
. RESEARCH PAPERS .

SCIENCE CHINA
Information Sciences

August 2011 Vol. 54 No. 8: 1608–1617

doi: 10.1007/s11432-011-4293-9

c© Science China Press and Springer-Verlag Berlin Heidelberg 2011 info.scichina.com www.springerlink.com

Zero-knowledge proofs of retrievability

ZHU Yan1,2∗, WANG HuaiXi3, HU ZeXing1, AHN Gail-Joon4 & HU HongXin4∗

1Institute of Computer Science and Technology, Peking University, Beijing 100871, China;
2Beijing Key Laboratory of Internet Security Technology, Peking University, Beijing 100871, China;

3School of Mathematical Sciences, Peking University, Beijing 100871, China;
4School of Computing, Informatics, and Decision Systems Engineering, Arizona State University,

Tempe, AZ 85287, USA

Received April 26, 2010; accepted December 14, 2010; published online May 31, 2011

Abstract Proof of retrievability (POR) is a technique for ensuring the integrity of data in outsourced storage

services. In this paper, we address the construction of POR protocol on the standard model of interactive proof

systems. We propose the first interactive POR scheme to prevent the fraudulence of prover and the leakage of

verified data. We also give full proofs of soundness and zero-knowledge properties by constructing a polynomial-

time rewindable knowledge extractor under the computational Diffie-Hellman assumption. In particular, the

verification process of this scheme requires a low, constant amount of overhead, which minimizes communication

complexity.

Keywords cryptography, integrity of outsourced data, proofs of retrievability, interactive protocol, zero-

knowledge, soundness, rewindable knowledge extractor

Citation Zhu Y, Wang H X, Hu Z X, et al. Zero-knowledge proofs of retrievability. Sci China Inf Sci, 2011, 54:

1608–1617, doi: 10.1007/s11432-011-4293-9

1 Introduction

A proof of retrievability (POR) [1] is a cryptographic proof technique for a storage provider to prove that
clients’ data remain intact. In other words, the clients can fully retrieve their data and have confidence
to use the recovered data. This highlights a strong need to seek an effective solution for checking whether
their data have been tampered with or deleted without downloading the latest version of data. This
technique is important for the storage-outsourced data, especially large files or achieves. For example,
with a wide spread of cloud computing, cloud storage service has become a new profit growth point
by providing a comparably low-cost, scalable, location-independent platform for managing clients’ data.
However, if such an important service is vulnerable to malicious attacks, it would bring irretrievable
losses to the clients since their data and archives are stored into an uncertain storage pool outside the
enterprises. Therefore, it is necessary for cloud service providers to make use of the POR technique to
provide a secure management of their storage services.

Since a formal model for the proof of retrievability was introduced by Juels and Kaliski [1], some
schemes [2–5] have been proposed in recent years. In these schemes, Shacham and Waters [6] proposed
the compact proofs of retrievability (CPOR) schemes, considered as a representative work with a general
∗Corresponding authors (email: yan.zhu@pku.edu.cn; hxhu@asu.edu)

Zhu Y, et al. Sci China Inf Sci August 2011 Vol. 54 No. 8 1609

framework and diverse characters: 1) a file is split into blocks and each block corresponds to a signature
tag; 2) a verifier can verify the integrity of file in a random sampling approach, which is of utmost
importance for large or huge files; and 3) a homomorphic property is used to aggregate the tags into a
constant size response, which minimizes network communication.

Although various adversary models have been proposed to prove the security of POR schemes, these
existing schemes do not follow the standard model of interactive proof systems (IPS) [7] so that the
security of verification process, especially the soundness of verification, cannot be guaranteed. This
means that a prover could deceive a verifier for the forged data through the verification protocol. More
importantly, the data confidentiality of outsourced storage cannot be ensured by the public verification
processes, in which the verifier can easily gain all verified data by analyzing the responses of public
challenges. Hence, it is necessary to construct an efficient POR scheme on standard model of interactive
proof systems so as to prevent the prover fraud and protect the data privacy.

Related works. To check the availability and integrity of the storage-outsourced data, Juels and
Kaliski [1] first presented a proof of retrievability (POR) scheme which largely relies on preprocessing
steps the client conducts before sending a file to the server: “sentinel” blocks are randomly inserted to
detect corruption; the file is encrypted to hide these sentinels; and error-correcting codes are used to
recover data from corruption. Unfortunately, this scheme can only handle a limited number of queries,
which have to fix a priori and can only be applied to encrypted files.

Similar to POR, Ateniese et al. [2] proposed a PDP model for ensuring possession of files on untrusted
storages and provided a RSA-based scheme for the static case where it achieves O(1) communication
costs. They also proposed a publicly verifiable version, which allows anyone, not just the owner, to
challenge the server for data possession. This property greatly extends application areas of PDP protocol
due to the separation of data owners and users. However, similar to replay attacks, these schemes are
insecure in a dynamic scenario because of the dependence on the index of blocks. To solve this problem,
Chris Erway et al. [8] introduced two Dynamic PDP schemes with a Hash function tree to realize O(log n)
communication and computational costs for a file consisting of n blocks.

