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Abstract We design a distributed algorithm to seek generalized Nash equilibria of a robust game with

uncertain coupled constraints. Due to the uncertainty of parameters in set constraints, we aim to find a

generalized Nash equilibrium in the worst case. However, it is challenging to obtain the exact equilibria

directly because the parameters are from general convex sets, which may not have analytic expressions

or are endowed with high-dimensional nonlinearities. To solve this problem, we first approximate

parameter sets with inscribed polyhedrons, and transform the approximate problem in the worst case

into an extended certain game with resource allocation constraints by robust optimization. Then we

propose a distributed algorithm for this certain game and prove that an equilibrium obtained from

the algorithm induces an ε-generalized Nash equilibrium of the original game, followed by convergence

analysis. Moreover, resorting to the metric spaces and the analysis on nonlinear perturbed systems, we

estimate the approximation accuracy related to ε and point out the factors influencing the accuracy of

ε.

Keywords Robust game; Distributed algorithm; Approximation; ε-Nash equilibrium.

1 Introduction

Multi-agent systems involving a non-cooperative setting have attracted extensive research

and applications in many fields, such as telecommunication power allocation and cloud compu-

tation [1, 2]. Due to some shared resources between players, such as communication bandwidth

and network energy, coupled constraints are frequently considered in non-cooperative games.

As a reasonable solution, a generalized Nash equilibrium (GNE) can be regarded as defined

as a set of strategies that satisfies the local and coupled constraints, in which no player can
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profit from unilaterally deviating from its own strategy. Significant theoretic and algorithmic

achievement of GNE seeking have been done, referring to [3, 4].

Recently, seeking equilibria in a distributed manner has become an emerging research topic,

where players obtain the Nash equilibrium (NE) or GNE by making decisions with local in-

formation and communicating through networks. Various distributed algorithms have been

proposed for GNE seeking, such as asymmetric projection algorithms [5], projected dynamics

based on non-smooth tracking dynamics [6], and forward–backward operator splitting method

[7] with extended to fully distributed games [8].

However, considering the impact of the inevitable uncertainties in practical games, it is

often difficult to obtain the exact GNE directly in practice. One way to handle uncertainties

is to utilize robust optimization [9], which addresses the robust counterpart of an optimization

model with uncertain data/parameters. By employing the robust optimization approaches to

deal with the uncertainties in games, the concept of robust game was first proposed in [10].

Hereupon, the works themed on robust game have been applied in various scenarios, such as

human decision-making models in security setting, defensive resource allocation in homeland

security, downlink power control problem with interfering channel information, and electric

vehicle charging problem under demand uncertainty [11–14].

Nevertheless, the analysis of robust games with coupled constraints is less. Most of the

previous works focused on the uncertainties in payoff functions or strategy variables, and very

few studied the uncertainties in the parameters of the accompanied constraints. In addition,

considering that coupled constraints often occur in actual games, distributed GNE seeking in

robust games deserve further investigation. More recently, [15] studied a robust game with

parameters uncertainty in coupled constraints, where an approximation method was proposed

to find an ε-GNE of the original game in the worst case, but the estimation of ε was not

considered. As the approximation focuses on the parameter sets while ε is affected by the

feasible sets, it is hard to construct the relationship between the approximation accuracy and ε.

Furthermore, the difficulty of solving the problem increases due to estimating ε in a distributed

setting. Therefore, the distributed robust game with general uncertainty is hard to be analyzed

using the existing methods.

In this work, we study distributed GNE seeking of a robust game with general uncertainties,

where the parameters in coupled constraints are from general uncertain convex sets, which is

more generalized than the previous works without uncertainty in constraints [5, 6, 16], or

restricted to special structure [17, 18]. Due to the complexity of uncertainty modeling, the

parameter sets may not be equipped with exact analytic expressions or are endowed with high-

dimensional nonlinearities, which makes it hard to obtain the exact equilibria directly. To

solve this problem, we approximate uncertain parameter sets with inscribed polyhedrons and

transform the approximate problem in the worst case into an extended certain game model

with resource allocation constraints by robust optimization. Then we propose a distributed

continuous-time algorithm for seeking a GNE of the certain game, followed by the convergence

analysis. The proposed algorithm has lower dimensions than [15], and avoids discontinuities

caused by tangent cones in [15, 19]. Moreover, by virtue of metric spaces and perturbed systems,
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an equilibrium obtained from the algorithm is proved to be an ε-GNE of the original game, and

an upper bound of the approximation accuracy related to ε is given.

The remainder is organized as follows. Section 2 provides notations and preliminary knowl-

edge, while Section 3 formulates a distributed robust game with parameter uncertainties in

coupled constraints. Then Section 4 provides a distributed algorithm based on a resource al-

location problem after a proper approximation and gives the convergence analysis. Section

5 shows that the equilibria of the designed algorithm are ε-GNE of the original problem in

the worst case and obtains an upper bound of the value ε, and Section 6 presents numerical

examples for illustration of the proposed algorithm. Finally, Section 7 concludes the paper.

2 Preliminaries

In this section, we introduce some basic notations and preliminary knowledge.

Denote R
n (or Rm×n) as the set of n-dimensional (or m-by-n) real column vectors (or real

matrices), and In as the n × n identity matrix. Let 1n(or 0n) be the n-dimensional column

vector with all elements of 1 (or 0). For a column vector x ∈ R
n, xT denotes its transpose. Take

col{x1, · · · , xn}= (xT1 , · · · , x
T
n )

T as the stacked column vector obtained from column vectors

x1, · · · , xN , ‖ · ‖ as the Euclidean norm, and relint(D) as the relative interior of the set D.

Denote ker(M) as the kernel of the matrix M , Im(M) as the image space of the matrix M and

span(x) as the spanning subspace by vector x. Denote Ev(c) ⊆ R
n as an ellipsoid that

n∑

i=1

(xi − ci)
2

v2i
≤ 1,

with the center at point c , (c1, · · · , cn) and the semiaxis v , (v1, · · · , vn).

