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Abstract Spiking neural P systems with weights (WSN P systems, for short) are a new variant of spiking 
neural P systems, where the rules of a neuron are enabled when the potential of that neuron equals a given value. 
It is known that WSN P systems are universal by simulating register machines. However, in these universal 
systems, no bound is considered on the number of neurons and rules. In this work, a restricted variant of WSN 
P systems is considered, called simple WSN P systems, where each neuron has only one rule. The complexity 
parameter, the number of neurons, to construct a universal simple WSN P system is investigated. It is 
proved that there is a universal simple WSN P system with 48 neurons for computing functions; as generator 
of sets of numbers, there is an almost simple (that is, each neuron has only one rule except that one neuron 
has two rules) and universal WSN P system with 45 neurons.
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1 Introduction

Membrane computing is one of the recent branches of natural computing [1,2], which was initiated by

Păun [3] and has developed very rapidly (already in 2003, ISI considered membrane computing as “fast

emerging research area in computer science”, see http://esi-topics.com). The aim of membrane computing

is to abstract computing ideas (data structures, operations with data, computing models, etc.) from the

structure and the functioning of a single cell or complexes of cells such as tissues and organs. The obtained

models are distributed and parallel computing devices, called P systems.

Spiking neural P systems (SN P systems, for short) were introduced as a new class of P systems [4],

with the aim of incorporating specific ideas from spiking neurons into membrane computing. In short,

an SN P system consists of a set of neurons placed in the nodes of a directed graph, where neurons send

signals (spikes, denoted by the symbol a in what follows) along synapses (arcs of the graph). The neurons
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Table 1 Small universal SN P systems and WSN P systems, where each rule can only produce one spike (or one unit 
potential) at each time step

Systems
Number of

(types of) neurons

Number of

(types of) rules
Applicability

of rules

SN P system for computing functions [9] (8) 84 (9) 113 Regular sets

SN P system as number generators [9] (8) 76 (9) 109 Regular sets

SN P system for computing functions [10] (8) 67 (9) 96 Regular sets

SN P system as number generators [10] (8) 63 (9) 93 Regular sets

SN P system for computing functions [11] (7) 11
(unbounded)

unbounded
Regular sets

WSN P system for computing functions (Section 4) (2) 48 (2) 48 Thresholds

WSN P system as number generators (Section 5) (3) 45 (3) 46 Thresholds

contain spiking and forgetting rules for emitting spikes and forgetting spikes. Spiking rules are of the

form E/ac → a; d, where E is a regular expression over {a} and c, d are natural numbers, c � 1, d � 0.

If a neuron contains k spikes such that ak ∈ L(E), k � c, then, by applying a firing rule, it can consume

c spikes and produce one spike, after a delay of d steps. This spike is sent to all neurons connected by an

outgoing synapse from the neuron where the rule was applied. Forgetting rules are of the form as → λ,

with the meaning that s � 1 spikes are removed if the neuron contains exactly s spikes. The system works

in a synchronized manner: in each time unit, (1) the system works in parallel as a whole, but sequentially

at the level of each single neuron: at most one rule is applied in each neuron at every computation step;

(2) if at a given time two or more rules can be applied in a neuron, then only one of them is chosen in a

nondeterministic way. One of the neurons is considered to be the output neuron, and its spikes are also

sent to the environment. The result of a computation is defined as the time distance between the first

two spikes emitted by the output neuron.

A neuron with only one rule is said to be simple. A simple SN P system is an SN P system such that

all neurons are simple. An almost simple SN P system is an SN P system such that all neurons are simple

except for one neuron.

An SN P system such that each neuron has the same set of rules is said to be homogeneous. A semi-

homogeneous SN P system is an SN P system such that all neurons have the same set of rules except for

one neuron.

