Appendix B), assume that one

path 𝑝𝑡𝑗,1 such that 𝑝𝑡𝑗,1=𝑝𝑡𝑖
′,1 − 𝑝𝑡𝑖

′2 + 𝑝𝑡𝑗,2, where 𝑝𝑡𝑗,1, 𝑝𝑡𝑗,2 ∈ 𝐵𝑡𝑗

′ and 𝑝𝑡𝑖
′,1, 𝑝𝑡𝑖

′,2 ∈ 𝐵
𝑡𝑖

′
′ .

Apparently, neither 𝑈𝑡𝑖
′ nor 𝑈𝑡𝑗

could take 𝑈0, otherwise 𝑈𝑡𝑖
′ and 𝑈𝑡𝑗

 are in the same

chain. Let the layers 𝐼′ of substructure path 𝑝𝑡𝑖
′ be the edge subdivision of the layers 𝐼 of

𝑝𝑡𝑗
, as shown in Fig. 3(b). And the layers of 𝐽 in 𝑝𝑡𝑗

 is the edge subdivision of 𝐽′ in 𝑝𝑡𝑖
′. As

for the structure uniqueness, paths 𝑝𝑡𝑖
′,1 and 𝑝𝑡𝑖

′,2 must have the same layers 𝐼′ and 𝐽′ to

cancel each other, and paths 𝑝𝑡𝑗,1 and 𝑝𝑡𝑗,2 have the same layers 𝐼 and 𝐽. For the shared

layers, 𝑝𝑡𝑖
′,1 and 𝑝𝑡𝑗,1 must have 𝑆′ and 𝑝𝑡𝑖

′,2 and 𝑝𝑡𝑗,2 have 𝑆 to swap between different

substructures. No overlap between 𝐼 and 𝐽. Exchange edge set 𝐽′ and edge set 𝐽 in 𝑝𝑡𝑖
′,1

and 𝑝𝑡𝑗,1 and exchange part 𝐽′ and part 𝐽 in 𝑝𝑡𝑖
′ and 𝑝𝑡𝑗

. Interestingly, we get two new

substructure paths 𝑝1 and 𝑝2 (in Fig. 6). However, we notice that 𝑝1, 𝑝𝑡𝑗
 and 𝑝𝑡𝑖

′ (in Fig.3)

are the path subdivisions of 𝑝2. It contradicts the way we select the maximal independent

substructure path set.

Case 2 𝑘 = 𝑡1 and 𝑙 = 𝑡𝑖
′ (𝑖 ≠ 1). In this case, 𝑈𝑘 is the first set in the 𝑡-th and 𝑈𝑙 is

inside the 𝑡′-th chain, where 𝑡 ≠ 𝑡′. 𝐵
𝑡𝑖

′
′ is the shrunk path set of 𝐵𝑡𝑖

′ based on 𝐵𝑡𝑖−1
′ and

𝐵𝑡1

′ is shrunk from 𝐵𝑡1
. We prove that 𝐵𝑡1

′ ∪ 𝐵
𝑡𝑖

′
′ is path independent. Lemma 2 (in Appendix

B) indicates that no path dependency would be produced for any 𝑈𝑡𝑖
′ if we calculate 𝐵𝑡1

′

based on 𝑝𝑡𝑖∗
′ , which is the last substructure path in the chain 𝑈𝑡1

′ ⊃ 𝑈𝑡2
′ ⊃ ⋯ 𝑈𝑡𝑖

′ ⊃

⋯ 𝑈𝑡𝑖∗−1
′ ⊃ 𝑈𝑡𝑖∗

′ … ⊃ 𝑈𝑡𝑠
𝑡′

′ to have shared layers with 𝑝𝑡1
. If 𝑖 ≤ 𝑖∗ , 𝐵𝑡1

′ ∪ 𝐵
𝑡𝑖

′
′ is path

independent from Lemma 2. If 𝑖 > 𝑖∗, 𝐵𝑡1

′ ∪ 𝐵
𝑡𝑖

′
′ is path independent, because 𝑝𝑡1

 and 𝑝𝑡𝑖
′

don’t share common edges.

 𝐽 𝐽′

 𝐼′ 𝐼

 𝑃𝑆 𝑝1 𝑝1 𝑝2

 Fig. 6 Illustration of path exchange

Case 3 𝑘 = 𝑡1 and 𝑙 = 𝑡1
′ . In this case, both 𝑈𝑘 and 𝑈𝑙 are the first sets in their chains,

where 𝑡 ≠ 𝑡′. In order to calculate 𝐵𝑡1

′ , Algorithm SDVChain needs to find 𝑝𝑡𝑖∗
′ in each 𝑡′-th

chain and discard the corresponding paths from 𝐵𝑡1

′ based on 𝐵𝑡𝑖∗
′ . This procedure guarantees

the path independency for 𝐵𝑡1

′ ∪ 𝐵𝑡1
′

′ , according to Lemma 2.

According to Algorithm SDVChain, 𝐷0
′ is the path set which will be discarded from 𝐵0

′ ,

based on original 𝐵𝑟𝑠𝑡
 in the 𝑡-th chain. 𝐵0

′ is initialized as original 𝐵0 and is updated as

𝐵0
′ = 𝐵0

′ ∖ 𝐷0
′ iteratively for 𝑡 = 1 … 𝑇. And any 𝑝 ∈ 𝐵0 ∖ 𝐵0

′ can be represented by 𝐵0
′ ∪

𝐵𝑟𝑠𝑡
 for some 𝑡. Since 𝑈𝑡1

⊃ 𝑈𝑡2
… ⊃ 𝑈𝑡𝑗

… ⊃ 𝑈𝑡𝑠𝑡
⊃ 𝑈0 is path subdivision chain, so 𝐵0

′ ∪

𝐵𝑟𝑗
 is path independent for 𝑗 = 1, … , 𝑠𝑡 in the 𝑡-th chain. Therefore, 𝐵 =∪𝑡=1

𝑇 (∪𝑗=1
𝑠𝑡 𝐵𝑡𝑗

′) ∪

𝐵0
′ is path independent based upon Claim 1 and Claim 2.

