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Abstract

Existing algorithms for isolating real solutions of zero-dimensional polynomial
systems do not compute the multiplicities of the solutions.In this paper, we de-
fine in a natural way the multiplicity of solutions of zero-dimensional triangular
polynomial systems and prove that our definition is equivalent to the classical def-
inition of local (intersection) multiplicity. Then we present an effective and com-
plete algorithm for isolating real solutions with multiplicities of zero-dimensional
triangular polynomial systems using our definition. The algorithm is based on in-
terval arithmetic and square-free factorization of polynomials with real algebraic
coefficients. The computational results on some examples from the literature are
presented.

1 Introduction

Real solution isolation for polynomials/zero-dimensional polynomial systems/semi-
algebraic systems is one of the central topics in computational real algebra and com-
putational real algebraic geometry, which has many applications in various problems
with different backgrounds.

The so-called real root/zero/solution isolation of a polynomial/zero-dimensional
polynomial system/semi-algebraic system withk distinct real solutions is to compute
k disjoint intervals/“boxes” containing thek solutions, respectively. To our knowledge,
designing algorithms for real root isolation for polynomials with rational coefficients
was initiated by [4] in 1976, which was closely related to theimplementation of CAD
algorithm [3]. Designing and implementation of such algorithms have been deeply
developed by many subsequent work [5, 1, 10, 11, 12] since then. Those algorithms
are mainly based on Descartes’ rule of sign or Vincent’s theorem.

To generalize the algorithms for polynomials to zero-dimensional triangular poly-
nomial systems, one must consider real root isolation for polynomials with real alge-
braic coefficients. There are indeed some work to generalizeDescartes’ rule of sign to
polynomials with algebraic coefficients. However, dealingwith algebraic coefficients
directly may affect efficiency greatly.

In [17, 18] we considered real solution isolation for semi-algebraic systems with
finite solutions. We introduced a method which always enables us to avoid handling
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directly polynomials with algebraic coefficients and to deal with polynomials with ra-
tional coefficients only. A recent algorithm in [2] can compute the parity of the solu-
tions as well as isolate real roots of zero-dimensional triangular polynomial systems.

In this paper, we define in a natural way the multiplicity of solutions of zero-
dimensional triangular polynomial systems and prove that our definition is equiva-
lent to the classical definition of local (intersection) multiplicity. Then we present
an effective and complete algorithm for isolating real solutions with multiplicities of
zero-dimensional triangular polynomial systems using ourdefinition. The algorithm is
based on square-free factorization of polynomials with real algebraic coefficients and
our previous work [18]. We also provide computational results on some examples from
the literature.

In this paper, all polynomials are inC[X ] = C[x1, . . . , xn] if not specified.

2 Multiplicities of zeros of triangular sets

First, let’s recall the definition oflocal (intersection) multiplicity. We follow the nota-
tions in Chapter 4 of [6]. Although some notations and definitions can be stated in a
more general way, we restrict ourselves to the ringC[X ] = C[x1, . . . , xn] since we are
interested in the complex or real zeros of zero-dimensionalpolynomial systems.

For p = (η1, . . . , ηn) ∈ Cn, we denote byMp the maximal ideal generated by
{x1 − η1, . . . , xn − ηn} in C[X ], and write

C[X ]Mp
=

{
f

g
: f, g ∈ C[X ], g(η1, . . . , ηn) 6= 0

}
.

It is well-known thatC[X ]Mp
is the so-calledlocal ring.

Definition 1 [6] SupposeI is a zero-dimensional ideal inC[X ] andp ∈ Zero(I), the
zero set ofI in C. Then themultiplicity of p as a point inZero(I) is defined to be

dimk C[X ]Mp
/IC[X ]Mp

.

That is, the multiplicity ofp is the dimension of the quotient spaceC[X ]Mp
/IC[X ]Mp

as a vector space overC.

For a zero of a zero-dimensional triangular set, there can bea natural and intuitional
definition of multiplicity as follows.