A set Ω ⊆ R
n is convex if ωx1 + (1 − ω)x2 ∈ Ω for any x1, x2 ∈ Ω and 0 ≤ ω ≤ 1. For a

closed convex set Ω, the projection map ΠΩ : Rn → Ω is defined as

ΠΩ(x) , argmin
y∈Ω

‖x− y‖.

Especially, denote [x]+ , ΠRn
+
(x) for convenience.

A mapping F : Rn → R
n is said to be monotone (strictly monotone) on a set K if

(F (x) − F (y))T(x− y) ≥ 0 (> 0), ∀x, y ∈ K,x 6= y.

Given a set K ⊆ R
n and a map F : K → R

n, the variational inequality problem VI(K,F )

is defined to find a vector x∗ ∈ K such that

(y − x∗)
T
F (x∗) ≥ 0, ∀y ∈ K,

whose solution is denoted by SOL(K,F ). WhenK is closed and convex, the solution of VI(K,F )
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can be equivalently reformulated via projection as

x ∈ SOL(K,F ) ⇔ x = ΠK(x− F (x)).

Moreover, if K is compact, then SOL(K,F ) is nonempty and compact. If K is closed and F (x)

is strictly monotone, then VI(K,F ) has at most one solution [3, Proposition 1.5.8, Corollary

2.2.5, and Theorem 2.3.3].

Take X, Z ⊆ R
n as two non-empty sets. For y ∈ R

n, denote dist(y, Z) as the distance

between y and Z, i.e.,

dist(y, Z) = inf
z∈Z

‖y − z‖.

Define the Hausdorff metric of X,Z ⊆ R
n by

H(X,Z) = max{sup
x∈X

dist(x, Z), sup
z∈Z

dist(z,X)}.

The Hausdorff metric integrates all compact sets into a metric space.

Let X and Y be m-dimensional subspaces of Rn, respectively. The canonical angles between

them are defined to be

ϑi(X ,Y) = arccosσm−i+1

(
XTY

)
, i = 1, 2, . . . ,m,

where X and Y are matrices whose columns form orthonormal bases of X and Y, and σi(XTY ),

i = 1, 2, . . . ,m, are decreasingly ordered singular values of XTY . Denote the canonical angles

between X and Y by ϑ(X ,Y) , (ϑ1(X ,Y), ..., ϑm(X ,Y)). The following lemma reveals the

metric about canonical angles between X and Y [20], [21].

Lemma 2.1 Let ̺ : Rm → R be a symmetric gauge function. Define ψ : Rm × R
m → R

of X and Y by

ψ(X ,Y) = ̺(ϑ(X ,Y)).

Then ψ is called an angular metric. Moreover, let X⊥ and Y⊥ be the orthogonal complements

of X and Y, respectively. The nonzero canonical angles between X and Y are the same as those

of X⊥ and Y⊥, which means that ψ(X ,Y) = ψ(X⊥,Y⊥).

Consider a class of comparison functions. A continuous function α : [0, a) → [0,∞) is said

to belong to class K if it is strictly increasing and α(0) = 0. It is said to belong to class K∞ if

a = ∞ and α(r) → ∞ as r → ∞.

Moreover, the information sharing among the players can be described by a graph G = (I, E),

with the node set I = {1, 2, · · · , N} and the edge set E . A = [aij ] ∈ R
n×n is the adjacency

matrix of G such that if (j, i) ∈ E , then aij > 0, which means that i can obtain the information

from j and j belongs to i’s neighbor set; aij = 0 otherwise. G is said to be undirected if

(j, i) ∈ E ⇔ (i, j) ∈ E , and G is to be connected if any two nodes in I are connected by a path.

The Laplacian matrix is L = ∆−A, where ∆ = diag {d1, . . . , dN} ∈ R
N×N with di =

∑N
j=1 aij .

When G is an undirected connected graph, 0 is a simple eigenvalue of Laplacian L with the
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eigenspace {a1n|a ∈ R}, and L1n = 0n, while all other eigenvalues are positive.

3 Problem Formulation

Consider an N -player game with a global coupled constraint as follows. For i ∈ I ,

{1, · · · , N}, player i has an action variable xi in a local action set Θi ⊆ R
n. Denote Θ =∏N

i=1 Θi ⊆ R
nN , x , col{x1, ..., xN} ∈ Θ as the action profile for all players, and x−i ,

col{x1, ..., xi−1, xi+1, ..., xN} as the action profile for all players except player i. The cost func-

tion for player i is Ji(xi,x−i) : R
nN → R.

Moreover, there exists a coupled inequality constraint shared by all players. Denote K ⊆

R
Nn as the set for this coupled constraint. Considering that the parameters in constraints are

given in general uncertain convex sets, the action profile x needs to satisfy

x∈ K,

{
x∈ R

Nn
∣∣∣

N∑

i=1

ωT
i xi≤b, ωi∈Mi⊆R

n, ∀i ∈ I

}
,

where Mi is convex and compact. For any ωi ∈ Mi, the inequality constraint must be satisfied.

Denote the feasible action set of this game by X , K
⋂
Θ. Then, the feasible set of player i is

Xi(x−i) ,



xi ∈ Θi

∣∣∣ωT
i xi ≤ b−

∑

j 6=i,j∈I

ωT
j xj , ωi ∈ Mi



 .

To sum up, given x−i, the ith player aims to solve

min
xi∈Rn

Ji (xi,x−i) s.t. xi ∈ Xi(x−i). (1)

Definition 3.1 (ε-generalized Nash equilibrium) A profile x∗ is said to be an ε-generalized

Nash equilibrium of game (1) if

Ji
(
x∗i ,x

∗
−i

)
≤ Ji

(
xi,x

∗
−i

)
+ ε, ∀i ∈ I, ∀xi ∈ Xi(x−i), (2)

with a positive constant ε. Particularly, x∗ is said to be a GNE when ε = 0.