Note set 𝑈𝑡𝑗
(𝑗 ≠ 1) can appear in multiple chains but the first set 𝑈𝑡1

can only appear in exactly

𝑡-th chain. Lemma 1 proves that any path 𝑝 ∈ 𝐵𝑡𝑗
\𝐵𝑡𝑗

′ can be represented by 𝐵𝑡𝑗−1
∪ 𝐵𝑡𝑗

′

recursively till 𝐵𝑡1
. If 𝑈𝑡𝑗

 belongs to the 𝑡′-th chain and the 𝑡-th chain, i.e., 𝑈𝑡1
′ ⊃ ⋯ 𝑈𝑡𝑖

′ ⊃

𝑈𝑡𝑗
, 𝑝 ∈ 𝐵𝑡𝑗

\𝐵𝑡𝑗

′ can be represented either by 𝐵𝑡𝑗−1
∪ 𝐵𝑡𝑗

′ or by 𝐵𝑡𝑖
′ ∪ 𝐵𝑡𝑗

′ . Hence, any path

𝑝 ∈ 𝐵𝑡𝑗
\𝐵𝑡𝑗

′ (𝑗 ≠ 1) can be represented by 𝐵 . Moreover, any path 𝑝 ∈ 𝐵𝑡1
∖ 𝐵𝑡1

′ can be

represented by 𝐵, because Lemma 2 concludes 𝑝 can be represented by some 𝐵𝑡𝑖∗
′ ∪ 𝐵𝑡1

′ and

any path in 𝐵𝑡𝑖∗
′ can be represented by 𝐵. Furthermore, any 𝑝 ∈ 𝐵0 ∖ 𝐵0

′ can be represented

by 𝐵 for 𝑝 can be represented by 𝐵0
′ ∪ 𝐵𝑟𝑠𝑡

 for some 𝑡. ∎

Theorem 2 Given fully connected neural network 𝐺 and independent path set 𝐵 =

∪𝑡=1
𝑇 (∪𝑗=1

𝑠𝑡 𝐵𝑡𝑗

′) ∪ 𝐵0
′ output from Algorithm DEAH, where 𝑇 is the number of path

subdivision chains and 𝐵𝑡𝑗

′ is the shrunk path set of 𝐵𝑡𝑗
 in 𝐺𝑡𝑗

. Then any path 𝑝 ∈ 𝑃 from

the input layer to the output layer in 𝐺 can be represented by 𝐵.

Proof: Any path 𝑝 ∈ 𝑃 can be represented in the hierarchical way, first at substructure level

and then at basis path level. If the structure of 𝑝 is 𝑝𝑟 ∈ 𝑃𝑖𝑛𝑑
𝑆 but 𝑝 ∉ 𝐵𝑟, it is trivia that path

𝑝 can be represented by 𝐵𝑟. If the structure of 𝑝 is out of the structure range of 𝑃𝑖𝑛𝑑
𝑆 , the

structure of 𝑝 can be expressed as 𝑝𝑟1
… + 𝑝𝑟𝑗

… + 𝑝𝑟𝑑
− 𝑝𝑠1

… − 𝑝𝑠ℎ
… − 𝑝𝑠𝑚

, where

𝑟1, … , 𝑟𝑑 , 𝑠1, … , 𝑠𝑚 are distinct, 𝑝𝑟𝑗
∈ 𝑃𝑖𝑛𝑑

𝑆 and 𝑝𝑠ℎ
∈ 𝑃𝑖𝑛𝑑

𝑆 (1 ≤ 𝑗 ≤ 𝑑 , 1 ≤ ℎ ≤ 𝑚) .

Suppose the randomly node set is 𝑉𝑆 = {𝑂𝑖∗
0 , … , 𝑂𝑖∗

𝑙 , … , 𝑂𝑖∗
𝐿 } and target path 𝑝 passes

{𝑂𝑖′
0 , … , 𝑂𝑖′

𝑙 , … , 𝑂𝑖′
𝐿 } sequentially. Define new node set 𝑉′ = {𝑂𝑖′′

0 , … , 𝑂𝑖′′
𝑙 , … , 𝑂𝑖′′

𝐿 }, where 𝑙 =

0,1, … , 𝐿. If 𝑝 skips over the 𝑙-th layer, set 𝑂𝑖′′
𝑙 = 𝑂𝑖∗

𝑙 . If 𝑝 passes through the 𝑙-th layer and

𝑂𝑖′
𝑙 ≠ 𝑂𝑖∗

𝑙 , set 𝑂𝑖′′
𝑙 = 𝑂𝑖′

𝑙 . For each 𝑝𝑟𝑗
 and 𝑝𝑠ℎ

, construct new path 𝑝𝑟𝑗
′ and 𝑝𝑠ℎ

′ passing

through node set 𝑉′ but 𝑝𝑟𝑗
′ and 𝑝𝑠ℎ

′ keep the same structure as 𝑝𝑟𝑗
 and 𝑝𝑠ℎ

 under 𝑉𝑆. 𝑉′

covers all nodes of path 𝑝, and node 𝑂𝑖∗
𝑙 ∈ 𝑉𝑆 corresponds to 𝑂𝑖′′

𝑙 ∈ 𝑉′. In original graph 𝐺,

path 𝑝 therefore can be accordingly expressed as 𝑝 = 𝑝𝑟1
′ … + 𝑝𝑟𝑗

′ … + 𝑝𝑟𝑑
′ − 𝑝𝑠1

′ … − 𝑝𝑠ℎ
′ … −

𝑝𝑠𝑚
′ . Moreover, new path 𝑝𝑟𝑗

′ can be represented by basis path set 𝐵𝑟𝑗
 and 𝑝𝑠ℎ

′ can be

represented by 𝐵𝑠ℎ
. Hence, 𝑝 can be represented by 𝐵 =∪𝑡=1

𝑇 (∪𝑗=1
𝑠𝑡 𝐵𝑡𝑗

′) ∪ 𝐵0
′ according to

Theorem 1. Therefore, 𝐵 is a basis path set for neural network 𝐺. ∎

Theorem 1 and Theorem 2 prove that Algorithm DEAH can find the basis path set 𝐵 for Basis

Path Set Searching problem in regular graph 𝐺. Next, we will prove that Algorithm DEAH can

be completed in polynomial time.

Theorem 3 The time complexity of Algorithm DEAH to solve Basis Path Set Searching

problem in regular graph 𝐺 is 𝒪(𝑅𝐿2𝑊𝑚𝑎𝑥
2) + 𝒪 (max(𝑅, 𝑇2) ∙ (𝐿 + 𝐵𝑚𝑎𝑥

3)), where 𝑅 =

|𝑃𝑖𝑛𝑑
𝑆 |, 𝑊𝑚𝑎𝑥 = max

0≤𝑙≤𝐿
{|𝑂𝑙|} and 𝐵𝑚𝑎𝑥 = max

𝑟∈{1,2,…,𝑅}
|𝐵𝑟|.

