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Abstract. Pairing-based cryptosystems have been developing very fast
in the last few years. The efficiencies of the cryptosystems are determined
by the computation of the Tate pairing. In this paper a new efficient
algorithm based on double-base chain for computing the Tate pairing is
proposed for odd characteristic p > 3. The inherent sparseness of double-
base number system reduces the computational cost for computing the
Tate pairing evidently. It is 9% faster than the previous fastest method
for MOV degree k=6.
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1 Introduction

The bilinear pairings, namely the Weil pairing and the Tate pairing of algebraic
curves, are important tools for research on algebraic geometry. The early appli-
cations of the bilinear pairings in cryptography were used to evaluate the discrete
logarithm problem. For example, the MOV attack [22] (using Weil pairing) and
FR attack [15] (using Tate pairing) reduce the discrete logarithm problem on
some elliptic curves or hyperelliptic curves to the discrete logarithm problem in
a finite field. However, the bilinear pairings have been found various applications
in cryptography since the publication of the works of Joux [20] and Sakai [26].
For example, there have been many papers on identity based encryption [9, 28, 6],
short signatures [10, 29, 7], group signatures [8], and many more. Pairing-based
cryptosystems are currently one of the most active areas of research in elliptic
curve cryptography. More details about research on pairings can be found at
Paulo Barreto’s pairing-based crypto lounge [3].

However, the pairing computations are often the bottleneck to realize cryp-
tographic applications practically. Therefore, the fast implementations of these
pairings have become a subject of active research areas in elliptic curve cryptog-
raphy. As the Tate pairing is about twice faster than the Weil pairing generally,
here we discuss the Tate pairing mainly.
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The computation of the Tate pairing can be performed using an algorithm
first presented by Miller [23]. There are many improvements based in some man-
ner on Miller’s algorithm proposed. Generally the following factors would affect
the efficiency of computing the pairings: the base in Miller’s algorithm, the coeffi-
cients of the elliptic curves, the Hamming weight of the subgroup orders and the
relation of two input points. From different angles, many techniques have been
exploited to dramatically improve the performance of the algorithm. The work
in [2, 17, 13] mainly focus on reducing the large unit operations such as to remove
the cost of denominator computation and denominator squaring. Eisenträer, et
al. [14] combine an improved point multiplication with a parabola substitution,
enables them to get an improvement to Miller’s algorithm for general elliptic
curves. The authors in [5] find that the times of Tate double-and-add opera-
tion in the algorithm could be reduced. Izu and Takagi [19] apply the iterated
double Tate pairing and the polynomial expansion trick to the computation of
Tate pairing. Recently, Kobayashi et al. introduce a pseudo-arithmetic method
to computing the Tate pairing in [21]. Some special pairings for efficient fast
computations are introduced, such as eta pairing [4] and ate pairing [18].

In our paper, we propose a new modified Miller’s algorithm based on a rep-
resentation of the multiplier as a sum of mixed powers of 2 and 3, called the
double-base number system(DBNS). The sparseness of this representation leads
to fewer multiplicative operations than some general modifications of Miller’s
algorithm. The new algorithm for computing the pairing can be applied into
supersingular and ordinary elliptic curves. Here the prime order of the elliptic
curve subgroup is selected randomly since a prime modulus p of low Hamming
weight leads to the possible lowering of discrete-logarithm security [25], while P
and Q in the pairing el(P, Q) are chosen randomly and have no special relations
in our algorithm since they can be implemented widely in many cryptographic
protocols for security considerations.

This paper is organized as follows. Section 2 introduces basic mathematical
concepts of the Tate pairing, Miller’s algorithm and DBNS. Section 3 describes
the modified Miller’s algorithm based on double-base chain. Section 4 discusses
the efficiency of the new algorithm. In Section 5 we summarize our work.

2 Mathematical Preliminaries

2.1 The Tate Pairing

Let q = pm, where p > 3 is a prime number and m is a positive integer. Fq is a
finite field with q elements. p is the characteristic of Fq, and m is its extension
degree.

Let E be an elliptic curve defined over a finite field Fq.