Based on the works of Juels et al. [1] and Ateniese et al. [2], Shacham and Waters [6] proposed a general
model based on a data fragmentation idea, called Compact POR (CPOR), which uses homomorphic
property to aggregate a proof into O(1) authenticator value and O(t) computation costs for t challenge
blocks. In fact, this model, considered to be a general representative for existing schemes, is readily
converted to MAC-based, ECC or RSA schemes, which are built from BLS signature [9] and random
oracle model, and have the shortest query and response with public verifiability. However, this model
was not constructed on interactive proof systems and an adversary can make use of the public verification
protocol to gain the storage-outsourced data.

Furthermore, some other POR schemes and models, such as [4, 5, 10], have been recently proposed.
Dodis et al. [4] discussed several variants of this problem (such as bounded-use vs. unbounded-use,
knowledge soundness vs. information-soundness), and gave nearly optimal POR schemes for each of these
variants. Wang et al. [5] presented a dynamic scheme with O(log n) costs by integrating above CPOR
scheme and Merkle Hash Tree (MHT) in DPDP. Bowers et al. [10] proposed a theoretical framework for
the design of POR based on Juels-Kaliski and Shacham-Waters works, which supports a fully Byzantine
adversary model on the adversarial noisy channel assumption and the error-correction coding methods.

Contributions. In this paper, we focus on the construction of POR protocol to prevent the fraud-
ulence of prover and the leakage of verified data. We introduce the first formal definition of interactive
proofs of retrievability (IPOR) on the standard model of interactive proof systems. In terms of this
definition, we provide a practical zero-knowledge POR (ZK-POR) solution to prevent data leakage in the
public verification process. We also prove the soundness and zero-knowledge propertis of this scheme by
constructing a polynomial-time knowledge Extractor, having rewindable black-box access to the prover,
under the computational Diffie-Hellman (CDH) assumption. The performance analysis shows that our
commitment/challenge/response protocol transmits a small, constant amount of data, which minimize
network communication. Thus, our scheme supports a public remote checking for the large-size private

1610 Zhu Y, et al. Sci China Inf Sci August 2011 Vol. 54 No. 8

archive files in widely-distributed storage systems.

Organization. The rest of the paper is organized as follows. In section 2, we describe some basic
notations, common POR structure, and the attack for existing schemes. In section 3, we define a formal
model of IPOR based on interactive proof systems. A practical ZK-POR scheme is proposed for the
IPOR model in section 4. We describe the security analysis and performance evaluation of our scheme
in section 5 and section 6, respectively. Finally, we conclude this paper in section 7.

2 Preliminaries

Let H = {Hk} be a keyed hash family of functions Hk : {0, 1}∗ → {0, 1}n index by k ∈ K. We say that
algorithm A has advantage ε in breaking the collision-resistance of H if

Pr[A(k) = (m0,m1) : m0 �= m1, Hk(m0) = Hk(m1)] � ε,

where the probability is over the random choice of k ∈ K and the random bits of A. This hash function
can be obtained from the hash function of BLS signatures [9].

Definition 1 (Collision-resistant hash). A hash family H is (t, ε)-collision-resistant if no t-time adver-
sary has advantage at least ε in breaking the collision-resistance of H.

We set up our systems using bilinear pairings proposed by Boneh and Franklin [11]. Let G and GT

be two multiplicative groups using elliptic curve conventions with large prime order p. The function e

is a computable bilinear map e : G × G → GT with the following properties: for any G,H ∈ G and all
a, b ∈ Zp, we have 1) bilinearity: e(Ga, Hb) = e(G,H)ab; 2) non-degeneracy: e(G,H) �= 1 unless G or
H = 1; and 3) computability: e(G,H) is efficiently computable.

Definition 2 (Bilinear map group system). A bilinear map group system is a tuple S = 〈p,G,GT , e〉
composed of the objects as described above.

Shacham and Waters [6] proposed a general CPOR model as follows: Given a file F , the client splits F
into n blocks (m1, . . . ,mn) and each block mi is further split into s sectors (mi,1, . . . ,mi,s) ∈ Zs

p for some
sufficiently large p. Let e : G × G→ GT be a bilinear map, g be a generator of G, and H : {0, 1}∗ → G

be the BLS hash. The secret key is sk = x ∈R Zp and the public key is pk = (g, v = gx). The client
chooses s random u1, . . . , us ∈R G as the verification information t = (Fn, u1, . . . , us), where Fn is the
file name. For each i ∈ [1, n], the tag at the ith block is σi = (H(Fn||i) ·

∏s
j=1 u

mi,j

j)x. On receiving
query Q = {(i, vi)}i∈I for an index set I, the server computes and sends back σ′ ←

∏
(i,vi)∈Q σ

vi

i and
μ = (μ1, . . . , μs), where μj ←

∑
(i,vi)∈Q vimi,j . The verification equation is

e(σ′, g) = e

(∏

(i,vi)∈Q
H(Fn||i)vi ·

∏s

j=1
u

μj

j , v

)

.