Definition 2 For a zero-dimensional triangular system,




f1(x1) = 0,
f2(x1, x2) = 0,
. . .
fn(x1, . . . , xn) = 0,

and one of its zeros,ξ = (ξ1, . . . , ξn), the multiplicity of ξ is defined to be
n∏

i=1

mi,

wheremi is the multiplicity ofxi = ξi as a zero of the univariate polynomialfi(ξ1, . . . , ξi−1, xi)
for i = 1, . . . , n.
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Example 1 Consider the following triangular system:




g1 = x3
1 + 2x5

1 + 7x7
1 = 0,

g2 = x3
2 + x2

2 + x1x2 = 0,
g3 = x2

3 + x1x3 + x1x2 = 0.

Let’s compute the local multiplicity of(0, 0, 0) by Definition 2. The multiplicity of
x1 = 0, a zero ofg1, is 3. Substitutex1 = 0 in f2 and the resultedg2 is g′2 = x2

2. Thus,
the multiplicity ofx2 = 0, a zero ofg′2, is 2. Finally, substitutex1 = x2 = 0 in g3,
and the resultedg3 is g′3 = x2

3. Thus, the multiplicity ofx3 = 0, a zero ofg′3 is 2. As a
result, the local multiplicity of(0, 0, 0) is 3× 2× 2 = 12.

In the following, we will prove that Definition 2 is equivalent to Definition 1. Many
notations and results are taken from [6].

Usually, a total order that is compatible with multiplication and that satisfies1 > xi

for all i’s, is called alocal order.

Definition 3 [9]( Negative lexicographical ordering)
Assumeα = (α1, . . . , αn) ∈ Nn

≥ andβ = (β1, . . . , βn) ∈ Nn
≥. We sayXα >nl X

β if

∃i (1 ≤ i ≤ n) ∧ (∀j, 1 ≤ j < i =⇒ αj = βj) ∧ (αi < βi).

Remark 1 The negative lexicographical ordering>nl is obviously a local order.

For a given order, lc(f), lm(f) and lt(f) denote theleading coefficient, leading
monomialandleading termof f , respectively. For a setS, lt(S) = {lt(f) : f ∈ S}.

Definition 4 [6] LetR = C[X ]Mp
andI ⊂ R be an ideal. A set{g1, . . . , gm} ⊂ I is

called astandard basisfor I with respect to<nl if 〈lt(I)〉 = 〈lt(g1), . . . , lt(gm)〉.

For α = (α1, . . . , αn) ∈ Nn
≥, define|α| =

∑
i αi. For any polynomialg =∑

α cαX
α ∈ C[X ] with total degreed, we will write gh =

∑
α cαt

d−|α|Xα for the
homogenization ofg with respect tot.

Definition 5 [6] DefinetaXα >′
nl t

bXβ if a+ |α| > b+ |β| or a+ |α| = b+ |β|, but
Xα >nl X

β.

It is easy to verify that>′
nl is a monomial order overC[t,X ].

Theorem 1 [6](Analog of Buchberger’s Criterion)
Let G = {g1, . . . , gm}, > be any local order, andI be the ideal inC[X ]Mp

gen-
erated byG. G is a standard basis forI if and only if applying Mora normal form
algorithm to each S-polynomial formed from elements of the set of homogenizations
Gh =

{
gh1 , . . . , g

h
m

}
yields a zero remainder.

For our purpose, we state the criterion in another form as follows.

Theorem 2 Let notations be as in Theorem 1.G is a standard basis if and only if
for any nonzero S-polynomial ofghi andghj , denoted bySij , there exist homogeneous
polynomialsU,A1, . . . , Am ∈ C[t,X ] such that

USij =
m∑

l=1

Alg
h
l , (1)
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wherelt(U) = ta for somea,

a+ deg(Sij) = deg(Al) + deg(ghl )

for all l wheneverAl 6= 0, andlt(Alg
h
l ) ≤

′
nl lt(USij).

Remark 2 We omit the proof of Theorem 2, which is almost the same as thatof Theo-
rem 1. The criterion in Theorem 2 is independent to any algorithms. One can use Mora
normal form algorithm to get such representation as (1) for eachSij if G is a standard
basis.