E : y2 = x3 + ax + b

where a, b ∈ Fq, 4a3 + 27b2 6= 0 ∈ Fq.
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Let l be a prime integer which is coprime to q. l is the order of a point
P ∈ E(Fq). Let l † (q − 1) , and k be the smallest positive integer satisfying
l|(qk − 1). k is also called the embedding degree or MOV degree. We denote the
l-torsion points on the elliptic curve as E[l].

A divisor is a formal sum of points on the elliptic curve E(Fqk )(see [27]).
The degree of a divisor D =

∑
P aP (P ) is the sum deg(D) =

∑
P aP . Let f

be a function on the elliptic curve and let DR =
∑

R aR(R) which satisfies
deg(DR) = 0. Then we define f(DR) =

∏
R f(R)aR .

Let P ∈ E(Fq)[l] and Q ∈ E(Fqk )[l]. DP and DQ are the divisors of E,
satisfying DP ∼ (P ) − (O) and DQ ∼ (Q) − (O), respectively. Let fP be a
function on the elliptic curve whose divisor is div(fP ) = lDP .

The reduced Tate pairing el is a mapping

el : E(Fq) ∩E[l]× E(Fqk ) ∩ E[l]→ F ∗

qk

defined as
el(P, Q) = (fP (DQ))(q

k
−1)/l.

By Theorem 1 in [2], one can define the reduced Tate pairing as

el(P, Q) = fP (Q)(q
k
−1)/l.

The Tate pairing satisfies the following properties:

1. Well-defined el(O, Q) = 1 for all Q ∈ E(Fqk ) and el(P, Q) = 1 for all
P ∈ E(Fq) ∩E[l], Q ∈ lE(Fqk).

2. Bilinearity For any P ∈ E(Fq)[l], Q ∈ E(Fqk ) and any integer n,
el(nP, Q) = el(P, nQ) = el(P, Q)n.

3. Non-degeneracy If el(P, Q) = 1 for all Q ∈ E(Fqk ), then P = O.

2.2 Miller’s Algorithm

The main part of the computation of the Tate pairing is calculating fP (Q).
Miller [23] first proposed an efficient algorithm for computing the Tate pairing.
The main idea of Miller’s algorithm is to combine the ‘double-add’ algorithm for
elliptic curve point multiplication with an evaluation of the straight lines passing
the related points used in the addition process. Now we describe Miller’s original
algorithm simply.

For P, Q ∈ E(Fqk), we define lP,Q to be the equation of the line through
points P and Q (if P = Q, then lP,Q is the tangent to the curve at P or Q, and
if one of P or Q is the point at infinity O, then the lP,Q is a vertical line at the
other point). We define vP to be the equation of the line between P and O if P
is not equal to O.

Let P be a point in E(Fq)[l] and fj be a function on the elliptic curve with
its divisor (fj) = j(P )− (jP )− (j − 1)O, j ∈ Z. Then for i, j ∈ Z, we have

fi+j(Q) = fi(Q)fj(Q)liP,jP (Q)/v(i+j)P (Q).
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Note that (f0) = (f1) = 0, so that f0(Q) = f1(Q) = 1. A second useful remark
is that fi = −(f−i)− (viP ) for i < 0. Thus we have fi(Q) = 1/(f−i(Q)viP (Q)).
Particularly, we have f−1(Q) = 1/(xQ−xP ) for P = (xP , yP ) and Q = (xQ, yQ).

Miller’s original algorithm is described as follows.

Miller’s original algorithm

Input An prime integer l =
∑n

i=0 li2
i, where li ∈ {0, 1}. P ∈ E(Fq)[l] and

Q ∈ E(Fqk )[l]
Output el(P, Q)
1. T ← P , f1 ← 1
2. for i = n− 1, n− 2, ..., 1, 0 do