This scheme is not secure for the leakage of file information as follows:

Attack 1. An adversary can get the file and tag information by running or wiretapping n times verifi-
cation communication for a file with n× s sectors.

Proof. Let s be the number of sectors in each block. After running or wiretapping n times queries, an ad-
versary can get n times challenges (Q(1), . . . , Q(n)) and their the responses ((σ′(1), μ(1)), . . . , (σ′(n)

, μ(n))),
where μ(k) = (μ(k)

1 , . . . , μ
(k)
s) for k ∈ [1, n]. For each i ∈ [1, s], these responses can generate the equations

⎧
⎪⎪⎨

⎪⎪⎩

μ
(1)
i = v

(1)
1 m1,i + · · ·+ v

(1)
n mn,i,

...
...

μ
(n)
i = v

(n)
1 m1,i + · · ·+ v

(n)
n mn,i,

where Q(k) = {(j, v(k)
j)}j∈I are known and ∀j �∈ I, v(k)

j = 0 for k ∈ [1, n]. The adversary can compute

{m1,i, . . . ,mn,i} by solving the equations iff the coefficient matrix {v(j)
i }n×n of equations is invertible.

Zhu Y, et al. Sci China Inf Sci August 2011 Vol. 54 No. 8 1611

After s times solving these equations (i ∈ [1, s]), the adversary can obtain the whole file, F = {mi,j}i∈[1,n]
j∈[1,s].

Similarly, the adversary can get all tags σ1, . . . , σn by using σ′(1), . . . , σ′(n). Denote the inverse matrix of
{v(j)

i }n×n by {wi,j}n×n, all the tags can be easily computed following the equations σj =
∏n

i=1 σ
′(i)wi,j

for j ∈ [1, n] .

3 Interactive proofs of retrievability

3.1 Definition

We present the definition of interactive proofs of retrievability (IPOR) based on interactive proof systems:

Defintion 3 (Interactive-POR). An interactive proof of retrievability scheme S is a collection of two
algorithms and an interactive proof system, S = (K, T ,P):
KeyGen(1κ): It takes a security parameter κ as input, and returns a secret key sk or a public-secret

keypair (pk, sk);
T agGen(sk, F): It takes as inputs the secret key sk and a file F , and returns the triples (ζ, ψ, σ), where

ζ denotes the secret used to generate the verification tags, ψ is the set of public verification parameters
u and index information χ, i.e., ψ = (u, χ); σ denotes the set of verification tags;
Proof(P, V): It is a protocol of proof of retrievability between a prover (P) and a verifier (V). At the

end of the protocol run, V returns {0|1}, where 1 means the file is correctly stored on the server. It
includes two cases:

• 〈P (F, σ), V (sk, ζ)〉 is a private proof, where P takes as input a file F and a set of tags σ, and V takes
as input a secret key sk and a secret of tags ζ;
• 〈P (F, σ), V 〉(pk, ψ) is a public proof, where P takes as input a file F and a set of tags σ, and a public

key pk and a set of public parameters ψ are the common input between P and V ,

where P (x) denotes the subject P holds the secret x and 〈P, V 〉(x) denotes both parties P and V share
a common data x in a protocol.

This is a more generalized model than existing POR models. Since the verification process can be
considered as an interactive protocol, this definition is not limited to the specific steps of verification,
including scale, sequence, and the number of moves in protocol, so it can provide greater convenience
for the construction of protocol. Further, this paper will only consider the construction of public proof
protocol.

3.2 Security requirements

According to the standard definition of interactive proof system proposed by Bellare and Goldreich [7],
the protocol Proof(P, V) has two requirements:

Definition 4 (Security of IPOR). A pair of interactive machines (P, V) is called an available proof of
retrievability for a file F if P is a (unbounded) probabilistic algorithm, V is a deterministic polynomial-
time algorithm, and the following conditions hold for some polynomial p1(·), p2(·), and all κ ∈ N:
• Completeness: For every σ ∈ TagGen(sk, F),

Pr[〈P (F, σ), V 〉(pk, ψ) = 1] � 1− 1/p1(κ); (1)

• Soundness: For every σ∗ �∈ TagGen(sk, F), every interactive machine P ∗,

Pr[〈P ∗(F, σ∗), V 〉(pk, ψ) = 1] � 1/p2(κ); (2)

where p1(·) and p2(·) are two polynomials, and κ is a security parameter used in KeyGen(1κ).
In this definition, the function 1/p1(κ) is called completeness error, and the function 1/p2(κ) is called

soundness error. For non-triviality, we require 1/p1(κ) + 1/p2(κ) � 1− 1/poly(κ).
The soundness means that it is infeasible to fool the verifier into accepting false statements. The

soundness can also be regarded as a stricter notion of unforgeability for the file tags. Thus, the above

1612 Zhu Y, et al. Sci China Inf Sci August 2011 Vol. 54 No. 8

definition means that the prover cannot forge the file tags or tamper with the data if soundness property
holds.