In SN P systems, the applicability of each rule is determined by checking the number of spikes in

the neuron against a regular set associated with the rule. It is proved that it is at least NP-hard to

decide whether a rule can be applied [5]. In order to decide the applicability of rules in an easy way,

spiking neural P systems with weights (WSN P systems, for short) were introduced as a variant of SN

P systems [6]. Instead of counting spikes as in a usual SN P system, each neuron in a WSN P system

contains a potential, which can be expressed by a computable real number. Each neuron fires when

its potential equals a given value (called threshold). The execution of a rule consumes a part of the

potential and produces a unit potential. This unit potential passes to neighboring neurons multiplied by

the weights of synapses.

It is a natural and well investigated topic in computer science to look for small universal computing

devices of various types. This topic was also considered in membrane computing, e.g. [7,8]. Particularly,

some results on small universal computing devices in the framework of SN P systems are listed in Table 1.

In [9], a universal SN P system with 84 neurons is constructed as a device of computing functions, where

the number of rules is 113, 8 types of neurons and 9 types of rules are used; as generators of sets of

numbers, a universal SN P system with 76 neurons is given, where the number of rules is 109, 8 types of

neurons and 9 types of rules are used. This result is improved both in the number of neurons and the

number of rules in [10]. If arbitrarily many rules and types of rules are used, the number of neurons can

be reduced to 11 as a device for computing functions [11].

In this work, the problem of constructing universal WSN P systems with a small number of neurons



is investigated. Specifically, a universal simple and almost homogeneous WSN P system with 48 neurons 
is constructed for computing functions; as generator of sets of numbers, a universal and almost simple 
WSN P system with 45 neurons is constructed. In the systems constructed in this work, the neurons are 
quite “simple” in the sense that each neuron has only one rule. Furthermore, each system constructed 
in this work is almost homogeneous in the sense that all neurons have the same set of rules except for 
one neuron. The results given in this work are of interest with the following interpretation: although 
the neurons are simple and homogeneous, a network of neurons can be powerful—“complete (Turing) 
creativity” by cooperating with each other.

2 Prerequisites

It is useful for the reader to have some familiarity with (basic elements of) language theory, e.g., from [12], 
as well as basic membrane computing, e.g., [13]. We introduce here only a few notations and the definitions 
related to universal register machines.

A register machine is a tuple M = (m, H, l0, lh, I), where m is the number of registers, H is the set of 
instruction labels, l0 is the start label, lh is the halt label (assigned to instruction HALT), and I is the 
set of instructions; each label from H labels exactly one instruction from I, thus precisely identifying it. 
The instructions are of the following forms:

1) li : (ADD(r), lj , lk) (add 1 to register r and then go to one of the instructions with labels lj , lk 

non-deterministically chosen),
2) li : (SUB(r), lj , lk) (if register r is non-empty, then subtract 1 from it and go to the instruction with 

label lj, otherwise go to the instruction with label lk),
3) lh : HALT (the halt instruction).

A register machine M generates a set N(M) of numbers in the following way: the machine starts with

all registers being empty (i.e., storing the number zero); the machine applies the instruction with label

l0 and continues to apply instructions as indicated by the labels (and made possible by the contents of

registers); if it reaches the halt instruction, then the number n present in specified register r0 at that

time is said to be generated by M . If the computation does not halt, then no number is generated. It is

known that register machines generate all sets of numbers which are Turing computable (see, e.g., [14]).

A register machine can also compute any Turing computable function: the arguments are introduced

in specified registers r1, . . . , rk (without loss of generality, it can be assumed that the first k registers

are used), the register machine starts with the instruction with label l0; if it stops (with the instruction

with label lh), then the value of the function is placed in another specified register rt, with all registers

different from rt being empty. The partial function computed in this way is denoted by M(n1, n2, . . . , nk).

In the computing mode, register machines can be considered deterministic, without losing the Turing

completeness; in this case, the ADD instructions li : (ADD(r), lj , lk) have lj = lk (hence, the instruction

can be written in the form li : (ADD(r), lj)).