2.1 f1 ← f2
1 ·

lT,T (Q)
v2T (Q) , T ← 2T

2.2 if li = 1 then
2.3 f1 ← f1 ·

lT,P (Q)
vT+P (Q) , T ← T + P

3. return f
(qk

−1)/l
1

2.3 Double-base Number System

The double-base number system (DBNS) [12] is a representation for integers. It
can reduce plus or minus signs for representing an positive integer highly. Every
positive integer n can be represented as the sum of {2, 3}-integers (i.e., numbers
of the form 2b3t) as

k =
m∑

i=1

si2
bi3ti

where si ∈ {−1, 1}, bi, ti ≥ 0.
The work of [12] gives an efficient greedy algorithm for representing k sparsely

using double-base chain. Let bmax and tmax be the highest power of 2 and 3 in
double-base chain, respectively. We cite Table 7 in [12] generated by using 10000
randomly chosen 160-bit integers.

Table 1. Average number of terms and different largest binary and ternary exponents

bmax tmax m bmax tmax m

57 65 45 95 41 37

76 53 38 103 36 39

3 Miller’s Algorithm Using Double-base Chain

In general, affine coordinates are more efficient than projective coordinates[16,
21] in the computation of the Tate pairing. Therefore affine coordinate system is
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employed in our algorithm. We will borrow the point tripling [11] and the point
quadrupling [1] in affine coordinates for computing the Tate pairing efficiently.

Point tripling algorithm [11] and quadrupling algorithm [1] in affine coordi-
nates are described respectively as follows.

Point Tripling Algorithm in [11]

Input P (x1, y1) ∈ E(Fq)

Output 3P = (x3, y3)

1. t1 ← (2y1)
2, m← 3x2

1 + a, s← m2

2. d1 ← (3x1) · t1 − s

3. d← (2y1) · d1; I ← d−1

4. λ1 ← d1 · I ·M ; λ2 ← −λ1 + t21 · I

5. x3 ← (λ2 − λ1) · (λ2 + λ1) + x1

6. y3 ← λ2 · (x1 − x3)− y1

It is easily checked that the cost of point tripling algorithm is 1I+7M+4S.

Point Quadrupling Algorithm in [1]

Input P (x1, y1) ∈ E(Fq)

Output 2P = (x2, y2), 4P = (x4, y4) ∈ E(Fq)

1. m← 3x2
1 + a, s← x1 · (2y1)

2, t← (2y1)
4

2. e← 2m · (3s−m2)− t, E ← (2y1) · e,

3. I ← E−1, (2y1)
−1 ← e · I, (2y2)

−1 ← t · I

4. λ1 ← m · (2y1)
−1,

5. x2 ← λ2
1 − 2x1, y2 ← λ1 · (x1 − x2)− y1

6. λ2 ← (3x2
2 + a) · (2y2)

−1

7. x4 ← λ2
2 − 2x2, y4 ← λ2 · (x2 − x4)− y2

It is easily checked that the cost of point quadrupling algorithm is 1I+9M+7S.

We denote the computational cost of point addition, doubling, tripling and
quadrupling in affine coordinates on the elliptic curve as ECADD, ECDBL,
ECTRL and ECQDL respectively. Table 2 summarizes these simple operations
on E(Fq).

Table 2. Cost of simple operations on E(Fq)

operation cost

ECADD 1I + 2M + 1S

ECDBL 1I + 2M + 2S

ECTRL [11] 1I + 7M + 4S

ECQDL [1] 1I + 9M + 7S
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3.1 Miller’s Algorithm Using Double-base Chain

Let l be a positive integer represented in double-base chain. Let P ∈ E(Fq)[l]
and Q ∈ E(Fqk )[l]. Miller’s algorithm based on double-base chain is described
as follows.