Proof: There are three major steps in Algorithm DEAH.

Step 1 of Algorithm DEAH finds 𝑉𝑆 in 𝒪(𝐿) time, and searches 𝐸𝑆 in 𝒪(𝑚) time and 𝑃𝑆

in at most 𝒪(𝑚) time. In order to get 𝑃𝑖𝑛𝑑
𝑆 , we compute all 𝑈𝑟 in at most 𝒪(𝑚2) time and

compute 𝑅𝑎𝑛𝑘(𝐴) by searching {𝑈𝑟1
, 𝑈𝑟2

, … , 𝑈𝑟
|𝑃𝑆|−1

} in at most 𝒪(𝑚) time, since |𝑃𝑆| ≤

𝑚. So, Step 1 runs in 𝒪(3𝑚 + 𝑚2 + 𝐿)= 𝒪(𝑚2) time.

Step 2 calls Subroutine (𝐺𝑟) to find basis path set 𝐵𝑟 of substructure 𝑝𝑟 (𝑟 = 1,2, … , 𝑅).

Lemma 3 (in Appendix C) proves that Algorithm Subroutine(𝐺) runs in time 𝒪(𝐿2𝑊𝑚𝑎𝑥
2) in

fully connected graph 𝐺 without edge-skipping. Let 𝑊𝑚𝑎𝑥 = max
0≤𝑙≤𝐿

{|𝑂𝑙|} in network 𝐺 .

Therefore, the time complexity of Step 2 is 𝒪(𝑅𝐿2𝑊𝑚𝑎𝑥
2).

In Step 3, there are two parts for the computation of shrunk path sets. One part is to compute

𝐵𝑡𝑗+1

′ (𝑗 ≠ 0) . In every 𝑡 -th chain we call SDVChain to compute 𝐵𝑡𝑗+1

′ based on 𝐵𝑡𝑗

iteratively. It takes 𝒪(𝐿) time to find common layers between 𝑝𝑡𝑗
 and 𝑝𝑡𝑗+1

, 𝒪 (|𝐵𝑡𝑗
|) time

to separate the shared layers and unshared layers in 𝐵𝑡𝑗
 and 𝒪 (|𝐵𝑡𝑗+1

|) time to separate the

layers of 𝐵𝑡𝑗+1
. To get unique unshared layers {𝐸𝑝𝑡𝑗,𝑖} needs 𝒪 (|𝐵𝑡𝑗

|
2

) time. For each

𝐸𝑝𝑡𝑗,𝑖 , it needs at most 𝒪 (|𝐵𝑡𝑗
|) time to compute 𝑈𝐶𝑃𝑖 and 𝑈𝐶𝑃𝑖

∗ in 𝐵𝑟 and

𝒪 (|𝐵𝑡𝑗
| |𝐵𝑡𝑗+1

|) time to get unshared layers set 𝐼𝐸𝑝𝑖 in 𝐵𝑟+1
′ . Since there are at most

𝒪 (|𝐵𝑡𝑗
|) elements in {𝐸𝑝𝑡𝑗,𝑖} , so this phase needs at most 𝒪 (|𝐵𝑡𝑗

| ∙ (|𝐵𝑡𝑗
| +

|𝐵𝑡𝑗
| |𝐵𝑡𝑗+1

|)) = 𝒪(𝐵𝑚𝑎𝑥
3) time, where 𝐵𝑚𝑎𝑥 = max

𝑟∈{1,2,…,𝑅}
|𝐵𝑟| . Furthermore, there are 𝑇

chains, every 𝑡-th chain needs to call SDVChain for 𝑠𝑡 times, some 𝑈𝑡𝑗+1
 may appear in

most 𝑇 chains and the path set after 𝑈𝑡𝑗+1
in the chain only needs computing once. Hence, we

need at most 𝒪(𝑅 + 𝑇) ∙ 𝒪 (𝐿 + |𝐵𝑡𝑗
| + |𝐵𝑡𝑗+1

| + |𝐵𝑡𝑗
|

2
+ 𝐵𝑚𝑎𝑥

3) = 𝒪 ((𝑅 + 𝑇)(𝐿 +

𝐵𝑚𝑎𝑥
3)) = 𝒪(𝑅(𝐿 + 𝐵𝑚𝑎𝑥

3)) time. In the other part of Step 3, every 𝑈𝑡1
 needs to

enumerate all elements in 𝑄𝑡 to call SDVChain to update 𝐵𝑡1

′ based on 𝐵𝑄𝑡(𝑘) iteratively.

This simple version of SDVChain would take at most 𝒪(𝐿 + 𝐵𝑚𝑎𝑥
3) time for each iteration

and there are at most 𝑇 elements in 𝐵𝑄𝑡(𝑘) , i.e., totally 𝒪(𝑇(𝐿 + 𝐵𝑚𝑎𝑥
3)) time. Because

there are 𝑇 chains, so this phase takes 𝒪(𝑇2(𝐿 + 𝐵𝑚𝑎𝑥
3)) time. Therefore, Step 3 takes

totally 𝒪 (𝑅(𝐿 + 𝐵𝑚𝑎𝑥
3)) + 𝒪(𝑇2(𝐿 + 𝐵𝑚𝑎𝑥

3)) = 𝒪 (max(𝑅, 𝑇2)(𝐿 + 𝐵𝑚𝑎𝑥
3)) time.

In sum, the total time complexity of Algorithm DEAH is 𝒪(𝑚2) + 𝒪(𝑅𝐿2𝑊𝑚𝑎𝑥
2) +

𝒪 (max(𝑅, 𝑇2)(𝐿 + 𝐵𝑚𝑎𝑥
3)) = 𝒪(𝑅𝐿2𝑊𝑚𝑎𝑥

2) + 𝒪 (max(𝑅, 𝑇2)(𝐿 + 𝐵𝑚𝑎𝑥
3)). ∎

It is obvious that the computation complexity of Algorithm DEAH to solve Basis Path Set

Searching problem depends heavily on the structure of the network, i.e., the maximal layer

width and edge-skipping over layers. Usually 𝐵0 is the basis path set taking 𝐵𝑚𝑎𝑥. Each 𝑝𝑟 ∈

𝑃𝑖𝑛𝑑
𝑆 represents one type of substructure information about edge-skipping over layers in

network 𝐺, and different types of substructures can be combined in a variety of ways. Thus,

there is no constraint about the graph structure levying on our Algorithm DEAH, which breaks

the bottleneck of the algorithm in [14] and generalizes it to more practical networks. Though

Algorithm DEAH considers only one underlying structure path, but it can be easily extended

to the network with multiple underlying structure paths.