In order to protect the confidentiality of checked data, we are more concerned about the leakage of
private information in the verification process. It is easy to find that data blocks and their tags could be
obtained by the verifier in some existing schemes. To solve this problem, we introduce zero-knowledge
property into IPOR system, as follows:

Definition 5 (Zero-knowledge). An interactive proof of retrievability scheme is computational zero
knowledge if there exists a probabilistic polynomial-time algorithm S∗ (called Simulator) such that for
every probabilistic polynomial-time algorithm D, for every polynomial p(·), and for all sufficiently large
κ, it holds that

∣
∣
∣
∣
∣

Pr[D(pk, ψ, S∗(pk, ψ)) = 1]−
Pr[D(pk, ψ, 〈P (F, σ), V ∗〉(pk, ψ)) = 1]

∣
∣
∣
∣
∣
� 1/p(κ),

where S∗(pk, ψ) denotes the output of simulator S on common input (pk, ψ) and 〈P (F, σ), V ∗〉(pk, ψ)
denotes the output of interactive protocol between V ∗ and P (F, σ) on common input (pk, ψ). That
is, for all σ ∈ TagGen(sk, F), the ensembles S∗(pk, ψ) and 〈P (F, σ), V ∗〉(pk, ψ) are computationally
indistinguishable.

Actually, zero-knowledge is a property that captures P ’s robustness against attempts to gain knowledge
by interacting with it. For the POR scheme, we make use of the zero-knowledge property to guarantee
the security of data blocks and signature tags.

Definition 6 (ZK-POR). An IPOR is called zero-knowledge proof of retrievability (ZK-POR) if the
completeness, knowledge soundness, and zero-knowledge property hold.

4 Construction of zero-knowledge proofs of retrievability

In our construction, the verification protocol has a 3-move structure: commitment, challenge and re-
sponse. This protocol is similar to Schnorr’s Σ protocol [12], which is a zero-knowledge proof system. We
present our IPOR construction as follows:

KeyGen(1κ): Let S = (p,G,GT , e) be a bilinear map group system with randomly selected generators
g, h ∈R G, where G, GT are two groups of large prime order p, |p| = O(κ). Generate a collision-resistant
hash function Hk(·) and chooses two random α, β ∈R Zp and computes H1 = hα and H2 = hβ ∈ G.
Thus, the secret key is sk = (α, β) and the public key is pk = (g, h,H1, H2).

TagGen(sk, F): Splits the file F into n× s sectors F = {mi,j} ∈ Zn×s
p . Chooses s random τ1, . . . , τs ∈

Zp as the secret of this file and computes ui = gτi ∈ G for i ∈ [1, s] and ξ(1) = Hξ(“Fn”), where
ξ =

∑s
i=1 τi and Fn is the file name. Builds an index table χ = {χi}ni=1 and fills out the item χi in χ for

i ∈ [1, n], where the index table χ = {χi}i∈[1,n] can be used to support some dynamic data operations,
for example, we define χi = (Bi||Vi||Ri) and initially set χi = (Bi = i, Vi = 1, Ri ∈R {0, 1}∗), where Bi

is the sequence number of block, Ri is the version number of updates for this block, and Ri is a random
integer to avoid collision. Then calculates its tag as

σi ← (ξ(2)i)α · g
∑s

j=1 τj ·mi,j ·β ∈ G,

where ξ(2)i = Hξ(1)(χi) and i ∈ [1, n]. Finally, sets u = (ξ(1), u1, . . . , us) and outputs ζ = (τ1, . . . , τs),
ψ = (u, χ) to a trusted third part (TTP), and σ = (σ1, . . . , σn) to a storage service provider (SSP).

Proof(P, V): This is a 3-move protocol between Prover (SSP) and Verifier (client) with the common
input (pk, ψ), which is stored in a TTP as follows:
• Commitment (P → V): P chooses a random γ ∈R Zp and s integers λj ∈R Zp for j ∈ [1, s], and

sends theirs commitments C = (H ′
1, π) to V , where H ′

1 = Hγ
1 and π ← e(

∏s
i=1 u

λj

j , H2) ∈ GT .

Zhu Y, et al. Sci China Inf Sci August 2011 Vol. 54 No. 8 1613

• Challenge (P ← V): V chooses a random challenge set I of t indices along with t random coefficients
vi ∈ Z∗

p, where t = |I|. Let Q = {(i, vi)}i∈I be the set of challenge index coefficient pairs. V sends Q to
P .
• Response (P → V): P calculates the response θ and μ as

σ′ ←
∏

(i,vi)∈Q

σγ·vi

i , μj ← λj + γ ·
∑

(i,vi)∈Q

vi ·mi,j ,

where μ = {μj}j∈[1,s]. P sends θ = (σ′, μ) to V .

Verification: Now the verifier V can check whether or not the response was correctly formed by

π · e(σ′, h) ?= e

(∏

(i,vi)∈Q

(ξ(2)i)vi , H ′
1

)

· e
(s∏

j=1

u
μj

j , H2

)

. (3)

In order to prevent the leakage of the stored data and tags in the verification process, the secret data
{mi,j} are protected by a random λj ∈ Zp and the tags {σi} are randomized by a γ ∈ Zp. Moreover,
the values {λj} and γ are protected by the simple commitment methods, i.e., Hγ

1 and e(
∏s

i=1 u
λj

j , H2),
to avoid the adversary from gaining them.