Miller’s Algorithm using Double-Base Chain

Input An integer l =
∑m

i=1 si2
bi3ti , with si ∈ {−1, 1}, and such that b1 ≥

b2 ≥ ... ≥ bm ≥ 0, and t1 ≥ t2 ≥ ... ≥ tm ≥ 0; and P = (xP , yP ) ∈
E(Fq)[l] and Q = (xQ, yQ) ∈ E(Fqk )[l]

Output el(P, Q)
1. T ← P , f−1 = 1/(xQ − xP ); if s1 = 1, then f1 ← 1; else f1 ← f−1

2. for i = 1, ..., m− 1 do
2.1 u← bi − bi+1, v ← ti − ti+1

2.2 if u = 0 then
2.2.1 for j = 1, ..., v do

2.2.2 f1 ← f3
1 ·

lT,T (Q)lT,2T (Q)
v2T (Q)v3T (Q) , T ← 3T

2.3 else
2.3.1 if v = 0 then
2.3.2 for j = 1, ..., u do

2.3.3 f1 ← f2
1 ·

lT,T (Q)
v2T (Q) , T ← 2T

2.3.4 else
2.3.5 for j = 1, ..., u do

2.3.6 f1 ← f2
1 ·

lT,T (Q)
v2T (Q) , T ← 2T

2.3.7 for j = 1, ..., v do

2.3.8 f1 ← f3
1 ·

lT,T (Q)lT,2T (Q)
v2T (Q)v3T (Q) , T ← 3T

2.4 if si+1 = 1, then f1 ← f1 ·
lT,P (Q)
vT+P (Q) , T ← T + P

2.5 else f1 ← f1 · f−1
lT,−P (Q)
vT−P (Q) , T ← T − P

3. return f
(qk

−1)/l
1

It seems that our new algorithm would be fast because of the sparseness
of an integer represented in double-base chain. In the following section we will
analyze the complexity of the addition, subtraction, doubling and tripling part
of computing the Tate pairing. In Section 5 We will show that our modified
Miller’s algorithm is more efficient than the previous fastest method indeed.

4 The Complexity of Computing the Tate Pairing

We neglect the cost of field additions and subtractions, as well as the cost of
multiplication by small constants. The computational cost of a multiplication,
a squaring, an inversion in F ∗

q can be denoted the same as above. The com-
putational cost of a multiplication, a squaring, and an inversion in F ∗

qk can be
represented by Mk, Sk and Ik. A multiplication between elements in F ∗

qk and

F ∗

q is denoted as Mb. We will take Mk = k1.6M and Mb = kM in the efficiency
consideration.
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The computational cost of the addition, subtraction, doubling and tripling
part of the computation of the Tate pairing is represented by TADD, TSUB,
TDBL and TTRL, respectively. We consider their computational cost in detail
in this section. Some useful remarks are given as below.

For an element g ∈ Fqk , the conjugates of g is denoted by g. Notice that we
can replace (xQ − x1)

−1 by xQ − x1 since x1 = x1 ∈ F ∗

q in the computation of
the Tate pairing generally. This replacement is similar to the pseudo-inversion
method in [21] and leads to the reducibility of inversive operations in Miller’s
algorithm. In the sequel, we analyze the complexity of TADD, TSUB, TDBL,
TTRL, and iterated TDBL respectively.

4.1 The Computational Cost of TADD

Let T (x1, y1), P (xP , yP ) ∈ E(Fq). TADD algorithm is described as below.

TADD Algorithm
Input f ∈ F ∗

pk , T (x1, y1), P (xP , yP ) ∈ E(Fq), Q(xQ, yQ) ∈ E(Fqk )
Output the updated f
1. T5(x5, y5)← ECADD(T, P )
2. l1 ← (yQ − yP )− λ(xQ − xP )
3. l2 ← xQ − x5

4. f ← f · l1l2
5. return f

If we take advantage of the polynomial expansion method [21, 19] and the fact
that x5 = x5, we have

l1l2 = ((yQ − yP )− λ(xQ − xP ))(xQ − x5)

= (yQ − yP )xQ − λ(xQ − xP )xQ − x5(yQ − yP ) + λ x5(xQ − xP ).

Notice that (yQ − yP )xQ and (xQ − xP )xQ can be precomputed. Calculating
λx5 requires 1M and calculating three scalar multiplications, λ · (xQ − xP )xQ,
x5 · (yQ − yP ), λx5 · (xQ − xP ) requires 3Mb. In addition, computing f · l1l2
requires 1Mk. Therefore the total cost of TADD is Mk + 3Mb + M + ECADD
as discussed in [21]. If the pseudo-multiplication [21] method is applied, it can
be reduced to Mk + 2.5Mb + M + ECADD with k ≥ 3. The precomputed cost
of TADD is 2Mk + 7Mk/2 + Ik/2.

