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Abstract We propose an optimal control method for periodic tasks for systems with discontinuous dynamics.

We take advantage of a parametric trajectory optimization method to find an optimal periodic trajectory for

a periodic task. Then we use Differential Dynamic Programming (DDP) to further optimize it and generate

linear local models of the optimal control law in the neighborhood of the optimal trajectory. By formulating the

optimal control problem with an infinite time horizon, the local models are time invariant and can be used to

construct a state feedback law. The utility of the proposed method is evaluated using simulated walking control

of a five-link biped robot. The results show lower torques and more robustness from the proposed controller

compared to a PD servo controller.
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1 INTRODUCTION

Many dynamic systems are subject to discontinuities in state at certain instants in time. Examples

of such systems include a bouncing ball, rocket stage separation, and hopping, walking, or running

mechanisms with intermittent ground contact. System dynamics of the type described above can be

formulated as nonlinear systems with discontinuous dynamics. The purpose of this paper is to propose

an optimal control method for periodic tasks for such systems using biped walking control as an example.

The control of biped walking remains one of the most difficult research problems in robotics. It is a

challenge due to high dimensionality, nonlinearity, the impact between the foot and the ground, and

constraints on kinematics and dynamics, such as joint limitations, the foot clearance requirement, and

the foot-ground contact conditions.

Dynamic Programming (DP) provides a way to find an optimal feedback control law for a nonlinear

system [1]. A typical implementation of dynamic programming stores the value function (the cost to get

to the goal) and/or the control law on a grid over the entire state space. As a result, the computation and

even the storage of the optimal control law becomes difficult when the dimension is high [1]. Differential

Dynamic Programming (DDP) is a local version of dynamic programming [3, 4]. It also takes advantage

of the Bellman equation, but applies the principle of optimality in the neighborhood of a given trajectory.

This allows the coefficients of a quadratic expansion of the value function and a linear expansion of the
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optimal control law to be computed along the trajectory. These coefficients may then be used to compute

an improved trajectory. After DDP’s convergence to an optimal trajectory, linear local models of the

optimal control law are available.

DDP is a gradient based trajectory optimization method and a good starting trajectory is important

for its convergence to an optimum especially when the optimization problem is highly nonlinear and

constrained. We take advantage of a parametric trajectory optimization method to find initial cyclic

trajectories in periodic tasks such as walking. These trajectories are used as starting trajectories for

DDP to re-optimize and generate local models of the value function and the optimal control law. A class

of parametric trajectory optimization methods take the state and the control variables or the coefficients of

their function approximations as optimization variables, the system dynamics as constraints, and minimize

the cost function directly [5, 6]. The optimal control problem is then cast as a nonlinear optimization

problem, which can be solved by general nonlinear programming methods, such as Sequential Quadratic

Programming (SQP) [7]. Parametric trajectory optimization methods are good at handling constraints

and have the advantage of a wider range of convergence than other trajectory optimization methods.

Many efforts have been made to use trajectories and local models to represent feedback control laws

[2, 8, 9, 10, 11, 12, 13, 14, 15]. In [8], a trajectory library is used to establish a global control law

for a marble maze task. In [9], Receding Horizon DDP was proposed to generate time-invariant local

controllers. A trajectory library was used to synthesize a global controller for a simulated multi-link

swimming robot. [11] created sets of locally optimized trajectories to handle changes to the system

dynamics. NTG uses trajectory optimization based on trajectory libraries for nonlinear control [16].

In [17], locally-valid LQR controllers were used to construct a nonlinear feedback policy. The use of

trajectories and a second order gradient based trajectory optimization procedure such as Differential

Dynamic Programming (DDP) allows us to use Taylor series-like local models of the value function and

policy [3, 4, 18, 19].

We demonstrate the utility of our approach using simulated walking control of a five-link biped robot

in the sagittal plane. By far, the most common approach to biped walking control is through tracking

pre-computed reference trajectories. These trajectories can be computed based on the concept of ZMP

(Zero Moment Point) [20]. Emphasis is placed on enlarging the stability margin during gait planning

[21, 22]. Trajectories can also be computed based on the LIPM (Linear Inverted Pendulum Model) [23].