5 Conclusion

In regular fully connected network 𝐺, the shared layers between two independent substructure

paths bring up the combinatoric possibility of path dependency when combining the basis path

sets from these substructures. Algorithm DEAH is designed to eliminate such path dependency

and the trick of effective elimination is the path subdivision chain. The theoretical proofs

guarantee the feasibility of Algorithm DEAH for Basis Path Set Searching problem. The paper

generalizes the specific network structure with equal layer and without edge-skipping to more

practical network and provides one methodology to solve Basis Path Set Searching problem in

more general neural network. This work can help facilitate the theoretic research and

applications of 𝒢-SGD algorithm in more practical scenarios.

Reference
[1] S. Wu, A. G. Dimakis, S. Sanghavi. Learning Distributions Generated by One-Layer ReLU

Networks, 33rd Conference on Neural Information Processing Systems (NeurIPS 2019),

Vancouver, Canada, 2019.

[2] Y. Wang, Y. T. Liu, Z. M Ma. (In press). The Scale-Invariant Space for Attention Layer in

Neural Network. Neurocomputing.

[3] B. Neeyshabur, R. R. Salakhutdinov, N. Srebro. (2015). Path-sgd: Path Normalized

Optimization in Deep Neural Networks. NIPS'15 Proceedings of the 28th International

Conference on Neural Information Processing Systems, 2422-2430.

[4] S. X. Zheng, Q. Meng, H. S. Zhang, W. Chen, N. H. Yu, T. Y. Liu. (2019). Capacity Control

of ReLU Neural Networks by Basis-path Norm. Thirty-third AAAI Conference on Artificial

Intelligence, AAAI2019.

[5] Q. Meng, S. X. Zheng, H. S. Zhang, W. Chen, Z. M. Ma, T. Y. Liu. (2019). 𝒢-SGD:

Optimizing ReLU Neural Networks in its Positively Scale-Invariant Space. International

Conference of Learning Representations, ICLR2019.

[6] D. E. Rumelhart, G. E. Hinton, R. J. Williams. (1986). Learning Representations by Back-

propagating Errors. Nature, 323(6088), 533-536.

[7] F. Fan, J. Xiong, G.Wang (2020). On Interpretability of Artificial Neural Networks.

https://arxiv.org/abs/2001.02522

[8] C. Guan, X. Wang, Q. Zhang, R. Chen, D. He, X. Xie. (2019). Towards a Deep and Unified

Understanding of Deep Neural Models in NLP. Proceedings of the 36th International

Conference on Machine Learning, Long Beach, California, USA.

https://arxiv.org/abs/2001.02522

[9] S. Hooker, D. Erhan, P. Kidermans, B. Kim. (2019). A Benchmark for Interpretability

Methods in Deep Neural Networks. 33rd Conference on Neural Information Processing Systems

(NeurIPS 2019), Vancouver, Canada.

[10] K, Inoue. (2019). Expressive Numbers of Two or More Hidden Layer ReLU Neural

Networks. 2019 Seventh International Symposium on Computing and Networking workshops

(CANDARW 2019).

[11] Q. S. Zhang, R. M. Cao, F. Shi. Y. N. Wu, S. C. Zhu. (2018). Interpreting CNN Knowledge

via An Explanatory Graph. The Thirty-Second AAAI Conference on Artificial Intelligence,

4454-4463.

[12] M. Wu, M. Wicker, W. Ruan, X. Huang. (2020). A Game-based Approximate Verification

of Deep Neural Networks with Provable Guarantees. Theoretical Computer Science, 807,298-

329

[13] D. Ensign, S. Neville, A. Paul, S. Venkatasubramnian. (2020). The Complexity of

Explaining Neural Networks Through (group) Invariants, 808, 74-85

[14] J.P. Zhu, Q. Meng, W. Chen, Z.M. Ma. (2019). Interpreting Basis Path set in Neural

Networks. http://arxiv.org/abs/1910.09402.
[15] A. Corberan, G. Laporte. (2015). Arc Routing Problems, Methods, and applications.

Society for Industrial and Applied Mathematics.

[16] J. B. Jensen, G. Z. Gutin. (2009). Digraphs: Theory, Algorithms and Applications (Second

Edition). Springer.

[17] B. Korte, J. Vygen. (2012). Combinatorial Optimization, Theory and Algorithm (Fifth

Edition). Springer.

[18] C.S. Babu, A. A. Diwan. (2008). Subdivisions of graphs: A generalization of paths and

cycles. Discrete Mathematics, 308(19), 4479-4486.

[19] J.A. Bondy, U.S.R. Murty. (2008). Graph Theory, Section 10.1.

[20] M. Dettlaff, J. Raczek, I. G. Yero. (2016). Edge Subdivision and Edge Multisubdivision

versus Some Domination Related Parameters in Generalized Corona Graph. Opuscula

Mathematica, 36(5), 575-588.

[21] M. Chaieb, J. Jemai, K. Mellouli. (2015). A Hierarchical Decomposition Framework for

Modeling Combinatorial Optimization Problems. Procedia Computer Science. 60, 478-487.

[22] Y. Chang, H. Tang, Y. Cheng, Q. Zhao, B. Yuan. (2017). Dynamic Hierarchical Energy-

Efficient Method Based on Combinatorial Optimization for Wireless Sensor Networks. Sensors,

17(7), 1665.

[23] H．Ochiai，T. Kanazawa, K. Tamura，K. Yasuda. (2016). Combinatorial Optimization

Method Based on Hierarchical Structure in Solution Space. Electronics and communications in

Japan, 99(18), 25-37.

[24] H. Racke. (2008). Optimal Hierarchical Decompositions for Congestion Minimization in

Networks. Proceedings of the 40th Annual ACM Symposium on Theory of Computing, 255–

264.

Appendix A
Some definitions may be referred.