4.2 The Computational Cost of TSUB

Let T (x1, y1), P = (xP , yP ) ∈ E(Fq). Since

f−1l1(Q) =
(yQ + yP )− λ(xQ − xP )

xQ − xP
=

yQ + yP

xQ − xP
− λ,

we can substitute f−1l1(Q) with
yQ+yP

xQ−xP
− λ in the subtraction part of the com-

putation of the Tate pairing. Notice that
yQ+yP

xQ−xP
can be precomputed. TSUB

algorithm is described as follows.
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TSUB Algorithm

Input f ∈ F ∗

pk ,T (x1, y1), P (xP , yP ) ∈ E(Fq), Q(xQ, yQ) ∈ E(Fqk )
Output the updated f
1. T6(x6, y6)← ECADD(T,−P )
2. f−1l1 ←

yQ+yP

xQ−xP
− λ

3. l2 ← xQ − x6

4. f ← f · (f−1l1)l2
5. return f

It is easily checked that the total cost of TSUB is Mk + (2k + 1)M + ECADD if
the polynomial expansion method [21, 19] is applied. The precomputed cost of
TSUB is 2Mk + Ik.

4.3 The Computational Cost of TDBL

Let T (x1, y1), T2 = 2T = (x2, y2) ∈ E(Fq). TDBL algorithm is described in the
following.

TDBL Algorithm

Input T = (x1, y1) ∈ E(Fq), Q = (xQ, yQ) ∈ E(Fqk ), and f ∈ F ∗

qk

Output the updated f
1. T2 = (x2, y2)← ECDBL(T )
2. l1 ← (yQ − y1)− λ(xQ − x1)
3. l2 ← xQ − x2

4. f ← f2 · (l1l2)
5. return f

The total cost of TDBL is Mk + Sk + 4Mb + 2M + ECDBL by using the
polynomial expansion method [19, 21]. If the pseudo-multiplication [21] method
is applied, it can be reduced to Mk+Sk+3.5Mb+2M+ECDBL. The precomputed
cost of TDBL is 2Mk.

4.4 The Computational Cost of TTRL

In this part we study the computational of TTRL. TTRL algorithm is described
as follows.

TTRL Algorithm

Input T = (x1, y1) ∈ E(Fq), Q = (xQ, yQ) ∈ E(Fqk ), and f ∈ F ∗

qk

Output the updated f
1. T3 = (x3, y3)← ECTRL(T )

2. l1 ←
lT,T (Q)lT,2T (Q)

v2T (Q)

3. l2 ← xQ − x3

4. f ← f3 · (l1l2)
5. return f
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Let T = (x1, y1), T3 = 3T = (x3, y3) ∈ E(Fq). Let T2 = 2T = (x2, y2),
where x2 = λ2

1 − 2x1 as an intermediate. We apply the parabola method [14] to
computing TTRL. Notice that lT,T passes through T and −2T , whose slope is
λ1, and lT,2T passes through T and 2T , whose slope is λ2. We obtain

lT,T (Q)lT,2T (Q)

v2T (Q)
=

((yQ + y2)− λ1(xQ − x2))((yQ − y2)− λ2(xQ − x2))

xQ − x2

=
y2

Q − y2
2

xQ − x2
+ λ1λ2(xQ−x2)− λ1(yQ−y2)− λ2(yQ+y2)

=x2
Q+x2xQ+x2

2+a+λ1λ2(xQ − x2)−λ1(yQ−y2)−λ2(yQ+y2)

=x2
Q+(x2+λ1λ2)xQ−(λ1+λ2)yQ+x2

2+a−λ1λ2x2+(λ1−λ2)y2

=(xQ−x1)(xQ+x1+x2+λ1λ2)−(λ1 + λ2)(yQ − y1)+x2
1+x1x2

+ λ1λ2x1 − (λ1 + λ2)y1 + x2
2 + a− λ1λ2x2 + (λ1 − λ2)y2

=(xQ − x1)(xQ + x1 + x2 + λ1λ2)− (λ1 + λ2)(yQ − y1)