The main task of this paper is to design a distributed dynamics for seeking a GNE of the

robust game (1), where each player can only access its local payoff function and feasible decision

set under a multi-agent network. The ith player may only know ωT
i xi and the parameter

uncertainty set Mi, rather than
∑N

i=1 ω
T
i xi. To fulfill the cooperations between players for

solving (1), the players have to share their local information through a network G. On the

other hand, restricted by the uncertainty of ωi, we aim to find a GNE of (1) in the worst case,

i.e., a GNE satisfies all possible constraints, which is defined as

x∗ ∈

{
x ∈ Θ

∣∣∣
N∑

i=1

max
ωi∈Mi

ωT
i xi ≤ b

}
.
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However, it is very difficult to solve the worst-case solution directly, because the challenge comes

from the fact that ωi is arbitrarily selected from a general uncertain convex set Mi, which may

be endowed with high-dimensional nonlinearities or have no analytical expression. Therefore,

we consider finding an ε-GNE of game (1) in the worst case with a practical approximation, and

analyze the approximation accuracy related to ε, which overcomes the difficulty of estimating

ε in [15].

Remark 3.1 In our distributed game, the decision variable xj can be observable by the

ith player, if Ji(xi,x−i) depends explicitly on xj , for any j ∈ I. Thus, player i can get its

local gradient by observing the decisions influencing Ji(xi,x−i). This observation model has

also been adopted in [7, 15]. On the other hand, there have also been methods for distributed

GNE seeking when each player cannot observe the full decisions that its cost function depends

on, referring to [19, 22]. Here, we do not consider this circumstance, where this simplification

does not affect the focus of our research.

The following assumptions are associated with game (1).

Assumption 3.1

• For i ∈ I, Θi is compact and convex. Besides, there exists x ∈ relint(Θ) such that∑N
i=1 ω

T
j xj < b, ωj ∈ Mj ⊆ R

n, ∀j ∈ I.

• For i ∈ I, Ji(x) is Lipschitz continuous in x, while Ji(x) is continuously differentiable

in xi. Moreover, the pseudo-gradient F (x) , col {∇x1J1 (·,x−1) , . . . ,∇xN
JN (·,x−N )} is

strictly monotone in x.

• The undirected graph G is connected.

By Assumption 3.1, it is clear that Slater’s condition is satisfied [8, 23]. Besides, compared

with [15, 24], the map F is assumed to be strictly monotone rather than strongly monotone.

4 Algorithm Design

In this section, we approximate the parameter uncertainty sets of game (1) in a proper way

and propose a distributed algorithm to find the worst-case solution with the uncertainty in the

approximate game.

One of the most common tools for approximating convex sets is by inscribed polyhedrons

[25, 26]. Recalling the definition of inscribed polyhedrons, it is a polyhedron with all its vertices

on the boundary of the convex set. And it is essentially enclosed by a series of hyperplanes.

Denote M =
∏N

i=1 Mi and Pv =
∏N

i=1 P
i
vi . Take P i

vi as an inscribed polyhedron of Mi with

vi vertices, it can be expressed as

P i
vi =

{
ωi ∈ R

n
∣∣∣Aiωi ≤ di

}
. (3)

Here, for i ∈ I, Ai ∈ R
qi×n are normal vectors of the hyperplanes with normalized rows. They

determine the directions of these hyperplanes. qi is the number of hyperplanes, and di are the
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distances from the origin point to the hyperplanes.

Remark 4.1 Here we choose polyhedrons for the approximation because they can be

explicitly expressed by linear inequalities, which provide simple mathematical derivation and

make the distributed algorithms concise. Furthermore, although the analytical expressions of

convex sets with high-dimensional nonlinearities are hard to solve directly, in some situations

one can sample exactly a few points on the boundary of the convex set, which naturally form

an inscribed polyhedron. This is another important reason for choosing inscribed polyhedrons.

With the help of the approximation by inscribed polyhedrons, the coupled constraint of (1)

in the worst case becomes

N∑

i=1

max
ωi∈Pi

vi

ωT
i xi ≤ b. (4)

Then we can explicitly investigate the worst-case solution with uncertainty based on robust

optimization [9] and robust game [15, Theorem 1]. Specifically, by introducing a dual variable

σi ∈ R
qi
+ , (4) can be equivalently transformed into

∑N
j=1 d

T
j σj ≤ b, AT

j σj − xj = 0n, ∀j ∈ I. (5)

Moreover, denote zi = col{xi, σi} ∈ R
n+qi , Bi =

[
0T
n , d

T
i

]
∈ R

1×(n+qi), and Ci =
[
−In, AT

i

]
∈

R
n×(n+qi). Define Φi = Θi × R

qi ,

Ωi = Φi ∩ {Cizi = 0n}, (6)

z−i as all the vectors except zi, z , col{z1, ..., zN} ∈ R
nN+q, where q =

∑N
i=1 qi. With these

notations, game (1) with approximation is therefore converted into an extended certain game

model with resource allocation constraints, that is,

min
zi∈Ωi

Ĵi (zi, z−i)

s.t.
∑N

j=1 Bjzj ≤ b, ∀j ∈ I,
(7)

where Ĵi (zi, z−i) = Ji (xi,x−i).

Denote the pseudo-gradient of (7) by

g(z) , col {g1 (z1, z−1) , . . . , gN (zN , z−N )} ∈ R
nN+q,

where gi (zi, z−i) , col {∇xi
Ji (·,x−i) ,0qi} ∈ R

n+qi . TakeB = Diag (B1, . . . , BN ) ∈ R
N×(nN+q),

b = col {b1, . . . , bN} ∈ R
N with

∑N
i=1 bi = b. Then the feasible set of player i in (7) is defined

as

Ξi (z−i) ,



zi ∈ Ωi

∣∣∣
N∑

j=1

Bjzj ≤ b



 .
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Let Ξ =
∏N

i=1 Ξi, Ω =
∏N

i=1 Ωi and Φ =
∏N

i=1 Φi. Referring to [3, Proposition 1.4.2]

and [27], a strategy profile z∗ is said to be a variational equilibrium, or variational GNE, if

z∗ ∈ SOL(Ξ, g(z)). Moreover, for a variational GNE of game (7), z∗ together with multiplier

λ∗ satisfy the following first order conditions,

0nN ∈ g(z∗) +BTλ∗ +NΩ(z
∗), (8a)

0 ≤ −(Bz∗ − b)T · 1N , 0 = (Bz∗ − b)Tλ∗, (8b)

0N = Lλ∗, (8c)

where multiplier λ∗ = col{λ∗1, · · · , λ
∗
N} ∈ R

N
+ , and L is the Laplacian matrix of network G.