In [15], register machines are used for computing functions, with the universality defined as follows: let

(ϕ0, ϕ1, . . .) be a fixed admissible enumeration of the unary partial recursive functions. A register machine

Mu is said to be universal if there is a recursive function g such that for all natural numbers x, y we have

ϕx(y) = Mu(g(x), y). In [15], several universal register machines have been constructed for computing

functions, with the input introduced in registers 1 and 2, and the result obtained in register 0. A specific

universal register machine Mu from [15] is given in Figure 1. The construction of small universal WSN

P systems in Sections 4 and 5 is based on the specific universal register machine Mu given in Figure 1.

We use the following convention: when comparing the power of two number generating/accepting

devicesD1 andD2, number zero is ignored; that is, we write N(D1) = N(D2) if and only if N(D1)−{0} =

N(D2)−{0} (this corresponds to the usual practice of ignoring the empty string in language and automata

theory).



l0 : (SUB(1), l1, l2),      

l2 : (ADD(6), l3),          

l4 : (SUB(6), l5, l3),      

l6 : (SUB(7), l7, l8),       

l8 : (SUB(6), l9, l0),       

l10 : (SUB(4), l0, l11),       

l12 : (SUB(5), l14, l15),      

l14 : (SUB(5), l16, l17),      

l16 : (ADD(4), l11),       

l18 : (SUB(4), l0, lh),       

l20 : (ADD(0), l0),       

lh : HALT

l1 : (ADD(7), l0),

l3 : (SUB(5), l2, l4),

l5 : (ADD(5), l6),

l7 : (ADD(1), l4),

l9 : (ADD(6), l10),

l11 : (SUB(5), l12, l13),

l13 : (SUB(2), l18, l19),

l15 : (SUB(3), l18, l20),

l17 : (ADD(2), l21),

l19 : (SUB(0), l0, l18),

l21 : (ADD(3), l18),

Figure 1 A universal register machine.

3 WSN P systems

WSN P systems were introduced in [6]. Here, the definition of WSN P systems is recalled.

A WSN P system, of degree m � 1, is a construct of the form

Π = (σ1, . . . , σm, syn, in, out),

where:

1) σ1, . . . , σm are neurons, of the form σi = (pi, Ri), 1 � i � m, where a) pi ∈ Rc (Rc is the set of

computable real numbers) is the initial potential in σi; b) Ri is a finite set of spiking rules of the form

Ti/ds → 1, s = 1, 2, . . . , ni for some ni � 1, where Ti ∈ Rc, Ti � 1, is the firing threshold potential of

neuron σi, and ds ∈ Rc with the restriction 0 < ds � Ti;

2) syn ⊆ {1, 2, . . . ,m}× {1, 2, . . . ,m}×Rc are synapses between neurons, where i �= j, w �= 0 for each

(i, j, w) ∈ syn, and for each (i, j) ∈ {1, 2, . . . ,m} × {1, 2, . . . ,m} there is at most one synapse (i, j, w) in

syn;

3) in, out ∈ {1, 2, . . . ,m} indicate the input and output neurons, respectively.

The spiking rules are applied as follows. Assume that at a given moment, neuron σi has a potential

p. If p = Ti, then any rule Ti/ds → 1 ∈ Ri can be applied. The execution of this rule consumes an

amount of ds of the potential (thus leaving the potential Ti − ds) and prepares one unit potential (also

called a spike) to be delivered to all the neurons σj such that (i, j, w) ∈ syn. Specifically, each of these

neurons σj receives a quantity of potential equal to w, which is added to the existing potential in σj . Note

that w can be positive or negative, hence the potential of the receiving neuron is increased or decreased

depending on w. The potential emitted by a neuron σi passes immediately to all neurons σj such that

(i, j, w) ∈ syn; that is, the transition of potential takes no time. If a neuron σi spikes and it has no

outgoing synapse, then the potential emitted by neuron σi is lost.

Note that each neuron σi has only one fixed threshold potential Ti. If a neuron has the potential equal

to its firing threshold potential, then all rules associated with this neuron are enabled, and only one of

them is non-deterministically chosen to be applied. In each step (a global clock is assumed, marking the

time for the whole system, hence the functioning of the system is synchronized), each neuron uses at

most one rule, non-deterministically chosen among its rules, provided that its potential equals the firing

threshold, but all neurons that have applicable rules must choose and apply a rule.