Definition 10 (path addition to a graph)[14] Given a graph 𝐻 and a path 𝑝, we denote the

path addition by 𝐻 + 𝑝 with 𝑉(𝐻 + 𝑝) = 𝑉(𝐻) ∪ 𝑉(𝑝) and 𝐸(𝐻 + 𝑝) being the disjoint

union of 𝐸(𝐺) and 𝐸(𝑝) (Parallel edges may arise).

Definition 11 (path removal from a graph)[14] Given a graph 𝐻 and one path 𝑝 ⊆ 𝐸(𝐻), the

removal of the path 𝑝 from the graph 𝐻 is defined as 𝐻 − 𝑝 with 𝐸(𝐻 − 𝑝) = 𝐸(𝐻) ∖ 𝐸(𝑝)

and 𝑉(𝐻 − 𝑝) = 𝑉(𝐻) ∖ {𝑣 ∈ 𝑉(𝐻)|𝑣 is an isolated vertex after 𝐸(𝐻) ∖ 𝐸(𝑝)}.

Definition 12 (structure path)[14] Given fully connected neural network 𝐺, if all paths in 𝑃

from the input layer to the output layer passes through the same layers consecutively, any path

𝑝 ∈ 𝑃can be called as the structure path of neural network 𝐺, since it can express the structure

https://www.sciencedirect.com/science/article/pii/S0012365X07006693#!
https://www.sciencedirect.com/science/article/pii/S0012365X07006693#!
https://www.sciencedirect.com/science/journal/0012365X
https://www.sciencedirect.com/science/journal/0012365X/308/19

information of 𝐺.

Appendix B
Some properties and theoretical proofs related to path subdivision chains are given in this

section. Suppose 𝑇 path subdivision chains {𝑈𝑡1
⊃ 𝑈𝑡2

… ⊃ 𝑈𝑡𝑗
… ⊃ 𝑈𝑡𝑠𝑡

⊃ 𝑈0|𝑡 = 1, … , 𝑇}

are output from Algorithm DEAH.

Lemma 1 Given path subdivision chain 𝑈𝑡1
⊃ 𝑈𝑡2

… ⊃ 𝑈𝑡𝑗
… ⊃ 𝑈𝑡𝑠𝑡

⊃ 𝑈0 in fully connected

neural network G, where path subdivision set 𝑈𝑡𝑗
 and basis path set 𝐵𝑡𝑗

 correspond to

maximal independent substructure path 𝑝𝑡𝑗
. Especially 𝑈0 and 𝐵0 correspond to the

underlying substructure path 𝑝0 . Then, 𝐵𝑡1
∪ 𝐵𝑡2

′ ∪ … 𝐵𝑡𝑗

′ … ∪ 𝐵𝑡𝑠𝑡

′ is path independent,

where 𝐵𝑡𝑗

′ output from Algorithm SDVChain is the shrunk path set of 𝐵𝑡𝑗
 based on original

basis path set 𝐵𝑡𝑗−1
 for 𝑗 = 2,3, … , 𝑠𝑡.

Proof: We use induction on the 𝑗-th subdivided substructure path to prove that 𝐵𝑡1
∪ 𝐵𝑡2

′ ∪

… 𝐵𝑡𝑗

′ … ∪ 𝐵𝑡𝑠𝑡

′ is path independent. The inputs of Algorithm SDVChain are {𝐵𝑡𝑗

′ }𝒋=𝟏
𝑠𝑡 , {𝐵𝑡𝑗

}𝒋=𝟏
𝑠𝑡

, {𝑝𝑡𝑗
}𝑗=1

𝑠𝑡 , {𝛽𝑡𝑗
}𝑗=1

𝑠𝑡 , 𝐵0
′ , 𝑝0and 𝛽0, where 𝐵𝑡𝑗

′ = 𝐵𝑡𝑗
 and 𝐵0

′ = 𝐵0 for algorithm initiation.

Basis step: 𝑗 = 1 and 𝑈𝑡1
⊃ 𝑈𝑡2

. Step 1 of Algorithm SDVChain picks up 𝑈𝐶𝑃𝑗
∗ with the

most frequent occurrence in 𝑈𝐶𝑃𝑗 for each unique 𝐸𝑝𝑡1,𝑗 of 𝐵𝑡1
. The trick is that the edge

between every two common layers with the most frequency must be the direct path according

to the construction rule [14] of basis path. Step 2 of the algorithm searches the unshared layers

set 𝐼𝐸𝑝𝑗 in 𝐵𝑡2
 which has the shared layers from 𝑈𝐶𝑃𝑗 and discard the element with

frequency less than 2 from 𝐼𝐸𝑝𝑗. According to Claim 1, the paths with multiple repetition at

unshared layers in 𝐼𝐸𝑝𝑗 can cause path dependency. Next, the algorithm outputs 𝐵𝑡2

′ by

discarding the paths from 𝐵𝑡2
 whose unshared layers are from 𝐼𝐸𝑝𝑗 element and shared

layers are not 𝑈𝐶𝑃𝑗
∗. Hence, any path 𝑝 ∈ 𝐵𝑡1

∪ 𝐵𝑡2

′ couldn’t be represented by 𝐵𝑡1
∪ 𝐵𝑡2

′ ∖

{𝑝} and any path 𝑝𝑡2𝑢′ ∈ 𝐵𝑡2
∖ 𝐵𝑡2

′ can be represented by 𝐵𝑡1
∪ 𝐵𝑡2

′ . So, 𝐵𝑡1
∪ 𝐵𝑡2

′ is path

independent for the basic step.