By solving the first order conditions (8) of the variational inequality VI(Ξ, g(z)), we derive

a variational GNE of game (7), which can be regarded as a GNE with equal multipliers, i.e,

λ∗i = λ∗j , ∀i, j ∈ I.

Furthermore, by employing an additional variable ζ = col{ζ1, · · · , ζN} ∈ R
N , we propose a

distributed algorithm for solutions to (8) of approximate game (7).

Algorithm 1 for each i ∈ I

Initialization:

zi(0) ∈ Ωi, λi(0) ∈ R+, ζi(0) ∈ R.

Dynamics renewal:

żi = ΠΩi

(

zi − gi (zi,z−i)−B
T
i λi

)

− zi,

λ̇i =

[

λi+Bizi − bi −

N
∑

j=1

aij (λi − λj)−

N
∑

j=1

aij (ζi − ζj)

]+

− λi,

ζ̇i =
N
∑

j=1

aij (λi − λj) ,

where aij is the (i, j)th element of the adjacency matrix.

Equivalently, a compact form of Algorithm 1 can be written as





ż = ΠΩ

(
z − g(z) −BTλ

)
− z, z(0) ∈ Ω,

λ̇ = [λ +Bz − b− Lλ− Lζ]+ − λ, λ(0) = R
N
+ ,

ζ̇ = Lλ, ζ(0) ∈ R
N .

(9)

In Algorithm 1, the ith player calculates the local decision variable zi ∈ Ωi based on pro-

jected gradient play dynamics. The local variable λi ∈ R+ is to estimate a dual variable

associated with the coupled constraints, while the local auxiliary variable ζi ∈ R is calculated

for the consensus of λi.

Remark 4.2 Compared with the algorithm in [15], dynamics (9) is with lower dimensions.
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Meanwhile, (9) adopts the projection operation to deal with local feasible constraints, which

avoids the discontinuous dynamics caused by tangent cones [15, 19].

The following lemma shows the equivalence between an equilibrium of algorithm (9) and a

solution to VI(Ξ, g(z)) satisfying (8).

Lemma 4.3 Under Assumption 3.1, consider the game (7). If col{z∗,λ∗, ζ∗} is an equi-

librium point of (9), then z∗ is a variational GNE of (7). Conversely, if z∗ is a variational

GNE of (7), there exists (λ∗, ζ∗) ∈ R
N
+ × R

N such that (z∗,λ∗, ζ∗) is an equilibrium point of

(9).

Next, we analyze the convergence of (9).

Theorem 4.4 Under Assumption 3.1, the trajectory (z(t),λ(t), ζ(t)) of (9) is bounded

and converges to an equilibrium point of (9), namely, z(t) converges to a solution of VI(Ξ, g(z))

satisfying (8).

5 Equilibrium Analysis

In this section, we show that an equilibrium obtained from Algorithm 1 induces an ε-GNE

of original game (1). Moreover, we describe the bound related to ε.

The following idea is different from that given in [15]. As the estimation of ε is actually

reflected by solving GNE of the approximate problem dependent on dynamics, we consider

establishing the relationship between the approximation accuracy and ε from the perspective

of the nonlinear perturbed system.

Under Assumption 3.1, the pseudo-gradient F is strictly monotone with respect to x, which

implies that z∗ ∈ SOL(Ξ, g(·)) contains a unique x∗, but the optimal σ∗ may not be unique.

Moreover, if the form of cost function Ji is fixed, then different polyhedron approximations result

in different variational inequality solutions. Since Pv determines Ξ, we write x∗ = x∗(Pv),

z∗(Pv) = col{x∗(Pv),σ
∗(Pv)} for game (7). Also, denote x∗(M) as a GNE of game (1).

Take

Pv1 =

N∏

i=1

P i
v1,i , Pv2 =

N∏

i=1

P i
v2,i (10)

as two inscribed polyhedrons of M. With the definition of Pv1 and Pv2 , for the ith player,

P i
v1,i = {ωi ∈ R

n : A1,iωi ≤ d1,i} , A1,i ∈ R
q1,i×n, (11)

P i
v2,i = {ωi ∈ R

n : A2,iωi ≤ d2,i} , A2,i ∈ R
q2,i×n. (12)

Before revealing the ε-relationship of x∗(P) and x∗(M) in game (7) and original game (1),

we first investigate the relationship between x∗(Pv1) and x∗(Pv2) (i.e., the approximation

accuracy between x∗(Pv1) and x∗(Pv2)) of (7).

Define B1 = Diag
(
B1

1 , . . . , B
1
N

)
∈ R

N×(nN+q1), C1 = Diag
(
C1

1 , . . . , C
1
N

)
∈ R

nN×(nN+q1),

where B1
i =

[
0T
n , d

T
1,i

]
∈ R

1×(n+q1,i), C1
i =

[
−In, BT

1,i

]
∈ R

n×(n+q1,i) and q1 =
∑N

i=1 q1,i. B2

and C2 are denoted in a similar way.
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Recalling the fact (6) of Ωi, with employing a new variable ξ = col{ξ1, · · · , ξN} ∈ R
nN , (8)

on Pv1 is equivalent to

0nN ∈ g(z∗) +BT
1 λ

∗ +CT
1 ξ

∗ +NΦ(z
∗),

0 ≤ −(B1z
∗ − b)T · 1N , 0 = (B1z

∗ − b)Tλ∗,

0N = Lλ∗,

0nN = C1z
∗.