Without loss of generality, in the rest of this section we assumep = (0, . . . , 0) is a
zero of the triangular set under discussion and focus on its multiplicity. Consider the
following triangular set with leading termsc1x

m1

1 , . . . , cnx
mn
n respectively w.r.t. the

order>nl:

T =





f1(x1) = c1x
m1

1 + t1(x1),
f2(x1, x2) = c2x

m2

2 + t2(x1, x2),
. . . ,
fn(x1, . . . , xn) = cnx

mn
n + tn(x1, . . . , xn),

(2)

whereti(x1, . . . , xi) is a polynomial inx1, . . . , xi for i = 1, . . . , n andci’s are con-
stants. Without loss of generality, we assumeci’s are all1 in the proof of the following
proposition.

Proposition 1 Let T be as above andI = 〈T 〉 the ideal generated byT in the local
ring C[X ]〈x1,...,xn〉. ThenT is a standard basis forI with respect to>nl.

PROOF. According to Theorem 2, we only need to show that every nonzero S-
polynomial of each pair ofT h =

{
fh
1 , . . . , f

h
n

}
can be represented in the form of

(1).
Assume thatfh

i = taxmi

i + ti, f
h
j = tbx

mj

j + tj anda < b. The S-polynomial,
Sij , of fh

i andfh
j is

Sij = tb−ax
mj

j fh
i − xmi

i fh
j .

Let p1 = tb−ax
mj

j fh
i andp2 = xmi

i fh
j . Under the order<′

nl, the first term ofp1 is
equal to the first term ofp2. If Sij 6= 0, there exists someL such that under the order
<′

nl theL-th term ofp1 is not equal to theL-th term ofp2 and thek-th term ofp1 is
equal to thek-th term ofp2 for all 1 ≤ k < L. Then, thek-th terms ofp1 andp2 can
be represented asxmi

i qk andtb−ax
mj

j qk for someqk, respectively. Thus,fh
i andfh

j

can be respectively rewritten as

fh
i = xmi

i (ta +Q) + fi2, f
h
j = tb−ax

mj

j (ta +Q) + fj2,

whereQ =
L−1∑
k=1

qk andfi2 andfj2 are the remained parts offh
i andfh

j , respectively,

which satisfy that
lt(tb−ax

mj

j fi2) 6= lt(xmi

i fj2).

It is easy to verify thatSij = tb−ax
mj

j fi2 − xmi

i fj2. Then

lm(Sij) = max(lm(tb−ax
mj

j fi2), lm(xmi

i fj2))
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under the order<′
nl. Thus,

(ta +Q)Sij = fi2f
h
j − fj2f

h
i .

LetU = ta +Q,Aj = fi2, Ai = fj2 andAl = 0(l 6= i and l 6= j). Then we have

USij =

n∑

l=1

Alf
h
l ,

and all the requirements in Theorem 2 are met. ThusT is a standard basis for〈T 〉 w.r.t
<nl.

In order to prove the equivalence of Definitions 2 and 1 about the (local) multiplic-
ity, we need the following theorem, which can be found in [6].

Theorem 3 [6] Let I be an ideal in a local ringR, and assume thatdimk R/〈lt(I)〉
is finite for some local order>. Then we have

dimk R/I = dimk R/〈lt(I)〉.

Theorem 4 Let notations be as above andT a zero-dimensional triangular set with a

zerop = (0, . . . , 0). If the multiplicity ofp defined by Definition 2 ism =
n∏

i=1

mi, then

the local multiplicity, defined by Definition 1, ofp as a point of〈T 〉 is alsom.

PROOF. If the multiplicity is
n∏

i=1

mi in the sense of Definition 2, thenT can be

rewritten as

T =





f1(x1) = (c1 + t11(x1))x
m1

1 ,
f2(x1, x2) = (c2 + t21(x1, x2))x

m2

2 + x1t22(x1, x2),
. . . ,

fn(X) = (cn + tn1(X))xmn
n +

n−1∑
i=1

xitni+1(X),

whereX = (x1, . . . , xn), thetij(X)s are polynomials in(x1, . . . , xi) and theti1(X)s
do not contain constants.