5 Security proof of construction

Our scheme is an efficient interactive proof system with completeness and soundness properties as follows:
(1) Completeness: for every available tag σ ∈ TagGen(sk, F) and a random challenge Q = (i, vi)i∈I ,

the completeness of protocol can be elaborated as follows:

π · e(σ′, h) = e(g, h)β
∑ s

j=1 τj ·λj · e
(∏

(i,vi)∈Q

(ξ(2)i)vi , h

)α·γ
· e(g, h)γ·β ∑s

j=1(τj ·
∑

(i,vi)∈Q vi·mi,j)

= e(g, h)β
∑ s

j=1 τj ·λj · e
(∏

(i,vi)∈Q

(ξ(2)i)vi , h

)α·γ
· e(g, h)β

∑ s
j=1(τj ·μj−τj·λj)

= e

(∏

(i,vi)∈Q

(ξ(2)i)vi , hα·γ
)

·
s∏

j=1

e(uμj

j , hβ).

There exists a trivial solution when vi = 0 for all i ∈ I. In this case, the above equation could not
determine whether the processed file is available, because σ′ = 1, μj = λj , and πj = u

μj

j . Hence, the
completeness of protocol holds

Pr[〈P (F, σ), V 〉(pk, ψ) = 1] � 1− 1/pt,

where t is the number of index coefficient pairs in Q. In fact, we require vi ∈R Z∗
p.

(2) Soundness: For every tag σ∗ �∈ TagGen(sk, F), in order to prove the nonexistence of fraudulent
P ∗, to the contrary, we make use of P ∗ to construct a knowledge extractor M [7, 13], which gets the
common input (pk, ψ) and rewindable black-box accesses to the prover P ∗, and then attempts to break
the computational Diffie-Hellman (CDH) assumption in G: given G,G1 = Ga, G2 = Gb ∈R G, output
Gab ∈ G. We have the following theorem:

Lemma 1. Our IPOR scheme has (t, ε′) knowledge soundness in random oracle and rewindable knowl-
edge extractor model assuming the (t, ε)-computational Diffie-Hellman (CDH) assumption holds in the
group G for ε′ � ε.

Proof. For some unavailable tags {σ∗} �∈ TagGen(sk, F), we assume that there exists an interactive
machine P ∗ that can pass verification with noticeable probability, that is, there exists a polynomial p(·)
and all sufficiently large κ’s,

Pr[〈P ∗(F, {σ∗}), V 〉(pk, ψ) = 1] � 1/p(κ). (4)

1614 Zhu Y, et al. Sci China Inf Sci August 2011 Vol. 54 No. 8

Using P ∗, we build a probabilistic algorithmM (called knowledge Extractor) that breaks the Computa-
tional Diffie-Hellman CDH problem in a cyclic group G ∈ S of order p. That is, given G,G1, G2 ∈R G,
output Gab ∈ G, where G1 = Ga, G2 = Gb. The algorithm M is constructed by interacting with P ∗ as
follows:

Setup: M chooses a random r ∈R Zp and sets g = G, h = Gr, H1 = Gr
1, H2 = Gr

2 as the public key
pk = (g, h,H1, H2), which is sent to P ∗.

Learning: given a file F = {mi,j}i∈[1,n]
j∈[1,s],M first chooses s random τi ∈R Zp and ui = Gτi

2 for i ∈ [1, s].
Secondly, M assigns the indices 1, . . . , n into two sets T = {t1, . . . , tn

2
} and T ′ = {t′1, . . . , t′n2 }. Let

mti,j �= mt′i,j for all i ∈ [1, n/2] and j ∈ [1, s]. Then, M builds an index table χ and ξ(1) in terms of the
original scheme and generates the tag of each block, as follows:
• For each ti ∈ T ,M chooses ri ∈R Zp and sets ξ(2)ti

= Hξ(1)(χti) = Gri and σti = Gri
1 ·G

∑ s
j=1 τj ·mti,j

2 .

• For each t′i ∈ T ′, M uses ri and two random r′i, ζi ∈R Zp to sets ξ(2)t′i
= Hξ(1)(χt′i) = Gri · Gr′

i
2 and

σt′i = Gζi

1 ·G
∑ s

j=1 τj ·mt′
i
,j

2 .

M checks whether e(σt′i , h) ?= e(ξ(2)t′i
, H1) · e(

∏s
j=1 u

mt′
i
,j

j , H2) for all t′i ∈ T ′. If the result is true, then

outputs Gab = Ga
2 = (Gζi · Gri

1)(r
′
i)

−1
, otherwise M sends (F, σ∗ = {σi}ni=1) and ψ = (ξ(1), u = {ui}, χ)

to P ∗.

Hash queries: At any time, P ∗ can query the hash function Hξ(1)(χk),M responds with ξ(2)ti
or ξ(2)t′i

while ensuring consistency, where k = ti or t′i.