Let y = col{z,λ, ζ, ξ}, R = Φ× R
N
+ × R

N × R
nN . Then Algorithm 1 on Pv1 is equivalent to

y = DPv1
(y), (13)

where

DPv1
(y) =




ΠΦ

(
z − g(z) −BT

1 λ−CT
1 ξ

)
− z

[λ+B1z − b− Lλ− Lζ]
+ − λ

Lλ

C1z



.

From Theorem 4.4, the whole dynamics of system (13) is globally asymptotically stable.

According to this property, with the converse Lyapunov theorem in [28], there exists a Lyapunov

function VPv1
(y) satisfying the following inequalities,

α1(‖y − y∗(Pv1)‖) ≤ VPv1
(y) ≤ α2(‖y − y∗(Pv1)‖),

V̇Pv1
≤ −α3(‖y − y∗(Pv1)‖),∥∥∥∂VPv1

∂y

∥∥∥ ≤ α4(‖y − y∗(Pv1)‖),

(14)

where α1, α2, α3, α4 are class-K functions, y∗(Pv1) = col{z∗(Pv1),λ
∗(Pv1), ζ

∗(Pv1), ξ
∗(Pv1)}

is an equilibrium point of (13).

Analogously, the dynamics on Pv2 is

y = DPv2
(y), (15)

where

DPv2
(y) =




ΠΦ

(
z − g(z) −BT

2 λ−CT
2 ξ

)
− z

[λ+B2z − b− Lλ− Lζ]
+ − λ

Lλ

C2z



.

Note that (15) can be regarded as a perturbed system of (13). For clarification, let Γ =
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z − g(z), Λ = λ− b− Lλ− Lζ. Denote

e(y) , DPv2
(y)−DPv1

(y),

then (15) is converted into

y = DPv1
(y) + e(y), (16)

where the perturbation term is

e(y)=




ΠΦ

(
Γ−BT

2 λ−CT
2 ξ

)
−ΠΦ

(
Γ−BT

1 λ−CT
1 ξ

)

[Λ+B2z]
+ − [Λ+B1z]

+

0

(C1 −C2)z



.

Take y∗(Pv2) as an equilibrium point of (16). After this conversion, we can obtain the up-

per bound of the approximation accuracy between y∗(Pv1) and y∗(Pv2) (i.e., x∗(Pv1) and

x∗(Pv2)) by investigating e(y) between (13) and (16).

Note that e(y) reflects the difference in continuous-time projected dynamics on Pv1 and

Pv2 , respectively. Recalling the definition of inscribed polyhedrons in (3), e(y) is basically

affected by different hyperplanes (their corresponding normal vectors and displacement terms)

in Pv1 and Pv2 , where the distance between hyperplanes can be measured by angular metric.

As defined in (10)-(12), without losing generality, consider q1,i ≤ q2,i. Let A
l
2,i be any row of

matrix A2,i, ∀i ∈ I, 0 ≤ l ≤ q2,i, and A
j(l)
1,i be the corresponding row of matrix A1,i. Accordingly,

denote τ li ∈ [0, π/2) as the angular metric of Al
2,i and A

j(l)
1,i , where τ

l
i = ψ

(
Al

2,i, A
j(l)
1,i

)
. The

following lemma gives an upper bound of ‖e(y)‖.

Lemma 5.1 Under Assumption 3.1, on Ω = R ∩ {‖y− y∗(Pv1)‖ < r}, the perturbation

term e(y) of (16) satisfies

‖e(y)‖ ≤ δ = r

N∑

i=1

qiciθi, (17)

where ci is a finite positive constant, qi = q2,i is the number of hyperplanes in P i
v2,i , θi =

max0≤l≤q2,i τ
l
i for i ∈ I.

The next lemma explains that ‖y∗(Pv1)−y∗(Pv2)‖ is ultimately bounded by a small bound

if e(y) is small enough, referring to [28].

Lemma 5.2 Take VPv1
(y) as a Lyapunov function satisfying (14) in set Ω. Suppose

that ‖e(y)‖ ≤ δ < µα3

(
α−1
2 (α1(r))

)
/α4(r), with a constant µ ∈ (0, 1). Then, for all ‖y(t0)−

y∗(Pv1)‖ ≤ α−1
2 (α1(r)), the equilibrium y∗(Pv2) of the perturbed system (16) satisfies

‖y∗(Pv1)− y∗(Pv2)‖ ≤ ρ(δ) = α−1
1

(
α2

(
α−1
3

(
δα4(r)

µ

)))
. (18)

Due to the analysis in Lemma 5.2, for any arbitrarily small perturbations, there always exists
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a finite r to satisfy (18). Clearly, a lower metric yields a lower bound. It can be regarded as the

robustness of the nominal system with a stable equilibrium, since arbitrarily small perturbations

will not cause a significant deviation. Moreover, it follows from (18) that

‖x∗(Pv1)− x∗(Pv2)‖ ≤ ρ(δ).

Since ρ(0) = 0 and ρ is strictly increasing in [0,∞), ‖x∗(Pv1) − x∗(Pv2)‖ tends to zero as δ

vanishes.

Remark 5.3 Compared with the analysis in [15], Lemma 5.1 does not rely on the Haus-

dorff metric, which leads to technical difficulties in estimating the parameter changes of different

polyhedrons, and thus can not describe the relationship between the approximate accuracy of

different polyhedrons and the difference between the corresponding equilibria. Instead, by in-

troducing angular metric, these difficulties are solved, and the upper bound of the difference

between equilibria can be obtained, which extends the result in [15] and ensures the estimation

of ε in the sequel.

With Lemma 5.2, we finally show that an equilibrium x∗(Pv) obtained from Algorithm 1

induces an ε-GNE of original game (1) and estimate the approximation accuracy of ε.

Theorem 5.4 Under Assumption 3.1,

(i) the variational GNE x∗(M) of game (1) in the worst case exists and is unique;

(ii) x∗(Pv) of the equilibrium in Algorithm 1 induces an ε-GNE of game (1) in the worst

case;

(iii) the value of ε satisfies

ε ≤ 2ςiα
−1
1

(
α2

(
α−1
3

(
δα4(r)

µ

)))
, (19)

where the constant µ ∈ (0, 1), α1, α2, α3, α4 are class-K functions in (14), ςi is the Lipschitz

constant of Ji. Specifically,

δ = r

N∑

i=1

qici√
2

hiνi
− 1

, (20)

where hi = H(P i
vi ,Mi) is the Hausdorff distance between P i

vi and Mi, qi is the number of

hyperplanes in P i
vi , νi is a constructive curvature related merely to the structure of Mi, ci is a

finite constant.