Under the order>nl, the leading term offi(x1, . . . , xi) is cix
mi

i for i = 1, . . . , n.
According to Proposition 1,T is a standard basis ofI = 〈T 〉. Thus,

〈lt(I)〉 = 〈xm1

1 , . . . , xmn

n 〉.

LetR = C[X ]〈x1,...,xn〉. According to Theorem 3,

dimk R/IR = dimk R/〈xm1

1 , . . . , xmn

n 〉R =

n∏

i=1

mi.

3 Algorithm for real solution isolation with multiplicity

In this section, based on the results in last section, we present an algorithm for real root
isolation with multiplicity of zero-dimensional triangular polynomial equations. That
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is, we not only isolate the real roots, but also compute the multiplicity of each real root
by Definition 2 at the same time. In this section, the input polynomial or polynomial
set to our algorithms is taken fromQ[X ].

It is well-known that there exist some efficient algorithms for real root isolation of
polynomials or polynomial equations or semi-algebraic systems [4, 5, 1, 10, 17, 11, 2,
18]. To obtain the multiplicities of the real roots at the same time, our idea is simple
that is to take use ofsquare-free factorizationof polynomials with rational or algebraic
coefficients. When dealing with algebraic coefficients, we make use of the idea in
[17, 18] which enables us to deal with rational coefficients instead.

For the univariate case, supposep =
∏k

i=1
pii. Isolating the real zeros ofp with

multiplicity contains two main steps. One is to compute the squarefree factorization of
p, the other is to isolate the real zeros of the squarefree partof p. We can use many
existing tools to obtain the squarefree factorization,i.e., thosepis. Then we know at
once the multiplicities of those real zeros of eachpi. In principle, we may isolate the
real zeros of the squarefree part ofp in two ways. One way is to isolate the real zeros
of p1p2 · · · pk first and then match the zeros withpi to obtain correct multiplicities.
The other way is to isolate the real zeros of eachpi separately. However, in the later
way, we may need to compute a root gap ofp first. Anyway, the univariate case can be
efficiently dealt with. So, we do not enter the details of suchalgorithms and only give
a description of the input and output of such function.

Calling sequence UniIsol(f(x))
Input: a univariate polynomialf(x)
Output: a set of elements of the form([a, b],m) where[a, b] is an interval containing
exact one real root off(x) = 0 andm is the multiplicity of the root. There are not any
real roots off(x) = 0 outside the intervals.

Then let us consider the multivariate case. To be more precise, we state our problem
as follows: that is to isolate the real solutions with multiplicities of the following zero-
dimensional triangular polynomial set

T = {f1(x1), f2(x1, x2), . . . , fn(x1, . . . , xn)}.

In principle, Definition 2 suggests a naive method to computethe local multiplicity as
follows. First compute all the zeros off1(x1) and their multiplicities byUniIsol; then
“substitute” the zeros forx1 in f2(x1, x2) one by one, and compute all the zeros of the
resultedf2(x̄1, x2) and their multiplicities byUniIsol again, and so on. Of course,
in general we cannot directly substitute the zeros in those polynomials because they
may be algebraic numbers of high degrees. Nevertheless, this naive method is the main
framework of our algorithm.

Let Ti = {f1(x1), f2(x1, x2), . . . , fi(x1, . . . , xi)}. We will call

([a1, b1], . . . , [ai, bi]) or ([a1, b1], . . . , [ai, bi],m)

an interval solutionof Ti (with multiplicity m) if the “box” [a1, b1] × · · · × [ai, bi]
contains exact one real solution ofTi (and m is the multiplicity of the solution).
If Ti hask distinct real solutions, a set ofk interval solutions ofTi containing re-
spectively thek real solutions is called asolution setof Ti. For an interval solution
r = ([a1, b1], . . . , [ai, bi]), we defineNr = [x1 − a1, b1 − x1, . . . , xi − ai, bi − xi]
andNr ≥ 0 stands fora1 ≤ x1 ≤ b1, . . . , ai ≤ xi ≤ bi, i.e., (x1, . . . , xi) ∈
[a1, b1]× · · · × [ai, bi].
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Suppose we already have a solution set ofTi and

(ξ1, . . . , ξi) ∈ [a1, b1]× · · · × [ai, bi]

is a real root ofTi with multiplicity m. To isolate the real zeros offi+1(ξ1, . . . , ξi, xi+1)
with multiplicity, we need to

1. compute the algebraic squarefree factorization offi+1(ξ1, . . . , ξi, xi+1), and

2. isolate the real zeros of the squarefree part computed.