Trajectory optimization of various cost criteria has been used to generate reference trajectories [24, 25].

Feedback control methods, such as PID controllers, computed torque, and ZMP feedback control are

used to track the reference trajectories [26, 27, 21]. Control methods that do not rely on pre-computed

trajectories have also been investigated [28, 29, 30, 31, 32].

This article is organized as following: in Section 2, the optimal control problem of periodic systems

with discontinuous dynamics is formulated. Then, a parametric trajectory optimization method for

periodic tasks is summarized, which solves for a periodic trajectory as a starting trajectory for DDP.

Differential Dynamic Programming with an infinite time horizon is then outlined, which generates time-

invariant linear local models of the optimal control law in the neighborhood the optimal trajectory. In

Section 3, the hybrid dynamics of a five-link biped robot walking in the sagittal plane is described. The

optimization criteria and constraints are also introduced. In Section 4, simulation results are presented,

which demonstrate the validity and the utility of the proposed method. Conclusions and future work are

discussed in Section 5.

2 Control Using Trajectories and Local Models

2.1 Problem Formulation

In the present paper we are interested in dynamic systems determined by ordinary differential equations

with discontinuous dynamics. The class of systems with discontinuous dynamics under investigation can

be described by equations of the form

ẋ = f(x,u) x /∈ S (1)
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x+ = H(x−) x− ∈ S (2)

where x− = limτ→t− x(τ) is the value of the state “just before the dynamics discontinuity”, x+ =

limτ→t+ x(τ) is the value of the state “just after the dynamics discontinuity”, H(·) are the dynamics

equations at the discontinuity, and S is a set of states. The system evolves according to ordinary

differential equations until the state enters set S. The dynamics equations at the discontinuity lead to a

new initial state from which the dynamic system evolves until the next dynamics discontinuity.

In infinite horizon optimal control problems, the cost functional should include a discount factor to

remain finite:

J :=

∫

∞

0

e−βtc(x(t),u(t))dt, (3)

where β > 0 is the discount rate and c(·, ·) is the cost rate function. A state-feedback control law,

u = u∗(x), is optimal if the cost functional J is minimized by applying it subject to constraints on the

state and on the control

b(x,u, t) 6 0. (4)

In periodic tasks, there exist periodic trajectories that have translational symmetry:

x(t + T ) = x(t), (5)

where T > 0 is the period.

2.2 Periodic Trajectory Optimization

Considering the translational symmetry of periodic trajectories, the infinite horizon cost functional

becomes

J =

∫

∞

0

e−βtc(x(t),u(t))dt = (1 + e−βT + e−β2T + . . . )

∫ T

0

e−βtc(x(t),u(t))dt. (6)

The power series converges to a limit,

1 + e−βT + e−β2T + · · · →
1

1 − e−βT
. (7)

Then

J =
1

1 − e−βT

∫ T

0

e−βtc(x(t),u(t))dt. (8)

We assume the dynamics discontinuity is traversed M times in one period. Let 0 = t0 < t1 . . . <

tM−1 < tM = T denote the time instants when a dynamics discontinuity is crossed. Then

J =
1

1 − e−βT

[

∫ t1

0

e−βtc(x(t),u(t))dt + e−βt1φ(x(t1)) +

∫ t2

t1

e−βtc(x(t),u(t))dt + e−βt2φ(x(t2)) + . . .

+

∫ T

tM−1

e−βtc(x(t),u(t))dt + e−βT φ(x(T ))
]

,

(9)

where φ(·) is the cost at discontinuities.

We use a parametric trajectory optimization method to find an optimal periodic trajectory [5]. It

uniformly divides each time interval [ti−1, ti] into Ni time steps and uses a Runge-Kutta scheme to

discretize the dynamics equations of (1). By taking the discrete-time dynamics equations at each time

step as constraints and treating the state and the control variables at each time step and t1, . . . , tM as
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optimization variables, the trajectory optimization problem is cast as a nonlinear parametric programming

problem. Constraints on the states and the controls (4), and

H(x(Ni, i)) = x(0, i + 1) i = 1, 2, . . . , M − 1 (10)

H(x(NM , M)) = x(0, 1) (11)

x(Ni, i) ∈ S, i = 1, 2, . . . , M (12)

where x(j, i) denote the value of x at jth time step of ith time interval, are applied. This nonlinear

programming problem can be handled by SNOPT, which uses an SQP algorithm [7].