From Theorem 5.4, the upper bound of ε is proportional to the bound of δ. With the

expression of δ in (20), when constructing polyhedrons with more vertices, we obtain more

hyperplanes enclosed the polyhedrons (more rows of matrix Ai and vectors di), which results

in a lower metric and higher accuracy of ε. Actually, there are developed investigations on how

to construct a proper inscribed polyhedron [25, 26]. When the vertices or faces are constructed

successively, we can find a proper inscribed polyhedron by the iterative algorithms based on
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Hausdorff metric. The main idea of iterative algorithms is to construct a polyhedron Pv(k+1) =

conv
(
Pv(k) ∪ {wk+1}

)
every iteration, where v(k) is the number of vertices in Pv(k), wk+1 is

a point from ∂M (i.e., the boundary of M). The Hausdorff metric satisfies H(Pv(k),M) ≤

CM ·v(k)(n−1)/2, where CM is a constant related with the curvature of M. One of the methods

of constructing point wk+1 is described as follows. For u ∈ R
n, denote gM(u) = max{〈u, x〉 : x ∈

M} as the support function of M on the unit sphere of directions Sn−1 = {u ∈ R
n : ‖u‖ = 1}.

The additional point wk+1 ∈ ∂M belongs to the support plane parallel to the hyperplane

in Pvk , for which the quantity gM(u) − gPv(k)
(u) attains its maximum on the set of external

normals u ∈ Sn−1 to the hyperplanes of Pv(k). The initial polyhedron could be constructed

by the method [29]. In addition, since the parameter set constraint of each player is private

information to itself, different players can approximate their parameter sets through different

construction methods separately, in advance and offline.

6 Numerical experiments

In this section, we examine the approximation accuracy of Algorithm 1 on demand response

management problems under uncertainty as in [30, 31].

Consider a game with N = 10 electricity users with the demand of energy consumption.

For i ∈ I = 1, · · · , 10, xi ∈ Θi is the energy consumption of the ith user, where Θi = {xi ∈

R
2 : c112 ≤ xi ≤ c212} with c1 = −15, c2 = 20. In this network game, each user needs to solve

the following problem given the other users’ profile x−i,

min
xi∈Θi

1

2
(xi −̟i)

T(xi −̟i)− xTi p(Q(x)),

s.t.

N∑

j=1

aTxj≤b, a∈E(3,2)(2, 2), ∀j ∈ I,
(21)

where ̟i = (5−i)12 ∈ R
2 is the nominal value of energy consumption, and p = N(12−Q(x)) is

the pricing function with Q(x) = 1
N

∑N
j=1 xj as an aggregative term. All electricity users need

to meet the coupled inequality constraint with the parameter a ∈ R
2 satisfying an elliptical

region

E3,2(2, 2) =

{
a ∈ R

2 :
(a1 − 2)2

32
+

(a2 − 2)2

22
≤ 1

}
.

Take a ring graph as the communication network G,

1 ⇄ 2 ⇄ · · · ⇄ 10 ⇄ 1.

Meanwhile, we set tolerance as ttol = 10−4 and the terminal criterion as ‖ẏ(t)‖ ≤ ttol. We

employ inscribed rectangles to approximate E(3,2)(2, 2), where the trajectories of one dimension

of each xi are shown in Fig. 1. Then we verify the approximation accuracy of Algorithm 1.

We approximate E(3,2)(2, 2) with inscribed triangles, rectangles, hexagons, octagons, decagons,

and dodecagons, respectively. Fig. 2 presents different strategy trajectories of one fixed player
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with different approximations. The vertical axis represents the value of the convergent ε-GNE

and the horizontal axis represents the real running time of Algorithm 1. The results imply that

when we choose a more accurate approximation, equilibria with different polyhedrons get closer

to the exact solution.
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Figure 1: Trajectories of all players’ strategies.
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Figure 2: Trajectories of approximation by different inscribed polyhedrons.

Additionally, recalling the definition of ε-GNE, the numerical values of ε under different

types of approximation are listed in Table 1. Obviously, the value of ε decreases with the increase

of the vertices of polyhedrons and the decrease of Hausdorff distances, which is consistent with

the approximation results.

We further verify the effectiveness of our algorithm by comparing it with the algorithm of

[15]. Fig. 3 shows comparative results for our algorithm and the method proposed in [15].
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Table 1: Performance of different approximations.

Polyhedrons Triangle Rectangle Hexagon Octagon Decagonal Dodecagonal
Values of ε 16.0416 11.8262 6.6113 3.9556 1.5406 0.7054

The results imply that both of them are convergent, and (9) is with a faster convergence rate

because (9) has lower dimensions and less complexity.
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Figure 3: The comparison of the performance of our algorithm and the algorithm in [15].

7 Conclusion

A distributed game with coupled inequality constraints has been studied in this paper, where

parameters in constraints are from general uncertain convex sets. By employing inscribed

polyhedrons to approximate parameter sets, a distributed algorithm has been proposed for

seeking an ε-GNE in the worst case, and the convergence of the algorithm has been shown.

With the help of convex set geometry and metric spaces, the approximation accuracy affected

by different inscribed polyhedrons is analyzed. Moreover, with the proof that the equilibrium

point of the algorithm is an ε-GNE of the original problem, an upper bound of the value of ε

has been estimated by analyzing a perturbed system.
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Appendix A Proof of Lemma 4.3

(i) Consider (z∗,λ∗, ζ∗) as an equilibrium point of (9). By properties of normal cones

to nonempty closed convex sets, at the equilibrium point, ż = 0nN implies that ΠΩ(z
∗−

g(z∗)−BTλ∗) = z∗. Then it follows from Lemma 2.38 of [32] that −g(z∗)−BTλ∗ ∈ NΩ(z
∗).