Induction step: 𝑗 ≥ 2. Suppose that 𝐵𝑡1
∪ 𝐵𝑡2

′ ∪ … 𝐵𝑡𝑗

′ is an independent path set and any path

𝑝 ∈ 𝐵𝑡𝑗−1
\𝐵𝑡𝑗

′ can be represented by 𝐵𝑡𝑗−1
∪ 𝐵𝑡𝑗

′ ∖ {𝑝}. Let 𝐵𝑡𝑗+1

′ be the shrunk path set of

𝐵𝑡𝑗+1
 based on original 𝐵𝑡𝑗

 from Algorithm. We will prove that any path 𝑝 ∈ 𝐵𝑡1
∪ 𝐵𝑡2

′ ∪

… 𝐵𝑡𝑗

′ ∪ 𝐵𝑡𝑗+1

′ couldn’t be represented by 𝐵𝑡1
∪ 𝐵𝑡2

′ ∪ … 𝐵𝑡𝑗

′ ∪ 𝐵𝑡𝑗+1

′ ∖ {𝑝}. Assume path 𝑝′ ∈

𝐵𝑡1
∪ 𝐵𝑡2

′ ∪ … 𝐵𝑡𝑗

′ ∪ 𝐵𝑡𝑗+1

′ can be represented by 𝐵𝑡1
∪ 𝐵𝑡2

′ ∪ … 𝐵𝑡𝑗

′ ∪ 𝐵𝑡𝑗+1

′ ∖ {𝑝′}. According

to Claim 2, consider the simplest form that 𝑝′ = 𝑝𝑡𝑗+1,1−𝑝𝑡𝑗+1,2 + 𝑝′′, where𝑝𝑡𝑗+1,1 ∈ 𝐵𝑡𝑗+1

′ and

𝑝𝑡𝑗+1,2 ∈ 𝐵𝑡𝑗+1

′ such that 𝑝′ ∈ 𝐵𝑡𝑚

′ and 𝑝′′ ∈ 𝐵𝑡𝑚

′ with 𝑚 ≤ 𝑗 − 1. Similar to basic step, any

path 𝑝 ∈ 𝐵𝑡𝑗
\𝐵𝑡𝑗+1

′ can be represented by 𝐵𝑡𝑗
∪ 𝐵𝑡𝑗+1

′ \{𝑝}, so it is obvious that 𝑝′, 𝑝′′ ∉

𝐵𝑡𝑗+1

′ and 𝑝′, 𝑝′′ ∉ 𝐵𝑡𝑗

′ .

 𝑆 𝑆′

 𝐽 𝐼

 𝐽∗ 𝐼∗

 𝑝′ 𝑝′′ 𝑝𝑡𝑗+11 𝑝𝑡𝑗+12

 Fig. 7 Edge operation in subdivided unshared layers

Among the specific chain 𝑈𝑡𝑚
⊃ 𝑈𝑡𝑗

⊃ 𝑈𝑡𝑗+1
, substructure path 𝑝𝑡𝑗+1

 is the path subdivision

of 𝑝𝑡𝑗
, and 𝑝𝑡𝑗

 is the path subdivision of 𝑝𝑡𝑚
. So 𝑝𝑡𝑗+1

 is the most subdivided path. As

shown in Fig. 7, 𝑝𝑡𝑗+1,1 and 𝑝𝑡𝑗+1,2 must have same sub-path 𝐼 and paths 𝑝′ and 𝑝′′ must

have 𝐽 to cancel the unique sub-paths, since 𝑝𝑡𝑗+1 is the path subdivision of 𝑝𝑡𝑚
 at the layers

of 𝐽. For the shared layers of 𝑝𝑡𝑚
 and 𝑝𝑡𝑗+1

, 𝑝′ and 𝑝𝑡𝑗+11 share sub-path 𝑆 and 𝑝′′

and 𝑝𝑡𝑗+12 share 𝑆′. 𝑝𝑡𝑗
 should be the path subdivision of 𝑝𝑡𝑚

 in some part of 𝐽,i.e., the

dashed lowest part 𝐽∗ of 𝐽. Hence, the dashed part 𝐼∗ in 𝐽∗ of 𝑝𝑡𝑗
 subdivided by 𝑝𝑡𝑗+1,1

and 𝑝𝑡𝑗+1,2 are the same. However, the shared layers such as 𝐼 − 𝐼∗ + 𝑆 in 𝑝𝑡𝑗+11 and 𝐼 −

𝐼∗ + 𝑆′ in 𝑝𝑡𝑗+12 are different as shown in Fig. 7. This contradicts the Algorithm SDVChain

which keeps only the most frequent shared layers from 𝐵𝑡𝑗
 to 𝐵𝑡𝑗+1

′ .

Repeat this induction step till 𝑗 = 𝑠𝑡. ∎

The trick of Lemma 1 is that we can construct path subdivision chain to avoid the enumeration

within the chain. Furthermore, if 𝑈𝑡𝑗
 belongs to more than one chain, i.e., 𝑈𝑡𝑖

′ ⊃ 𝑈𝑡𝑗
 in the

𝑡′-th chain and 𝑈𝑡𝑗
 is the nearest path subdivision of 𝑈𝑡𝑖

′, Algorithm SDVChain will shrink

𝐵𝑡𝑗

′ iteratively by discarding the paths from 𝐵𝑡𝑗

′ based on 𝐵𝑡𝑖
′. In this case, it is trivia that path

set 𝐵𝑡1
∪ 𝐵𝑡2

′ ∪ … 𝐵𝑡𝑗

′ … ∪ 𝐵𝑡𝑠𝑡

′ is an independent path set and any path 𝑝 ∈ 𝐵𝑡𝑗
\𝐵𝑡𝑗

′ can be

represented by either 𝐵𝑡𝑗−1
∪ 𝐵𝑡𝑗

′ or 𝐵𝑡𝑖
′ ∪ 𝐵𝑡𝑗

′ .

Lemma 2 Given the first set 𝑈𝑡1
in the 𝑡-th chain and some 𝑖∗ ∈ 𝑄𝑡, where 𝑝𝑡𝑖∗

′ is the last

substructure path in the 𝑡′-th chain to have shared layers with 𝑝𝑡1
(𝑡′ ≠ 𝑡 and 𝑡𝑖∗

′ ≠ 0). 𝐵𝑡1

′

is the shrunk path set output from Algorithm SDVChain by deleting the paths from 𝐵𝑡1
 based

on all 𝐵𝑡𝑖∗
′ iteratively. Then 𝐵𝑡1

′ ∪ 𝐵
𝑡𝑖

′
′ is path independent for any 𝑖 ∈ {1, … , 𝑖∗ − 1} in the

𝑡′-th chain.

Proof: Suppose the 𝑡′ -th path subdivision chain be 𝑈𝑡1
′ ⊃ 𝑈𝑡2

′ ⊃ ⋯ 𝑈𝑡𝑖
′ ⊃ ⋯ 𝑈𝑡𝑖∗−1

′ ⊃

𝑈𝑡𝑖∗
′ … ⊃ 𝑈𝑡𝑠

𝑡′
′ . 𝑄𝑡 would rules out some substructure paths: 1) substructure path after 𝑝𝑡𝑖∗

′

because it doesn’t share layers with 𝑝𝑡1
. 2) the sets from the 𝑡-th chain because of Lemma 1.