2.3 Neighboring Optimal Control

To generate linear local models of the optimal control law, we use Differential Dynamic Program-

ming (DDP), which is a second order local trajectory optimization method, to further refine a starting

trajectory. Discrete time DDP takes advantage of the Bellman equation [3, 4],

V (x, k) = min
u

[L(x,u) + λV (F (x,u), k + 1)], (13)

where L(·, ·) is the one step cost function, F (·, ·) is the discrete-time dynamics equation, and λ is a

discount factor. V (x, k) describes the minimal cost-to-go when the optimal feedback control, u = u∗(x),

is applied. In optimal control problems with an infinite time horizon, V (x, k) becomes time invariant and

a function only of state, V (x).

Given a starting trajectory xj(k), DDP integrates the first and second partial derivatives of the value

function backward to compute an improved value function and control law. The update rule includes a

discount factor (λ) and is given by [19]:

Q = L(x,u) + λV (F (x,u)) (14)

Qx = λVxFx + Lx (15)

Qu = λVxFu + Lu (16)

Qxx = λFT

x VxxFx + λVxFxx + Lxx (17)

Qxu = λFT

x VxxFu + λVxFxu + Lxu (18)

Quu = λFT

u VxxFu + λVxFuu + Luu (19)

K = Q−1
uuQux (20)

∆u = Q−1
uuQu (21)

Vx(k − 1) = Qx − QuK (22)

Vxx(k − 1) = Qxx − QxuK (23)

where x and u subscripts indicate partial derivatives. These partial derivatives are computed as a back-

ward sequence starting from the end of the trajectory. Assuming the dynamics equations at the discon-

tinuity, H(·), are differentiable, a second order Taylor series approximation of the value function on one

side of the discontinuity, V (k + 1), and a linear approximation of H(·) leads to an approximation of the

value function on the other side, V (k):

V (k) = φ(xk) + V (H(xk))

≈ φ(xk) + V (k + 1) + Vx(k + 1)(H(xk) − xk+1)

+
1

2
(H(xk) − xk+1)

TVxx(k + 1)(H(xk) − xk+1). (24)

Therefore,

Vx(k) = φx(xk) + Vx(k + 1)Hx(xk) + (H(xk) − xk+1)
TVxx(k + 1)Hx(xk) (25)

Vxx(k) = φxx(xk) + Hx(xk)TVxx(k + 1)Hx(xk). (26)
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Table 1: Physical parameters of the simulated robot

calf thigh torso

mass [Kg] 6.90 5.68 50.00

inertia [Kg · m2] 0.15 0.10 1.50

length [m] 0.38 0.39 0.80

lcm[m] 0.24 0.19 0.29

For a periodic trajectory, the value function evaluated on the last point can be approximated with that

evaluated on the first point. A new updated initial state is given by

x
j+1
0 = x

j
0 − ǫVxx(0)−1Vx(0), (27)

and a new updated trajectory xj+1 is generated by integrating system dynamics forward in time using

the linear feedback law:

u
j+1
k = u

j
k − Kk[xj+1

k − x
j
k] − ǫ∆uk, (28)

where ǫ ∈ (0, 1). These processes are repeated until convergence to a local optimum is obtained.

To handle constraints (4), (10), (11), and (12), we augment the one step cost function L(·, ·) and

the cost at discontinuities φ(·) with quadratic penalties on the constraint violations. In practice, the

inversion of Quu must be conditioned. For non-invertible Quu, a Levenberg-Marquardt-like scheme can

be used. Also, the initial state update (27) and the control sequence update (28) are performed with

an adaptive line search of ǫ. To prevent the second order partial derivatives of the value function from

blowing up during infinite horizon value iteration due to round-off errors and truncation errors, small

quadratic penalties on the deviations from the starting trajectory are used.