Let us first consider the second task, i.e., how to isolate thereal zeros offi+1(ξ1, . . . ,
ξi, xi+1) if it is squarefree. In [18], we proposed a complete algorithm, calledRealZeros,
for isolating the real solutions (without multiplicities)of semi-algebraic systems. Our
second task can be accomplished by a sub-algorithm ofRealZeros. The key idea
of the algorithm is to compute two suitable polynomialsfi+1 andfi+1 in xi+1 with
rational coefficients such that

fi+1 < fi+1(ξ1, . . . , ξi, xi+1) < fi+1

by using interval arithmetic and those intervals[a1, b1], . . . , [ai, bi]. And the real zeros
of fi+1(ξ1, . . . , ξi, xi+1) can be isolated through isolating the real zeros offi+1 and
fi+1. Therefore, we can avoid dealing with polynomials with algebraic coefficients
directly. In the following, we call this sub-algorithmAlgebraicIsolate.

Calling sequence AlgebraicIsolate(g(x1, . . . , xi+1), Ti, r)
Input: a squarefree polynomialg(x1, . . . , xi+1), a zero-dimensional triangular poly-
nomial setTi as above and an interval solutionr = ([a1, b1], . . . , [ai, bi]) which con-
tains exact one real zero(ξ1, . . . , ξi) of Ti.
Output: a list of isolating intervals of real zeros ofg(ξ1, . . . , ξi, xi+1).

For the detail of the algorithmAlgebraicIsolate, please be referred to [18].
Now, we turn to the first task, i.e., compute the algebraic squarefree factorization

of fi+1(ξ1, . . . , ξi, xi+1). One may use some existing algorithms for algebraic factor-
ization, see for example [14], to accomplish the task. In thefollowing, we propose a
method for algebraic squarefree factorization based on algebraic gcd computation. A
key manipulation in the computation is to count real solutions of semi-algebraic sys-
tems by an algorithmRealrootCounting in [16]1.

Calling sequence RealrootCounting(F,N, P,H)
Input: a zero-dimensional polynomial setF , a list of non-strict inequalitiesN , a list
of strict inequalitiesP and a list of inequationsH .
Output: the number of real roots of the system{F = 0, N ≥ 0, P > 0, H 6= 0}.

Calling sequence AlgebraicGCD(p1(x1, . . . , xi+1), p2(x1, . . . , xi+1), Ti, r)
Input: two polynomialsp1, p2 in x1, . . . , xi+1, a zero-dimensional triangular polyno-
mial setTi as above and an interval solutionr = ([a1, b1], . . . , [ai, bi]) of Ti.
Output: The greatest common divisor ofp1 andp2 viewed as polynomials inxi+1

w.r.t. the interval solutionr, i.e.,gcd(p1(ξ1, . . . , ξi, xi+1), p2(ξ1, . . . , ξi, xi+1)) where
(ξ1, . . . , ξi) is the only real solution inr.

1The algorithm is callednearsolve in [16]
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Step 0 Suppose the subresultant chain ofp1 andp2 w.r.t. xi+1 is Sµ, Sµ−1, . . . , S0

with principal subresultant coefficientsRµ, Rµ−1, . . . , R0, respectively. Setj ←
0.

Step 1 ComputeRj .

Step 2 If RealrootCounting(Ti, Nr, [ ], [Rj ]) = 0, i.e., the interval solution makes
Rj vanish, then setj ← j + 1 and go to Step 1.

Step 3 ReturnSj .