Moreover, we set ζ̇ = 0N and λ̇ = 0N , which obtain Lλ∗ = 0N and Bz∗ − b − Lζ∗ ∈

N
R

N
+
(λ∗). It implies that Bz∗−b−Lζ∗ ≤ 0N . Because the graph G is undirected and connected,

1T
NL = 0T

N , and 1T
N (Bz∗−b) ≤ 0. Also, take ς∗ ∈ NR

N
+
(λ∗). Then we haveBz∗−b−Lζ∗−ς∗ =

0N . When λ∗ > 0N , ς∗ = 0N . Then it derives that (Bz∗ − b)Tλ∗ = 0N . When λ∗ = 0N ,

ς∗ ∈ −R
N
+ , and (Bz∗ − b)Tλ∗ = 0N is still hold. Thus, z∗ is a variational GNE of game (7).

(ii) When z∗ is a variational GNE of game (7), there exists λ∗ ∈ R+ such that the first
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order conditions (8) are satisfied. It is clear that −g(z∗) − BTλ∗ ∈ NΩ(z
∗) is equivalent to

ΠΩ

(
z∗ − g(z∗)−BTλ∗

)
= z∗. Furthermore, since 0 ≥ (Bz∗−b)T ·1N , there exists an γ ∈ R

N
+

such that 0 = (Bz∗ − b + γ)T · 1N . Note that L1N = 0N implies ker(L) = span {1N}. With

R
N = ker(L) ⊕ Im(L), there exists ζ∗ ∈ Im(L) such that Lζ∗ = Bz∗ − b + γ, which implies

Bz∗ − b− Lζ∗ ∈ N
R

N
+
(λ∗). Therefore, (z∗,λ∗, ζ∗) is an equilibrium point of (9).

Appendix B Proof of Theorem 4.4

Let Ω̂ , Ω× R
N
+ × R

N and s = col{z,λ, ζ}. Define

F̂ (s) ,




g(z) +BTλ

−Bz + b+ Lλ+ Lζ

−Lλ


 ,

U(s) , ΠΩ̂(s− F̂ (s)).

Take the following Lyapunov function

V (t) = −〈F̂ (s), U(s)− s〉 −
1

2
‖U(s)− s‖22 +

1

2
‖s− s∗‖22 , (22)

where s∗ = col{z∗,λ∗, ζ∗}. It follows from [33] that −〈F̂ (s), U(s) − s〉 − 1
2‖U(s) − s‖22 ≥ 0.

Thus, V (t) ≥ 1
2 ‖s− s∗‖22 ≥ 0, and V (t) = 0 if and only if s = s∗. Moreover, referring to [6],

V̇ (t) can be calculated as

V̇ (t) ≤ −(F̂ (s)− F̂ (s∗))T(s− s∗)

= − (z − z∗)
T
(g(z)− g(z∗))− λTLλ.

(23)

Due to the monotonicity of g(z), it derives that V̇ (t) ≤ 0. Hence, the trajectory of algorithm

(9) is bounded and any finite equilibrium point of (9) is Lyapunov stable.

Furthermore, denote the set of points satisfying V̇ (t) = 0 by Ev ,

{
(z,λ, ζ) : V̇ (t) = 0)

}
.

From (23), there holds

Ev ⊆ {(z,λ, ζ) : z = z∗, Lλ = 0} . (24)

Then we claim that the maximal invariance set R within the set Ev is exactly the equi-

librium point of (9). It follows from the invariance principle (Theorem 4.4 of [28]) that

(z(t),λ(t), ζ(t)) → R as t → ∞, and R is a positive invariant set. Consider a trajectory

(z,λ, ζ) in R. Note that (24) implies ż = 0, ζ̇ = 0, and λ̇ = constant. Due to the boundness

of the trajectory, it leads to a contradiction if λ̇ 6= 0. Hence, any point in R is an equilibrium

point of algorithm (9). By Corollary 4.1 in [28], system (9) converges to its equilibrium point.

Therefore, based on Lemma 4.3, z(t) converges to a solution of VI(Ξ, g(z)) satisfying (8).
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Appendix C Proof of Lemma 5.1

We will prove the conclusion of Lemma 5.1 in two steps.

Step 1: Denote P1
v1 = {ω ∈ R

n : A1ω ≤ d1} as an inscribed polyhedron of a convex and

compact set M ⊆ R
n with V1 as the set of vertices on the boundary of M. Take P2

v2 =

{ω ∈ R
n : A2ω ≤ d2} as another inscribed polyhedron whose vertices consist of V2 = V1 ∪ {v0},

with v0 as an additional vertex on the boundary of M. We first prove that for Al
2 as any row of

matrix A2, there exists a corresponding row A
j(l)
1 of matrix A1 such that

∥∥∥Al
2 −A

j(l)
1

∥∥∥ ≤ cτ l,

where τ l = ψ
(
Al

2, A
j(l)
1

)
∈ [0, π/2) is the angular metric between Al

2 and A
j(l)
1 , c is a finite

positive constant.

Suppose that there are q1 rows of A1 and d1, q2 rows of A2 and d2, the first q1 − 1 rows of

A1 are the same as the first q1 − 1 rows of A2. Thus, we only need to investigate the difference

between Aq1
1 and the last q2 − q1 + 1 rows of A2.

Note that the dimension of each hyperplane is n− 1, and normalized vectors Al
2 (or A

j(l)
1 )

represent normal vectors of hyperplanes enclosing the polyhedron P2
v2 (or P1

v1). It follows from

Lemma 2.1 that the angle between two hyperplanes uniquely equals to that between their normal

vectors. Then there exists a derived angular metric and a corresponding scalar τ l ∈ [0, π/2) for

q1 ≤ l ≤ q2 such that τ l = ψ
(
Al

2, A
q1
1

)
.