Output: M chooses an index set I ⊂ [1, n
2] and two subsets I1 and I2, where I = I1

⋃
I2, |I2| > 0. M

constructs the challenges {vi}i∈I and all vi �= 0. Then M simulates V to run an interaction 〈P ∗,M〉 as
follows:
• Commitment. M receives (H ′

1, π
′) from P ∗;

• Challenge. M sends the challenge Q1 = {(ti, vi)}i∈I to P ∗;
• Response. M receives (σ′, {μ′

j}sj=1) from P ∗.
M checks whether or not each response is an effective result by eq. (3). If it is true, then M completes
a rewindable access to the prover P ∗ as follows:
• Commitment. M receives (H ′′

1 , π
′′) from P ∗;

• Challenge. M sends the following challenge to P ∗, Q2 = {(ti, vi)}i∈I1

⋃
{(t′i, vi)}i∈I2 ;

• Response. M receives (σ′′, {μ′′
j }sj=1) or a special halting-symbol from P ∗.

If the response is not a halting-symbol, then M checks whether the response is effective by eq. (3),
H ′

1
?= H ′′

1 , and π′ ?= π′′. If they are true, then M computes

γ =
μ′′

j − μ′
j∑

i∈I2
vi · (mt′i,j −mti,j)

for any j ∈ [1, s] and verifies H ′
1

?= Hγ
1 to ensure this is an effective rewindable access. Finally,M outputs

Gab = Ga
2 =

(
σ′′ · σ′−φ ·Gγ·(φ−1)

∑
i∈I rivi

1

) 1
γ·∑i∈I2

r′
i
·vi , (5)

where

φ =

∑
i∈I1

∑s
j=1 τjmti,jvi +

∑
i∈I2

∑s
j=1 τjmt′i,jvi

∑
i∈I

∑s
j=1 τjmti,jvi

and ψ �= 1.
It is obvious that we set α = a and β = b in the above construction. Since the tags σti are available

for any ti ∈ T , the response in the first interaction satisfies the equation:

π′ · e(σ′, h) = e

(∏

i∈I

(ξ(2)ti
)vi , H ′

1

)

· e
(∏s

j=1
u

μ′
j

j , H2

)

Zhu Y, et al. Sci China Inf Sci August 2011 Vol. 54 No. 8 1615

= e(G
∑

i∈I ri·vi , H ′
1) · e

(∏s

j=1
u

μ′
j

j , H2

)

.

However, the values of {σt′i} are unavailable for all t′i ∈ T ′. In the second interaction, we require that
M can rewind the prover P ∗, i.e., the chosen parameters are the same in two protocol executions [7, 13].
In above construction, this property ensures H ′

1 = H ′′
1 , π′ = π′′, and for all i ∈ [1, s],

μ′′
j − μ′

j = γ ·
∑

i∈I

vi · (mt′i,j −mti,j) = γ ·
∑

i∈I2

vi · (mt′i,j −mti,j).

By checking H ′
1 = Hγ

1 for all γ computed from this equation, we can make sure of the consistence of λ′i =

λ′′i for i ∈ [1, s] in two executions. Thus, we have e(
∏s

j=1 u
μ′

j

j , H2) · π′−1 = e(G2, H2)
∑

i∈I

∑s
j=1 τjmti,jvi

and

e

(s∏

j=1

u
μ′′

j

j , H2

)

· π′′−1 = e(G2, H2)
∑

i∈I1

∑ s
j=1 τjmti,jvi · e(G2, H2)

∑
i∈I2

∑ s
j=1 τjmt′

i
,jvi .

This means that e(
∏s

j=1 u
μ′′

j

j , H2) · π′′−1 = (e(
∏s

j=1 u
μ′

j

j , H2) · π′−1)φ. In terms of the responses, we have

e(σ′′, h) = e

(∏

i∈I1

(ξ(2)ti
)vi ·

∏

i∈I2

(ξ(2)t′i
)vi , H ′′

1

)

· e
(s∏

j=1

u
μ′′

j

j , H2

)

· (π′′)−1

= e

(∏

i∈I1

(Gri)vi ·
∏

i∈I2

(Gri ·Gr′
i

2)vi , H ′′
1

)

· e
(s∏

j=1

u
μ′′

j

j , H2

)

· π′′−1

= e

(∏

i∈I

Gri·vi , H ′
1

)

· e
(∏

i∈I2

G
r′

i·vi

2 , H ′
1

)

·
(

e

(s∏

j=1

u
μ′

j

j , H2

)

· π′−1
)φ

= e

(∏

i∈I

Gri·vi , H ′
1

)

· e
(∏

i∈I2

G
r′

i·vi

2 , H ′
1

)

·
(

e

(

σ′, h)φ · e(
∏

i∈I

Gri·vi , H ′
1

)−φ)

= e(σ′φ, h) · e(G
∑

i∈I2
r′

ivi

2 ·G(1−φ)
∑

i∈I rivi , H ′
1).