+
y2
1 − y2

2

x1 − x2
+ λ1λ2(x1 − x2) + (λ1 − λ2)y2 − (λ1 + λ2)y1

=(xQ − x1)(xQ + x1 + x2 + λ1λ2)− (λ1 + λ2)(yQ − y1)

+ (λ1 − λ2)((y2 + y1)− λ1(x1 − x2))

=(xQ − x1)(xQ + x1 + x2 + λ1λ2)− (λ1 + λ2)(yQ − y1)

by using y2 = λ1(x1 − x2)− y1.
We can expand the above polynomial in powers of xQ . The expansive poly-

nomial is

l1 =x2
Q + (x2 + λ1λ2)xQ − (λ1 + λ2)(yQ − y1)− x1(x1 + x2 + λ1λ2)

=x2
Q + ((λ1(λ1 + λ2)− 2x1)xQ − (λ1 + λ2)(yQ − y1)− (λ1(λ1 + λ2)− x1)x1.

Computing λ1 · (λ1 +λ2) and (λ1(λ1 +λ2)−x1) ·x1 requires 2M , and computing
((λ1(λ1 + λ2) − 2x1) · xQ and (λ1 + λ2) · (yQ − y1) requires 2Mb. Therefore we
need 2Mb + 2M for computing l1. Notice that x2

Q can be precomputed.

We require 1Sk + 3Mk for computing f · f2 · l1 · l2. Thus the total cost of
TTRL is 3Mk + Sk + 2Mb + 2M + ECTRL. The precomputed cost is 1Sk.

4.5 The Computational Cost of Iterated TDBL

The iterated TDBL algorithm was first proposed in the work [19] of Izu. The
work of [21] gave an improved iterated TDBL algorithm. We give a modified
iterated TDBL algorithm by using point quadrupling in affine coordinates.

Iterated TDBL Algorithm

Input f ∈ Fqk ,T = (x1, y1) ∈ E(Fq), and Q = (xQ, yQ) ∈ Fqk

Output the updated f
1. T2(x2, y2) = 2T1, T4(x4, y4) = 4T1 ← ECQDL(T )
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2. l1 ← yQ − y1 − λ1(xQ − x1)

3. l2 ← xQ − x2

4. f
′

← f2 · l1 · l2
5. l

′

1 ← yQ − y2 − λ2(xQ − x2)

6. l
′

2 ← xQ − x4

7. f ← f
′2 · l

′

1 · l
′

2

Now we study the computation of f in iterated TDBL. Since

the updated f =f
′2 · l

′

1 · l
′

2 = f4 · l21 · l
2
2 · l

′

1 · l
′

2 = (f2 · l1)
2 · l

′

1 · l
2
2l

′

2

We can apply the polynomial expansion method in l22l
′

2. Then

l22l
′

2 = (xQ − x2)
2(xQ − x4) = x3

Q − (x4 + 2x2)x
2
Q + (2x2x4 + x2

2)xQ − x2
2x4

Since x2
2 is computed in ECQDL(T1), x2 ·x4 and x2

2 ·x4 require 2M. (x4+2x2)·x
2
Q

and (2x2x4 +x2
2) ·xQ require 2Mb. Therefore, the total cost of iterated TDBL is

3Mk + 2Sk + 4Mb + 2M + ECQDL.

It is obviously more efficient than the iterated TDBL in [21] if the cost of 1EC-
QDL is lower than the cost of 2ECDBL.

We summarize these results in the following table.

Table 3. Cost of elementary operations for computing the Tate pairing

operation cost

TADD Mk + 2.5Mb + 1I + 3M + 1S

TSUB Mk + 1I + (2k + 3)M + 1S

TDBL Mk + Sk + 3.5Mb + 1I + 4M + 2S

Iterated TDBL 3Mk + 2Sk + 4Mb + 1I + 11M + 7S

TTRL 3Mk + Sk + 2Mb + 1I + 9M + 4S

5 Efficiency Consideration

In this section we put our emphasis on studying the efficiency of new proposed
algorithm and comparing it with the previous methods in [21] and [19]. Since
it is necessary that the order l of elliptic curve subgroup have at least 160 bits
and qk have at least 1000 bits for security and efficiency in many cryptographic
protocols, we mainly give our efficiency analysis for log2l = 160.