If neuron σi has a potential p such that p < Ti, then the neuron σi returns to the resting potential 0.

If neuron σi has a potential p such that p > Ti, then potential p remains unchanged.



To sum up, if neuron σi has potential p and receives potential k at step t, then at step t + 1 it has 
potential p′, where:

p′ =

⎧
⎪⎪⎨

⎪⎪⎩

k, if p < Ti,

p− ds + k, if p = Ti and rule Ti/ds → 1 is applied,

p+ k, if p > Ti.

The configuration of the system is described by the distribution of potentials in neurons. Thus, the

initial configuration of the system is the tuple 〈p1, p2, . . . , pm〉. Using the rules as described above,

one can define transitions among configurations. Any sequence of transitions starting from the initial

configuration is called a computation. A computation halts if it reaches a configuration where no rule

can be applied.

In order to compute a function f : N
k → N (where N is the set of natural numbers), k natural

numbers n1, . . . , nk are introduced into the system by “reading” from the environment a binary sequence

z = 10n1−110n2−11 · · · 10nk−11. This means that the input neuron of the system receives a spike at

each step corresponding to a digit 1 from string z and no spike otherwise. Note that k + 1 spikes are

exactly inputted; that is, it is assumed that no further spike is coming to the input neuron after the last

spike. The result of the computation is encoded in the time distance between the first two spikes emitted

by the system with the restriction that the system outputs exactly two spikes and halts (immediately

after the second spike), hence it produces a spike train of the form 0b10r−11, for some b � 0 and with

r = f(n1, . . . , nk) (the system outputs no spike for a non-specified number of steps from the beginning

of the computation until the first spike).

SN P systems can also be used as number generators as in [4]. An SN P system starts working in its

initial configuration; because of the non-determinism in using the spiking rules, several computations are

possible; any halting computation provides a result, in the form of the number of time units between

the first two steps when any spike exits the system. In this case, an SN P system Πu is universal

if, given a fixed admissible enumeration of the unary partial recursive functions, (ϕ0, ϕ1, . . . ), there is a

recursive function g such that for each natural number x, if we input the number g(x) in Πu, by “reading”

the sequence 10g(x)−11 from the environment, the set of numbers generated by the system is equal to

{n ∈ N | ϕx(n) is defined}. Specifically, the strategy followed by the universal system in the case of

generating numbers is as follows: (1) read the string 10g(x)−11 from the environment and load 2g(x)

spikes in neuron σ1; (2) load neuron σ2 non-deterministically with f(n) spikes (corresponding to that

number n is input in register 2), where n is an arbitrary natural number; at the same time, output the

spike train 0b10n−11 (hence the number n), b � 0; (3) if system Πu with 2g(x) spikes in neuron σ1 and

f(n) spikes in neuron σ2 halts, then n is introduced in the set of generated numbers.

In the next sections, WSN P systems are represented graphically, which may be easier to understand

than a symbolic representation. An oval with the initial potential and spiking rules inside is used to

represent a neuron, and arrows between these ovals represent the synapses; numbers will mark these

arrows, indicating the weights. The input neuron has an incoming arrow and the output neuron has an

outgoing arrow, suggesting their communication with the environment. When the weight on a synapse

is one, it is omitted in the graphical representation.

4 A small universal WSN P system for computing functions

In this section, a small universal WSN P system for computing functions is constructed.

Theorem 1. There exists a universal simple WSN P system with 87 neurons for computing functions.

Proof. We design a specific WSN P system Π simulating the universal register machine Mu shown in

Figure 1. The simulation is done as follows. Neurons are associated with each register and with each

label of an instruction of the machine. If a register r of Mu contains a number n, then the associated
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neuron σr will contain the potential 2n. Specifically, the system Π is composed of the following four types

of modules.

(i) An INPUT module is shown in Figure 2. It is used for loading neurons σ1 and σ2 with potentials

2g(x) and 2y which represent the numbers g(x) and y, respectively, and for activating neuron σl0 asso-

ciated with the starting instruction of the register machine Mu by introducing one unit potential into

neuron σl0 .