We have the equations e(σ′′ · σ′−φ
, h) = e(G

∑
i∈I2

r′
i·vi

2 · G(1−φ)
∑

i∈I rivi , H ′
1), H ′

1 = haγ , and G1 = Ga,
thus eq. (5) holds. Furthermore, we have

Pr[M(CDH(G,Ga, Gb)) = Gab] � Pr[〈P ∗(F, {σ∗}),M〉(pk, ψ) = 1] � 1/p(κ).

It follows that M can solve the given ε-CDH challenge with advantage at least ε, as required. This
completes the proof of Theorem.

Lemma 2. The verification protocol Proof(P, V) is a computational zero-knowledge system in our
IPOR scheme.

Proof. For the protocol Proof(P, V), we construct a machine S∗, which is called a simulator for the
interaction between V and P . Given the public key pk = (g, h,H1, H2), for a file F , a public verification
information ψ = (ξ(1), u1, . . . , us, χ), and a index set I (t = |I|), the simulator S∗(pk, ψ) executes the
following:

1. Chooses a random σ′ ∈R G and computes e(σ′, h).
2. Chooses t random coefficients {vi}i∈I ∈R Zt

p and a random γ ∈R Zp to compute H ′
1 ← Hγ

1 and
A1 ← e(

∏
i∈I Hξ(1)(χi)vi , H ′

1).
3. Chooses s random {μi} ∈R Zs

p to A2 ← e(
∏s

j=1 u
μj

j , H2).
4. Calculates π ← A1 · A2 · e(σ′, h)−1.
5. Outputs S∗(pk, ψ) = (C,Q, θ) = ((H ′

1, π), {(i, vi)}ti=1, (σ
′, μ)).

It is obvious that the output of simulator S∗(pk, ψ) is an available verification for eq. (3). Let
〈P (F, σ), V ∗〉(pk, ψ) = ((H ′

1, π), {(i, vi)t
i=1}, (σ′, μ)) denote the output of the interactive machine V ∗

after interacting with the interactive machine P on common input (pk, ψ). In fact, every pair of variables

1616 Zhu Y, et al. Sci China Inf Sci August 2011 Vol. 54 No. 8

Table 1 The storage/communication and computation overheads in our IPOR scheme

Algorithm Computation overheads Communication overheads

KeyGen 2[E] 2l0

TagGen (2n + s)[E] nsl0 + nl1

Protocol

Commitment [B] + (s + 1)[E] l2 + lT

Challenge 2tl0

Response t[E] sl0 + l1

Verification 3[B] + (t + s)[E]

is identically distributed in two ensembles, for example, H ′
1, {(i, vi)} and H ′

1, {(i, vi)} are identically
distributed due to the fact that the variables γ, {vi} ∈R Zp, as well as (σ′, μ) and (σ′, μ) are identically
distributed since σ′ ∈R G, λj ∈R Zp and uj ← λj + γ

∑
i∈I vi ·mi,j for i ∈ [1, s]. Two variables, π and

π, are computational indistinguishable because the π is identically distributed in terms of the random
choice of all λi and the distribution of π is decided on the randomized assignment of the above variables.

Hence, two ensembles, S∗(pk, ψ) and 〈P (F, σ), V ∗〉(pk, ψ), are computationally indistinguishable, thus
for every probabilistic polynomial-time algorithm D, for every polynomial p(·), and for all sufficiently
large κ, it holds that

∣
∣
∣
∣
∣

Pr[D (pk, ψ, S∗(pk, ψ)) = 1]−
Pr[D (pk, ψ, 〈P (F, σ), V ∗〉(pk, ψ))] = 1

∣
∣
∣
∣
∣
� 1/p(κ).

The fact that such simulators exist means that V ∗ does not gain any knowledge from P since the same
output could be generated without any access to P . That is, the protocol Proof(P, V) is zero-knowledge.

According to Lemmas 1 and 2, we have the following theorem:

Theorem 1. Under CDH assumption, our IPOR scheme is a zero-knowledge proof of retrievability in
random oracle and rewindable extractor model.

6 Performances

We first analyze the computation cost of IPOR scheme. For the sake of clarity, Table 1 presents the
results of our analyisis. In this table, we use [E] to denote the computation cost of an exponent operation
in G, namely, gx, where x is a positive integer in Zp and g ∈ G or GT . We neglect the computation cost
of algebraic operations and simple modular arithmetic operations because they run fast enough [14]. The
most complex operation is the computation of a bilinear map e(·, ·) between two elliptic points (denoted
as [B]).

Secondly, we analyze the storage and communication costs of our schemes. We define the bilinear
pairing taking the form e : E(Fpm)×E(Fpkm)→ F∗

pkm (we give here the definition from [15, 16]), where p
is a prime, m is a positive integer, and k is the embedding degree (or security multiplier). In this case, we
utilize asymmetric pairing e : G1 ×G2 → GT to replace symmetric pairing in original schemes. Without
loss of generality, let the security parameter κ be 80-bits, we need the elliptic curve domain parameters
over Fp with |p| = 160-bits and m = 1 in our experiments. This means that the length of integer is
l0 = 2κ in Zp. Similarly, we have l1 = 4κ in G1, l2 = 24κ in G2, and lT = 24κ in GT for the embedding
degree k = 6. Based on these definitions, we describe storage or communication cost in Table 1. For a 1M
bytes file and s = 200, the extra storage of tags is 250× 40 = 10K bytes (n = 250) and the commitment
and response overheads are 240 + 240 = 480 bytes and 200 × 20 + 40 ≈ 4K bytes, respectively. It is
obvious that the communication overhead has a constant size in the commitment and response steps of
verification protocol. Furthermore, given a file with sz = n · s sectors and the probability ρ of sector
corruption, the detection probability of our scheme has P � 1−(1−ρ)sz·ω , where ω denotes the sampling
probability in the verification protocol.