Byproducts of DDP are linear local models of the optimal control law along the optimal trajectory,

uk = ūk − K̄k(xk − x̄k), (29)

where ūk and x̄k are respectively the control and the state on the optimal trajectory, and K̄k is the

corresponding gain matrix. We formulate the optimal control problem with an infinite time horizon so

that the value functions and control laws are time invariant and functions only of state. Because the

local models (29) are local approximations to the optimal control law in the neighborhood of an optimal

trajectory, they are also time-invariant and functions only of state. Thus, we can construct a controller

from these spatially localized local models. The simplest choice is to select the nearest Euclidean neighbor

as

u = ū− K̄(x − x̄) (30)

where x is the current state, ū, x̄, and K̄ are respectively the control variables, the state variables, and

the gain matrix of the nearest local model. Similar approach has been applied to control of vertical

hopping in a hopping robot [19] and control of a simulated multi-link swimming robot [9].

3 Experiments

The proposed method was evaluated using walking control of a five-link biped robot. The robot,

as shown in Fig. 1, is assumed to be planar and consist of a torso and two identical legs with knees.

Furthermore, all body parts have mass, are rigid, and are connected with revolute joints. The robot is

modeled on our Sarcos Primus System hydraulic humanoid robot and kinematic and dynamic parameters

of the simulated robot are listed in Table 1. All walking cycles take place in the sagittal plane and consist

of successive phases of single support and impact. During the single-support phase, the stance leg is

touching the ground while the swing leg is not.
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(a) (b)

Figure 1: a) Sarcos Primus System hydraulic humanoid robot. b) Simplified structure of the biped robot

used for our study.

3.1 Single Support Model

In the single-support phase, a biped robot is modeled as a rotational joint open-chain manipulator

with five links. The dynamic model of the robot during this phase has five degrees of freedom. Let

q := (q1, . . . , q5)
T be the generalized coordinates describing the configuration of the robot depicted in

Fig. 1(b). Since only symmetric gaits are considered, the same dynamic model is used no matter which

leg is the stance leg, and the coordinates are relabeled after the impact event. The dynamics equations

can be derived using the method of Lagrange. The result is a standard second order system

M(q)q̈ + h(q, q̇) = B(q)u, (31)

where M(q) ∈ R
5×5 is the inertia matrix, h(q, q̇) ∈ R

5 is the vector of centrifugal, Coriolis, and gravity

forces, B(q) is the matrix defining how the joint torques u := (u1, . . . , u5)
T enter the model. The second

order system of (31) can be written in state space form as

ẋ =

[

q̇

M−1(q)
(

− h(q, q̇) + B(q)u
)

]

= f(x,u), 0 < t < T (32)

where x := (qT, q̇T)T and T is the duration of single-support phase.

3.2 Impact Model

The impact between the swing leg and the ground is modeled as a contact between two rigid bodies.

The assumptions are:

1. The revolute joints will be assumed to be ideal, that is, perfect elastic and no mechanical tolerance

[33].

2. Centrifugal, Coriolis, and gravity forces (h(q, q̇)), and the joint torques are assumed to be smaller

than the impulsive external forces and are neglected.

3. The impact is instantaneous. The impulsive forces due to the impact may result in an instantaneous

change in the velocities, but there is no instantaneous change in the positions.

4. The contact of the swing leg end with the ground results in no rebound and no slipping of the swing

leg.
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Table 2: Parameters used by trajectory optimization

Wu diag(10−2, 10−3, 10−3, 10−3, 10−3) wv 102 wr 10−6 hd 0.05

wI 10−1 wc 104 β 0.5 wt 10

The impact model results in a smooth map:

x+ = H(x−), x− ∈ S (33)

where x− is the value of the state just prior to impact, x+ is the value of the state just after impact,

S = {x|pv
2(x) = 0, ṗv

2(x) < 0} on flat ground (the definition of pv
2 is shown in Fig. 1). The function

H represents the velocity change caused by impact and the relabeling of the robot’s coordinates which

makes the swing leg become the stance leg (see Appendix A).

The dynamics of overall biped robot is described by a nonlinear system with discontinuous dynamics.

The robot mechanics system evolves according to the ordinary differential equations (32) until the state

enters set S when impact occurs. The impact with the ground results in a rapid change in the velocity

components of the state and the state components’ relabeling. The result is a new initial state from

which the robot model evolves until the next occurrence of impact.