Additionally, referring to [34, Theorem 2.21], there exists a derived gap metric υ
(
Al

2, A
q1
1

)

such that
∥∥Al

2 − Aq1
1

∥∥ ≤
1 + ‖Aq1

1 ‖
2

√
1 + ‖Aq1

1 ‖
2
− 1

· v
(
Al

2, A
q1
1

)
.

According to the definition of the gap metric in [20] and [35], there holds

v
(
Al

2, A
q1
1

)
= sin τ l.

Since A1 and A2 are with normalized rows, with the fact sin τ l ≤ τ l, there exists a constant c

such that
∥∥Al

2 −Aq1
1

∥∥ ≤ cτ l.

Step 2: Take Pv1 and Pv2 defined in (11) and (12) as two arbitrarily inscribed polyhedrons

of M. Without losing generality, consider q1,i ≤ q2,i, ∀i ∈ I. If q1,i < q2,i, then we increase

the number of the hyperplane in P i
v1,i successively. The newly added hyperplanes are the same

as the q1,i-th hyperplane. Continue this process until q1,i = q2,i.

According to the Lipschitz continuous of the projection,

‖e(y)‖ ≤ ‖B1 −B2‖(‖λ‖+ ‖z‖) + ‖C1 −C2‖(‖ξ‖+ ‖z‖).

For i ∈ I, sinceB1
i −B

2
i =

[
0T
n , (d1,i − d2,i)

T
]
∈ R

1×(n+q2,i) and C1
i −C

2
i =

[
−0n×n, (A1,i−A2,i)

T
]

∈ R
n×(n+q2,i), we only need to investigate ‖A1,i −A2,i‖ and ‖d1,i − d2,i‖.

It follows from Step 1 that
∥∥∥Al

2,i −A
j(l)
1,i

∥∥∥ ≤ τ li cA,i ≤ θicA,i, ∀i ∈ I, where cA,i is a constant

for i ∈ I. Then, ‖A1,i −A2,i‖ ≤ qicA,iθi, where qi = q2,i is the number of hyperplanes in P i
v2,i .
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Correspondingly, ‖d2,i − d1,i‖ ≤ qicd,iθi, where cd,i is a constant for i ∈ I. The analysis of

other players is similar to that of player i. To sum up, there exists a finite constant c such that

‖e(y)‖ can be bounded by δ on Ω, that is,

‖e(y)‖ ≤ r(‖B1 −B2‖+ ‖C1 −C2‖)

≤ r

N
∑

i=1

‖A1,i − A2,i‖+ ‖d1,i − d2,i‖

= r

N
∑

i=1

qi(cA,i + cd,i)θi = r

N
∑

i=1

qiciθi.

Appendix D Proof of Theorem 5.4

We first verify the existence and uniqueness of x∗(M).

Referring to [29], for a convex setM, there exists an inscribed polyhedron Pv ofM such that

the upper bound of the Hausdorff metric betweenM and Pv satisfiesH(Pv,M) ≤ CM ·v(n−1)/2,

where CM is a constant related with the curvature of M, and v is the number of vertices in Pv.

That is to say, lim
v→∞

H(Pv,M) = 0. Meanwhile, following from [36, Lemma 4], there holds

τ li ≤ θi ≤
1√
2

hiνi
− 1

, (25)

where hi = H(P i
v1,i ,P

i
v2,i) represents the Hausdorff distance between P i

v1,i and P i
v2,i , νi is

a constructive curvature related merely to the structure of Mi for i ∈ I. Denote H =

col{h1, · · · , hN}. By substituting (25) into (17) and (18), ‖x∗(Pv1)−x∗(Pv2)‖ → 0 as H → 0,

which means that x∗(Pv) is continuous in Pv under Hausdorff metric. Therefore, there exist

a unique x∗(M) such that

lim
v→∞

x∗(Pv) = x∗(M). (26)

Next, we prove that x∗(Pv) of approximate game (7) is an ε-GNE of the original game (1)

and estimate ε. Rewrite δ as δ(Pv1 ,Pv2). When Pv2 is fixed, δ(Pv1 ,Pv2) is continuous in

Pv1 . By substituting Pv1 with Pvk , we have

‖ lim
k→∞

x∗(Pvk)− x∗(Pv2)‖ ≤ ρ(δ( lim
k→∞

Pvk ,Pv2)).

Note that (26) is equivalent to lim
k→∞

x∗(Pvk) = x∗(M). With lim
k→∞

Pvk = M, we have

‖x∗ (Pv)− x∗(M)‖ ≤ ρ(δ(Pv,M)).

Moreover, since δ(Pv,M) = δ( lim
k→∞

Pvk ,Pv2), hi = H(P i
v1,i ,P

i
v2,i) can be regarded as the
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Hausdorff distance between P i
vi and Mi. Denote qi = q2,i, then

δ(Pv,M) = δ(H(Pv,M)) = r

N∑

i=1

qici√
2

hiνi
− 1

.

Finally, based on the definition of ε-GNE in Definition 3.1, we analyze the difference between

Ji(x
∗(Pv)) and Ji(x

′
i,x

∗
−i(Pv)), where the ith player’s equilibrium strategy is x∗i (Pv) with

respect to Pv and x′i is arbitrarily chosen from Xi. Meanwhile, other players’ strategies remain

the same x∗
−i(Pv).

Ji (x
∗ (Pv))− Ji

(

x
′

i,x
∗

−i (Pv)
)

≤
∥

∥Ji

(

x
′

i,x
∗

−i(M)
)

− Ji

(

x
′

i,x
∗

−i (Pv)
)∥

∥+ ‖Ji (x
∗ (Pv))− Ji (x

∗(M))‖

+ Ji (x
∗(M))− Ji

(

x
′

i,x
∗

−i(M)
)

≤ςi ‖x
∗ (Pv)− x

∗(M)‖+ ςi ‖x
∗

−i(M)− x
∗

−i (Pv)‖

≤2ςiα
−1
1

(

α2

(

α
−1
3

(

δα4(r)

µ

)))

,

where the third term in the first inequality is due to the definition of GNE. From this definition,

the upper bound of the last term is zero. This yields the conclusion.
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