Zhu Y, et al. Sci China Inf Sci August 2011 Vol. 54 No. 8 1617

7 Conclusions

In this paper, we addressed the construction of POR scheme on interactive proof systems. Based on an
interactive zero-knowledge proof, we proposed an interactive POR (IPOR) scheme to support soundness
property and zero-knowledge property. Our analysis showed that our schemes require a small, constant
amount of overhead, which minimizes computation and communication complexity.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 61003216), and the

US National Science Foundation (Grant Nos. NSF-IIS-0900970, NSF-CNS-0831360). The authors gave thanks

to the collaborators at Arizona State University: Dijiang Huang and Stephen S. Yau for discussing the research

direction and the method for proofs, also to the intern student, Kainan Liu, at Peking University for verifying

the scheme by C++ Language.

References

1 Juels A, Kaliski-Jr B S. Pors: Proofs of retrievability for large files. In: Proceedings of the 2007 ACM Conference on

Computer and Communications Security, CCS 2007. Alexandria: ACM, 2007. 584–597

2 Ateniese G, Burns R C, Curtmola R, et al. Provable data possession at untrusted stores. In: Proceedings of the 2007

ACM Conference on Computer and Communications Security, CCS 2007. Alexandria: ACM, 2007. 598–609

3 Bowers K D, Juels A, Oprea A. Proofs of retrievability: Theory and implementation. In: Proceedings of the 2009 ACM

Workshop on Cloud Computing Security, CCSW 2009. Chicago: ACM, 2009. 43–54

4 Odis Y, Vadhan S P, Wichs D. Proofs of retrievability via hardness amplification. In: Reingold O, ed. Theory of

Cryptography, 6th Theory of Cryptography Conference, TCC 2009. Lecture Notes in Computer Science, vol. 5444. San

Francisco: Springer-Verlag, 2009. 109–127

5 Wang Q, Wang C, Li J, et al. Enabling public verifiability and data dynamics for storage security in cloud computing.

In: Proceedings of the 14th European Symposium on Research in Computer Security, ESORICS 2009. Saint-Malo:

Springer-Verlag, 2009. 355–370

6 Shacham H, Waters B. Compact proofs of retrievability. In: Advances in Cryptology - ASIACRYPT 2008, 14th Interna-

tional Conference on the Theory and Application of Cryptology and Information Security. Melbourne: Springer-Verlag,

2008. 90–107

7 Goldreich O. Foundations of Cryptography: Basic Tools. Volume Basic Tools. Cambridge: Cambridge University Press,

2001

8 Christopher Erway C, Küpçü A, Papamanthou C, et al. Dynamic provable data possession. In: Proceedings of the 2009

ACM Conference on Computer and Communications Security, CCS 2009. Chicago: ACM, 2009. 213–222

9 Boneh D, Boyen X, Shacham H. Short group signatures. In: Proceedings of CRYPTO 2004, LNCS series. Santa Barbara:

Springer-Verlag, 2004. 41–55

10 Bowers K D, Juels A, Oprea A. Hail: A high-availability and integrity layer for cloud storage. In: ACM Conference on

Computer and Communications Security, CCS 2009. Chicago: ACM, 2009. 187–198

11 Boneh D, Franklin M. Identity-based encryption from the weil pairing. In: Advances in Cryptology (CRYPTO’2001),

vol. 2139 of LNCS. Santa Barbara: Springer-Verlag, 2001. 213–229

12 Schnorr C P. Efficient signature generation by smart cards. J Cryptol, 1991, 4: 161–174

13 Cramer R, Damg̊ard I D, MacKenzie P D. Efficient zero-knowledge proofs of knowledge without intractability assump-

tions. In: Public Key Cryptography. Melbourne: Springer-Verlag, 2000. 354–373

14 Barreto P S L M, Galbraith S D, O’Eigeartaigh C, et al. Efficient pairing computation on supersingular abelian varieties.

Des Codes Cryptogr, 2007, 42: 239–271

15 Beuchat J L, Brisebarre N, Detrey J, et al. Arithmetic operators for pairing-based cryptography. In: Cryptographic

Hardware and Embedded Systems - CHES 2007, 9th International Workshop. Vienna: Springer-Verlag, 2007. 239–255

16 Hu H G, Hu L, Feng D G. On a class of pseudorandom sequences from elliptic curves over finite fields. IEEE Trans Inf

Theory, 2007, 53: 2598–2605

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