3.3 Optimization Criteria and Constraints

The one step cost function L(x,u) we use penalizes the joint torques, uTWuu, the walking speed

error, wv(ṗh
3 (x) − vd)

2, and the horizontal component of the ground reaction force, wrf
h
1 (x)2, where

Wu, wv, and wr are penalty weights, vd and ṗh
3 (x) are respectively the desired walking speed and the

horizontal velocity of the hip. It also has some “shaping” terms: a penalty on the height of the swing

foot when it is below a certain height hd, wc(p
v
2−hd)

2, and a penalty on the angular velocity of the torso,

wt(q̇1 + q̇2 + q̇3)
2. The cost at discontinuities φ penalizes the horizontal velocity of the swing foot just

before impact, wI ṗ
h
2(xN )2.

The robot’s mechanism has some limitations on the range of joint angles, joint velocities, and joint

torques. Moreover, the contact between the stance foot and the ground introduces some constraints.

Although we do not model the feet, the horizontal position of the center of pressure (CoP) with respect

to the ankle joint of the stance leg can be calculated by xcop = −u1/fv
1 , where u1 is the ankle torque of

the stance leg. To keep the stance foot flat on the ground, the center of pressure (CoP) must be kept

inside the foot-support region, xcop ∈ Ω, where Ω denotes the foot-support region [20]. To avoid slipping,

the ground reaction force must be kept inside the friction cone, |fh
1 /fv

1 | 6 µ, where µ is the static friction

coefficient. By penalizing the magnitudes of the ankle torque, u1, and the horizontal component of the

ground reaction force, fh
1 , we keep the center of pressure inside the foot-support region and the ground

reaction force inside the friction cone.

4 Results

We use 20 grid points in time for SNOPT and 100 for DDP to optimize the periodic trajectory for

walking speed vd = 0.5 m/s. The parameters used by trajectory optimization are listed in Table 2. The

stick diagram of the robot’s motion with the optimal trajectory is shown in Fig. 2(a), in which the

configuration of the robot is drawn every 50 ms. The evolution of the value function on the optimal

trajectory after each iteration is shown in Fig. 2(b). The resultant feedback gains are shown in Fig. 2(c).

The resultant torques are shown in Fig. 2(d).

The proposed controller was evaluated with a perturbation, which was a horizontal force (3000 New-

tons) applied for 0.01 seconds (30 Newton-seconds impulse) at 3.0 seconds at the hip. The state of the

robot was initialized on the optimal trajectory. As shown in Fig. 3(b), our controller responds to the
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Figure 2: The optimal periodic trajectory at 0.5 m/s walking speed. a) The stick diagram of the robot

motion with the optimal trajectory. The configuration of the robot is drawn every 50 ms. b) The evolution

of the value function on the optimal trajectory after each iteration. c) The norms of the feedback gains

of each control on the grid points of the optimal trajectory. d) The joint torques on grid points of the

optimal trajectory. u1, u2, u3 are those of the ankle, the knee, the hip of the stance leg, u4 and u5 are

those of the hip and the knee of the swing leg.
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Figure 3: Response to a 30 Newton-seconds perturbation. a) The horizontal position and velocity of the

center of mass and the position of the CoP, which are all with respect to the ankle joint of the stance leg.

The perturbation is applied at the red lines. b) The phase portrait of the horizontal motion of the center

of mass. The discontinuities are caused by the impulsive perturbation and the foot-ground contact. The

trajectory in red becomes a limit cycle.
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Figure 4: Walking on an incline of 10 degrees. a) The horizontal position and the velocity of the center

of mass and the position of the CoP, which are all with respect to the ankle joint of the stance leg. b)

The phase portrait of the horizontal motion of the center of mass. The discontinuities are caused by the

foot-ground contact. The trajectory in black becomes a new limit cycle. The trajectory in red is the

limit cycle of normal walking.
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perturbation by driving the robot’s trajectory back to the optimal trajectory (the line in red). The

position and the velocity of the center of mass and the position of the CoP are shown in Fig. 3(a). By

penalizing the ankle torque of the stance leg, xcop keeps inside the region of foot support, [0.1, 0.1].