3) 𝑝𝑟1
(𝑟 < 𝑡) which shares edges with 𝑝𝑡1

, because the algorithm only run one direction.

Assume there exist two paths 𝑝𝑡𝑖
′,1, 𝑝𝑡𝑖

′,2 ∈ 𝐵
𝑡𝑖

′
′ with 𝑖<𝑖∗ and two paths 𝑝𝑡1,1, 𝑝𝑡1,2 ∈ 𝐵𝑡1

′

such that 𝑝𝑡𝑖
′,1 − 𝑝𝑡𝑖

′,2 = 𝑝𝑡1,1 − 𝑝𝑡1,2 . Since Step 2 of Algorithm DEAH demands the

substructure path be subdivided in the unshared layers by the next substructure path when

forming the 𝑡′ -th chain, there must be corresponding 𝑝𝑡𝑖∗
′ ,1 and 𝑝𝑡𝑖∗

′ ,2 in 𝐵𝑡𝑖∗
′ such that

𝑝𝑡𝑖∗
′ ,1 − 𝑝𝑡𝑖∗

′ ,2 = 𝑝𝑡1,1 − 𝑝𝑡1,2 for 𝑝𝑡𝑖∗
′ shares layers with 𝑝𝑡𝑖

′ . But, Algorithm SDVChain

discards 𝑝𝑡1,1 or 𝑝𝑡1,2 based on original 𝐵𝑡𝑖∗
′ already. This contradicts the assumption. So

𝐵𝑡1

′ ∪ 𝐵
𝑡𝑖

′
′ is path independent. On the other hand, any path 𝑝 ∈ 𝐵𝑡1

∖ 𝐵𝑡1

′ can be represented

by 𝐵𝑡1

′ and some 𝐵𝑡𝑖∗
′ . And any path 𝑝 ∈ 𝐵𝑡𝑖∗

′ can be represented by 𝐵
𝑡𝑖∗

′
′ ∪ 𝐵𝑡𝑖∗−1

′ . ∎

Lemma 2 indicates that no path dependent would be produced for any 𝑈𝑡𝑖
′ if we calculate 𝐵𝑡1

′

based on 𝐵𝑡𝑖∗
′ , though some 𝑝𝑡𝑖

′ (𝑖<𝑖∗) shares common layers with 𝑝𝑡𝑖∗
′ . The second trick of

substructure path subdivision chain is to avoid enumerating the full chain for the first set of

another chain.

Appendix C
Lemma 3 The time complexity of Algorithm Subroutine(𝐺) in fully connected graph 𝐺

without edge skipping is 𝒪(𝐿2𝑊𝑚𝑎𝑥
2), where 𝑊𝑚𝑎𝑥 = max

0≤𝑙≤𝐿
{|𝑂𝑙|}.

Proof: Algorithm Subroutine takes at most totally 𝒪(𝑊𝑚𝑎𝑥
2 𝐿) time to construct all sub-graph

𝐺(𝑘) (𝑘 = 0: 𝐿 − 1). It takes 𝒪(𝑊𝑚𝑎𝑥
2) time to search direct path set 𝑃𝑑𝑖𝑟

(𝑘)
 and cross path set

𝑃𝑐𝑟𝑜𝑠𝑠
(𝑘)

 in 𝐺(𝑘), so total running time for all 𝐺(𝑘) is 𝒪(𝑊𝑚𝑎𝑥
2 𝐿). When updating 𝑃𝑑𝑖𝑟

(𝑘)
 and

𝑃𝑐𝑟𝑜𝑠𝑠
(𝑘)

, the average number of paths from the lower layer is at most 𝒪(𝑘𝑊𝑚𝑎𝑥) for each node

𝑂𝑖
𝑘 and there are at most 𝑊𝑚𝑎𝑥 nodes for 𝑘-th layer, so the total time complexity for updating

is 𝒪(
𝐿(𝐿−1)

2
𝑊𝑚𝑎𝑥

2). The time for classifying paths to 𝑘 + 1-th layer is the same as for updating

𝑃𝑑𝑖𝑟
(𝑘)

 and 𝑃𝑐𝑟𝑜𝑠𝑠
(𝑘)

. So the total running time for Algorithm Subroutine is 𝒪(𝑊𝑚𝑎𝑥
2 𝐿 + 𝑊𝑚𝑎𝑥

2 𝐿 +

2 ×
𝐿(𝐿−1)

2
𝑊𝑚𝑎𝑥

2) = 𝒪(𝐿2𝑊𝑚𝑎𝑥
2). ∎

SDVChain({𝐵𝑟
′}𝑟=1

𝑠 , {𝐵𝑟}𝑟=1
𝑠 , {𝑝𝑟}𝑟=1

𝑠 , {𝛽𝑟}𝑟=1
𝑠 , 𝐵0, 𝑝0, 𝛽0, G):

Input: Shrunk path set 𝐵𝑟
′ , basis path set 𝐵𝑟 and 𝛽𝑟 regarding 𝑝𝑟, independent path set 𝐵0

and 𝛽0 regarding 𝑝0 in fully connected network G.
% 𝑝𝑟 is subdivided by 𝑝𝑟+1 and 𝑝𝑠 is subdivided by 𝑝0

Output: Updated shrunk path set {𝐵𝑟
′}𝑟=2

𝑠 and discarded path set 𝐷0
′ .

Let 𝐵𝑠+1
′ = 𝐵0, 𝑝𝑠+1 = 𝑝0 and 𝛽𝑠+1 = 𝛽0.

For 𝑟 = 1: 𝑠 do

 Search shared layers {(𝑂𝑙𝑘
′
, 𝑂𝑙𝑘

′′
)}𝑘=1

𝐾 for 𝑝𝑟 and 𝑝𝑟+1, according to 𝛽𝑟 and 𝛽𝑟+1. Find

unique unshared layers {𝐸𝑝𝑟,𝑗} in 𝐵𝑟. Let 𝐷𝑖𝑠𝑐𝑎𝑟𝑑𝑃𝑎𝑡ℎ = ∅.

 For each unique 𝐸𝑝𝑟,𝑗 do

 Find shared layers set 𝑈𝐶𝑃𝑗 in 𝐵𝑟 with 𝐸𝑝𝑟,𝑗 as the unshared layers. Calculate

𝑈𝐶𝑃𝑗
∗ with the most frequent occurrence for each element in 𝑈𝐶𝑃𝑗. % Find the most frequent

edge set in the shared layers.