There are several mature algorithms [8, 13] for squarefree factorization of polyno-
mials inK[x] whereK is Z,Q or a finite field. It is well known that such algorithms
for univariate case only contain two main manipulation: gcdcomputation and poly-
nomial division inK[x]. If we replace the gcd computation in those algorithms with
our AlgebraicGCD computation and replace the division manipulation with pseudo-
division, then those algorithms will compute algebraic squarefree factorization as we
want. So, We only give a simple description of our algorithm here.

Calling sequence AlgebraicSqfreeFactor(p(x1, . . . , xi+1), Ti, r)
Input: a polynomialp in x1, . . . , xi+1, a zero-dimensional triangular polynomial set
Ti as above and an interval solutionr = ([a1, b1], . . . , [ai, bi]) of Ti.
Output: the squarefree factorization ofp viewed as a polynomial inxi+1 w.r.t. the in-
terval solutionr, i.e., the squarefree factorization ofp(ξ1, . . . , ξi, xi+1)where(ξ1, . . . , ξi)
is the only real solution inr.

Now, we are ready to describe our algorithmMultiIsolate for real solution iso-
lation with multiplicity of zero-dimensional triangular polynomial sets.

Calling sequence MultiIsolate(T )
Input: a zero-dimensional triangular polynomial setT = {f1(x1), . . . , fn(x1, . . . , xn)}.
Output: a solution set ofT with multiplicity.

Step 1 i← 1, Li ← UniIsol(f1).

Step 2 Li is a solution set ofTi with multiplicity. If i = n, returnLn.

Step 3 For each interval solutionr = ([a1, b1], . . . , [ai, bi]) in Li with multiplicity,
computeAlgebraicSqfreeFactor(fi+1(x1, . . . , xi+1), Ti, r). So, we know
at once the multiplicity of each factor. Assumẽfi+1 is the squarefree part of
fi+1. Then, by applyingAlgebraicIsolate(f̃i+1, Ti, r) we can obtain the
isolating intervals of real zeros offi+1. So, it is easy to obtain a solution set
Li+1 of Ti+1 with multiplicity by Definition 2.

i← i+ 1 and go to Step 2.

Remark 3 Let r = ([a1, b1], . . . , [an, bn]) be an interval solution ofT and ξ =
(ξ1, . . . , ξn) is the real solution inr. If lc(fi)(ξ1, . . . , ξi−1) 6= 0 for 2 ≤ i ≤ n, T
is said to beregularw.r.t. ξ (or r). If fi(ξ1, . . . , ξi−1, xi) is squarefree for1 ≤ i ≤ n,
T is said to besquarefreew.r.t. ξ (or r).

It is clear thatMultiIsolate(T ) actually computes as well a regular and square-
free decomposition of the given triangular setT w.r.t. its real zeros, respectively. That
is to say, we compute a set of triangular setsWj and their solution setsQj such that
∪jQj is a solution set ofT and eachWj is regular and squarefree w.r.t. each solution
in Qj . If we modify slightly the algorithm, we can output the regular and squarefree
decomposition.
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4 Examples

The algorithmMultiIsolate has been implemented as a Maple program which is
included in our package DISCOVERER [15]. For an input zero-dimensional triangu-
lar system, our program can compute the real solution isolation of the system with
multiplicity and output a regular and squarefree decomposition (see Remark 3) of the
system w.r.t. those real solutions. Our program can detect whether the input system is
zero-dimensional. If it is not, the program will return a message: “The dimension of
the system is positive.”

In this section, we illustrate the function of our program bysome examples. The
timings are collected on a Thinkpad X200 running Maple 11 with 1G memory and
Windows Vista.

Example 2 Consider the following triangular system:




f1 = x− 2,
f2 = (x+ y − 3)3(y + 3),
f3 = (yz2 + xz + 1)2((x− y)4z + x− y).

Within1.6 seconds, our program outputs a solution set as follows.

[ [ [[2, 2], [−3,−3], [−
1

4
, 0]], 1 ], [ [[2, 2], [−3,−3], [1, 1]], 2 ],

[ [[2, 2], [−3,−3], [−
1

2
,−

1

4
]], 2 ], [ [[2, 2], [1, 1], [−1,−1]], 15 ] ].