The proposed controller was also evaluated using walking on an incline of 10 degrees. Simulation

results show the proposed controller can still work. But as shown in Fig. 4(b), the controller drives the

robot’s trajectory to a different limit cycle (line in black). The center of pressure keeps inside the region

of foot support, as shown in Fig. 4(a).

We compared the proposed controller with a PD servo controller, in which each joint has a stiff PD

controller to track the optimal trajectory. We use 1000 as the proportional gains and 10 as the derivative

gains for all joints. We measured the sum of the squared torques,
∑

uTuT , over 6 seconds starting in

a state on the optimal trajectory. For normal walking, the cost for the PD servo controller was 16270.

The corresponding cost for the proposed controller was 4588. For walking in the presence of an impulsive

perturbation of 5 Newton-seconds, the cost for the former was 22676, the corresponding cost for the

later was 4714. For walking on an incline of 3 degrees, the cost for the former was 29299, compared to

4901 for the later. The PD servo controller falls down after a impulsive perturbation of lager than 5

Newton-seconds or on an incline of larger than 3 degrees. In contrast, the proposed controller is able to

handle an impulsive perturbation of up to 36 Newton-seconds and a incline of up to 30 degrees.

5 Conclusions and Future work

In the present paper we take advantage of a combination of a parametric trajectory optimization

method and Differential Dynamics Programming (DDP) to find an optimal cyclic trajectory in periodic

tasks for systems with discontinuous dynamics. By formulating the optimal control problem with an

infinite time horizon, we use DDP to get time-invariant local models of the optimal control law in the

neighborhood of the optimal trajectory, which are used to construct a local controller. The utility of the

proposed method is evaluated using biped walking control of a planar five-link robot, which is 10 dimen-

sional and hard to solve using a tabular function approximation approach to Dynamic Programming.

The controller from a single trajectory may perform poorly far from the trajectory. To synthesize a more

global controller, a library of optimal trajectories can be used. We have evaluated the library approach

using standing balance control [34]. In our future work, we will use a library of optimal trajectories to

construct a more global controller for periodic tasks.
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A Impact Model

The impact between the swing leg and the ground is modeled as a contact between two rigid bodies.

The stance foot may leave the ground during impact, so a 7-DoF robot model is used here. The generalized

coordinates is extended by additional two coordinates as qe = (q1, . . . , q5, p
h
1 , pv

1), where ph
1 and pv

1 are

the coordinates of the stance foot (as shown in Fig. 1(b)). The 7-DoF dynamics is

Me(qe)q̈e + he(qe, q̇e) = Beue + JTδF (34)

where ue := (u1, . . . , u5, f
h
1 , fv

1 )T, δF := (fh
2 , fv

2 )T, fh
1 , fv

1 , fh
2 , and fv

2 are the ground reaction forces

during impact as shown in Fig. 1(b). J is the Jacobian between the swing leg end and the extended

coordinates,

J :=
∂p2

∂qe

(35)
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and p2 := (ph
2 , pv

2)
T. Assume the impact is instantaneous and the centrifugal, Coriolis, and gravity forces

and the joint torques are assumed to be smaller than the impulsive external forces and are neglected. As

a result, the impulsive forces due to the impact may result in an instantaneous change in the velocities,

but there is no instantaneous change in the positions. Integrating Eq. (34) on the time interval of impact

gives

Me(qe)(q̇
+
e − q̇−

e ) = JTF, (36)

where q̇e
+ is the velocity just after impact, q̇−

e is the velocity just before impact, and F ∈ R
2 is the

impulse at the contact point. Assuming the contact of the swing leg end with the ground results in no

rebound and no slipping of the swing leg gives

ṗ2 = Jq+
e = 0. (37)

(36) and (37) give
[

Me(qe) −JT

J 0

][

q+
e

F

]

=

[

Me(qe)q
−

e

0

]

, (38)

which is a linear algebraic equation and its solution gives the joint velocities just after impact, q̇+, and

the impulse during impact, F. The final impact model is

x+ =

[

E 0

0 E

] [

q−

q̇+

]

= H(x−), (39)

where x− is the value of the state just prior impact and x+ is the value of the state just after impact,

E is a constant matrix such that Eq accounts for relabeling of the robot’s coordinates which makes the

swing leg become the stance leg.
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