11

5.1 Efficiency of Our Proposed Algorithm

The total precomputed cost of new proposed algorithm is

Tpre =6Mk + Sk + Ik + 7Mk/2 + Ik/2.

We assume that plus signs and minus signs appear on average if l is repre-
sented in double-base chain. The total cost of our algorithm is

bmaxTDBL + tmaxTTRL +
m

2
(TADD + TSUB) + Tpre

=((bmax + 3tmax + m + 6)Mk + ((bmax + tmax + 1)Sk

+ (
7

2
bmax + 2tmax +

5

4
m)Mb + (bmax + tmax + m)I

+(4bmax+9tmax+(k + 3)m)M +(2bmax+4tmax+m)S+Ik+7Mk/2+Ik/2.

Here we take M4 = 9M , M6 = 18M , M8 = 27M , S = 0.8M , I = 10M , Mb =
kM , Ik = I + k2M . We estimate the cost of new proposed algorithm by Table
1 since the 160 bit length of l is enough for security in many cryptographical
protocols. Notice that we do not use the iterated TDBL technique [19, 21] for
simplicity.

Table 4. Cost of new proposed algorithm by Table 1

bmax tmax m cost(k=4) cost(k=6) cost(k=8)

57 65 45 8287M 12744M 17222M

76 53 38 8350M 12554M 17085M

95 41 37 8395M 12552M 17052M

103 36 39 8493M 12676M 17186M

5.2 Comparisons

In this part, we compare our algorithm with the previous methods in [19] and
[21] mainly.

If we assume that k is a randomly chosen n-bit integer, it is well known that
the double-and-add algorithm requires n doubling and n/2 additions on average.
Using the signed digit representation, the average density of non-zero digits is
reduced to 1/3. Therefore the computational cost of Miller’s original algorithm
on average is the sum of nTDBL and n

2 TADD. The computational cost of signed
Miller’s algorithm is

nTDBL +
n

3
(
1

2
TADD +

1

2
TSUB).
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The computational cost of Miller’s algorithm described in [19] is

(n− 1)(2Mk + 2Sk + (3k + 7)M + 6S) +
n

2
(2Mk + (3k + 10)M + 3S)

=(3n− 2)Mk + (2n− 2)Sk + (
9n− 6

2
k + 12n− 7)M +

15n− 12

2
S.

The computational cost of signed Miller’s algorithm described in [21] is

(n− 1)TDBL +
n

6
(TADD + TADD) + Tpre

=(
4

3
n + 5)Mk + (n− 1)Sk + Ik + 7Mk/2 + 1Ik/2

+ (
17n− 14

4
k + (5n− 4))M + (

7

3
n− 2)S + (

4

3
n− 1)I.

Now we compare our algorithm with the proposed methods in [21] and [19].
The assumptions of Mk, I and n are the same as above. The computational cost
of these algorithms is shown in the following Table.

Table 5. Cost comparison of proposed algorithms

Algorithm cost(k=4) cost(k=6) cost(k=8)

new proposed algorithm 8350M 12554M 17085M

signed Miller’s algorithm in [21] 9196M 13685M 18121M

Miller’s algorithm in [19] 12328M 20353M 28379M

Table 5 implies that our proposed algorithm is 9% faster and 62% faster than
the previous proposed algorithms in [21] and [19] for k = 6, respectively. the
sparseness of DBNS leads to fewer multiplications than the previous methods in
[21, 19]. We also point out that our proposed algorithm can be applied for k = 2.

6 Conclusion

In this paper, A new algorithm based on the double-base chain is proposed for
computing the Tate pairing. The proposed algorithm can be applied to supersin-
gular and ordinary elliptic curves. It is more efficient than the previous proposed
algorithms in [21] and [19].
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