 Construct the unshared layers set 𝐼𝐸𝑝𝑗 in 𝐵𝑟+1
′ which has the shared layers from

𝑈𝐶𝑃𝑗. Discard the element with frequency less than 2 from 𝐼𝐸𝑝𝑗. % Get rid of the path whose

unshared layers appears only once, which couldn’t cause path dependency.

 Let DiscardPath= 𝐷𝑖𝑠𝑐𝑎𝑟𝑑𝑃𝑎𝑡ℎ ∪ {𝑝𝑟+1,𝑖 ∈ 𝐵𝑟+1
′ |the unshared layers of 𝑝𝑟+1,𝑖 is

from 𝐼𝐸𝑝𝑗 and the shared layers are not 𝑈𝐶𝑃𝑗
∗, 𝑖 ∈ {1, … , |𝐼𝐸𝑝𝑗|}. % Discard the path which

brings up dependency when combining 𝐵𝑟 with 𝐵𝑟+1
′ .

 End For

 Update 𝐵𝑟+1
′ = 𝐵𝑟+1

′ ∖ 𝐷𝑖𝑠𝑐𝑎𝑟𝑑𝑃𝑎𝑡ℎ and set 𝐷𝑟+1
′ = DiscardPath.

End For

Set 𝐷0
′ = 𝐷𝑠+1

′ .

Subroutine(𝐺):

Input: Fully connected neural network 𝐺 = (𝑉, 𝐸) without any edge-skipping over layers.

Output: Basis path set 𝐵 in graph 𝐺

For 𝑘 = 0: 𝐿 − 1 do

Let 𝐸𝑘 = {𝑒 ∈ 𝐺|𝑒 leaves from 𝑘-th layer and enters 𝑘 + 1-th layer }.

 % Step 1. Construct the direct path set.

Let sub-graph 𝐺(𝑘) = (𝑂𝑘 ∪ 𝑂𝑘+1, 𝐸𝑘).

If |𝑂𝑘| ≥ |𝑂𝑘+1| do

 Find |𝑂𝑘+1| direct vertex disjoint paths by depth-first searching, and let the direct

path set be 𝑃𝑑𝑖𝑟
(𝑘)

.

 For 𝑣 ∈ 𝑂𝑘 ∖ 𝑉(𝑃𝑑𝑖𝑟
(𝑘)

) do

 Pick up one node 𝑂𝑖′
𝑘+1 ∈ 𝑂𝑘+1 randomly and construct path (𝑣, 𝑂𝑖′

𝑘+1). Set

𝑃𝑑𝑖𝑟
(𝑘)

= 𝑃𝑑𝑖𝑟
(𝑘)

∪ (𝑣, 𝑂𝑖′
𝑘+1).

 End For

Else do

 Find |𝑂𝑘| direct vertex disjoint paths by depth-first searching, and let the direct path

set be 𝑃𝑑𝑖𝑟
(𝑘)

.

End If

 For 𝑖 = 1,2, … , |𝑂𝑘| do

 Let the path set 𝑃𝑑𝑖𝑟(𝑂𝑖
𝑘)= { 𝑝 ∈ 𝑃𝑑𝑖𝑟

(𝑘)
|the tail of 𝑝 is node 𝑂𝑖

𝑘}.

 End For
% Step 2. Construct the cross path.

Set cross path set 𝑃𝑐𝑟𝑜𝑠𝑠
(𝑘)

=𝐸𝑘 ∖ 𝐸(𝑃𝑑𝑖𝑟
(𝑘)

.

For 𝑖 = 1,2, … , |𝑂𝑘|

 Let the path set 𝑃𝑐𝑟𝑜𝑠𝑠(𝑂𝑖
𝑘)= {𝑝 ∈ 𝑃𝑐𝑟𝑜𝑠𝑠

(𝑘)
|the tail of 𝑝 is node 𝑂𝑖

𝑘}.

End For

% Step 3. Concatenate the direct paths and cross paths from the 𝑘 − 1-th layer.

If 𝑘 ≠ 0 % If 𝑘 = 0, there is no concatenation for any path and go to Step 4 directly.

 For 𝑖 = 1,2, … , |𝑂𝑘| do % Form |𝑃(𝑂𝑖
𝑘)| direct paths and extend all cross paths.

 Let 𝑃𝑑𝑖𝑟(𝑂𝑖
𝑘)= {𝑝0 + 𝑝1 | 𝑝1 ∈ 𝑃𝑑𝑖𝑟(𝑂𝑖

𝑘) , 𝑝0 ∈ 𝑃(𝑂𝑖
𝑘)} for node 𝑂𝑖

𝑘 ∈ 𝑂𝑘 .

Select one path 𝑝∗ ∈ 𝑃(𝑂𝑖
𝑘) randomly and let 𝑃𝑐𝑟𝑜𝑠𝑠(𝑂𝑖

𝑘)={ 𝑝∗ + 𝑝1| 𝑝1 ∈ 𝑃𝑐𝑟𝑜𝑠𝑠(𝑂𝑖
𝑘)}.

 End For

 Update direct path set 𝑃𝑑𝑖𝑟
(𝑘)

= ∪
𝑂𝑖

𝑘∈𝑂𝑘 𝑃𝑑𝑖𝑟(𝑂𝑖
𝑘) and cross path set

𝑃𝑐𝑟𝑜𝑠𝑠
(𝑘)

=∪
𝑂𝑖

𝑘∈𝑂𝑘 𝑃𝑐𝑟𝑜𝑠𝑠(𝑂𝑖
𝑘).

 End If

 % Step 4. Classify the paths for the nodes in the 𝑘 + 1-th layer.

 For 𝑖 = 1,2, … , |𝑂𝑘+1| do

 Set the path set 𝑃(𝑂𝑖
𝑘+1)={𝑝 ∈ 𝑃𝑑𝑖𝑟

(𝑘)
∪ 𝑃𝑐𝑟𝑜𝑠𝑠

(𝑘)
| the head of 𝑝 is node 𝑂𝑖

𝑘+1}.

 End For

End for

Output basis path set 𝐵 = 𝑃𝑑𝑖𝑟
(𝐿−1)

∪ 𝑃𝑐𝑟𝑜𝑠𝑠
(𝐿−1)

. ∎