That means the system has4 real solutions which are of multiplicities1, 2, 2, 15, re-
spectively. Our program also outputs a regular and squarefree decomposition of the
system w.r.t. the four distinct real solutions respectively as follows.

[x− 2, y + 3, 1 + 125z],

[x− 2, y + 3,−1 + 3z2 − 2z],

[x− 2, y − 1, z + 1].

Note that the second and third solutions are both solutions to the second equations
above.

Example 3 Consider the following triangular system:




f1 = (x + 1)(x− 2),
f2 = (x − y + 1)2(y − 5) + (y − 3)x,
f3 = (xy − 6)z2 + 2z + 1.

The system has7 real solutions all of multiplicities1. The computation costs0.7 sec-
onds.

[ [ [[2, 2], [3, 3], [−1/2,−1/2]], 1 ], [ [[−1,−1], [−1,−3/4], [−3/8,−1/8]], 1 ],

[ [[−1,−1], [−1,−3/4], [3/8, 7/8]], 1 ], [ [[−1,−1], [1/2, 3/4], [−3/8,−1/8]], 1 ],

[ [[−1,−1], [1/2, 3/4], [3/8, 3/4]], 1 ], [ [[−1,−1], [5, 21/4], [−3/8,−1/8]], 1 ],

[ [[−1,−1], [5, 21/4], [1/4, 1/2]], 1 ] ].

A regular and squarefree decomposition is

[x− 2, f, 1 + 2z], [x+ 1, f, g],

wheref = x2y−5x2−2xy2+13xy−13x+y3−7y2+11y−5, g = yz2x−6z2+2z+1.
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Example 4 The following triangular system is taken from [7].




f1 = x4,
f2 = x2y + y4,
f3 = z + z2 − 7x3 − 8x2.

Within0.1 seconds, we obtain two distinct real roots with multiplicities16.

[ [ [0, 0], [0, 0], [−1,−1] ], 16 ],

[ [ [0, 0], [0, 0], [0, 0] ], 16 ].

And a regular and squarefree decomposition is

[x, y, z + z2 − 7x3 − 8x2].

Example 5 The following triangular system is taken from [2].
{

f1 = x4 − 3x2 − x3 + 2x+ 2,
f2 = y4 + xy3 + 3y2 − 6x2y2 + 4xy + 2xy2 − 4x2y + 4x+ 2.

The time for computation is3.6 seconds and we obtain12 distinct real roots.

[ [ [51/32, 13/8], [−119/32,−475/128] ], 1 ],

[ [ [51/32, 13/8], [−147/128,−145/128] ], 1 ],

[ [ [51/32, 13/8], [53/64, 107/128] ], 1 ],

[ [ [51/32, 13/8], [307/128, 77/32] ], 1 ],

[ [ [−5/8,−19/32], [−3/8, 1/4] ], 1 ],

[ [ [−5/8,−19/32], [13/8, 17/8] ], 1 ],

[ [ [45/32, 23/16], [−3025/1024,−1499/512] ], 1 ],

[ [ [45/32, 23/16], [−1347/1024,−2639/2048] ], 1 ],

[ [ [45/32, 23/16], [11/8, 3/2] ], 2 ],

[ [ [−23/16,−45/32], [−5/8,−1/8] ], 1 ],

[ [ [−23/16,−45/32], [17/4, 5] ], 1 ],

[ [ [−23/16,−45/32], [−3/2,−11/8] ], 2 ].

It is clear that two of the solutions are of multiplicities2 and the others are of multiplic-
ities1. With respect to those solutions, we have a regular and squarefree decomposition
as follows.

[x2 − x− 1, h1], [x
2 − 2, h2], [x

2 − 2, h3],

where

h1 = y4 + xy3 + 3y2 − 6x2y2 + 4xy + 2xy2 − 4x2y + 4x+ 2,

h2 = −23354573041809− 9122537689096xy2+ 39406733143725xy+

17148617740054x+ 13135577714575y2− 54735226134576y,

h3 = −104xy + 335y− 335x+ 208.
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