(ii) An ADD module for simulating a deterministic ADD instruction: li : (ADD(r), lj) is presented in

Figure 3.

(iii) A SUB module for simulating a SUB instruction li : (SUB(r), lj , lk) is shown in Figure 4. In

addition to three neurons σli , σlj and σlk for three labels li, lj , lk, and two neurons σr and σbr for

register r, each such module contains three auxiliary neurons σbi1 , σbi2 and σbi3 .

(vi) An OUTPUT module for outputting the result placed in register 0 is shown in Figure 5.

The input of the system is encoded with the spike train 10g(x)−110y−11. In the initial configuration

of Π all neurons are empty. Neuron σin of the INPUT module reads the input spike train. The first

unit potential entering neuron σin passes to neurons σa1 and σa2 , which will feed each other. Neuron σ1

receives from neuron σa1 as many potential units as the double number of steps between the first two

input potentials (the potentials from neuron σa1 to neuron σ1 are amplified by the synapse weight 2),

and after that neuron σa1 gets “over flooded” by the second input potential unit and is blocked. Neuron

σa3 spikes after its potential is decreased by the first two potentials −1 from neuron σin; neurons σa4 and

σa5 receive one unit potential from neuron σa3 , respectively. In the next step, neuron σa4 starts to send

potentials to neuron σ2 until receiving a potential from neuron σa6 (the potential sent out by neuron σa4

is amplified by the synapse weight 2). In this way, potentials 2g(x) and 2y are loaded in neurons σ1 and



σ2, respectively. When neuron σl0 (associated with the starting instruction l0 of the register machine) 
gets potential 1 from neuron σa6 (neuron σa6 spikes after it receives the third potential −1; that is, after 
the “reading” of the input spike train finishes), the simulation work of the system is triggered. In general, 
the simulation of an ADD or SUB instruction starts by introducing potential 1 in the neuron associated 
with the corresponding instruction. As we will see below, when an instruction is simulated by an ADD 
or SUB module, the system cannot activate the simulation of another instruction at the same time.

Assume that system Π is at a step when it has to simulate an ADD instruction li : (ADD(r), lj ). 
At this moment, neuron σli has potential 1 and other neurons have potential 0, except for neurons 
associated with registers. Having potential 1 inside, neuron σli spikes. Neuron σr receives potential 2 
and the potential in neuron σr increases by 2, which means that the number stored in register r increases 
by one. Neuron σlj receives potential 1, and in the next step it fires, which means that the system Π 
starts to simulate the next instruction lj. So the ADD instruction li : (ADD(r), lj ) is correctly simulated 
by the system Π.

The initial instruction with label l0 is a SUB instruction. Assume that system Π is in a step t when 
it has to simulate a SUB instruction li : (SUB(r), lj , lk). At this moment, neuron σli has potential 1 
and the other neurons have potential 0 (as in the SUB module associated with the initial instruction l0), 
except for those neurons associated with the registers. At step t + 1,  neuron  σli fires; neuron σr receives 
potential 1; each neuron σbr , σlj , σlk receives potential 2; and neuron σbi1 receives potential 1. At step 
t + 2,  neuron  σbi1 fires, neurons σbi2 and σbi3 receive potential 1 from neuron σbi1 . For neuron σr, there  
are the following two cases:

(i) The potential of neuron σr at step t is 0 (that is, the number stored in neuron σr is 0). At step 
t+1,  neuron  σli fires. At step t+2,  neuron  σr has potential 1 (it has received potential 1 from neuron σli 

at the previous step), and it spikes by rule 1/1 → 1. At step t + 2,  neuron  σbi2 receives potential 1 from 
neuron σbi1 and potential −1 from neuron σr, so it has potential 0; neuron σbi3 receives potential 2 (one 
unit of potential from neuron σbi1 , another one from neuron σr),  and it spikes at step t + 3. Receiving 
potential −1 from neuron σbi3 , neuron σlk has potential 1 (it received potential 2 from neuron σli at step 
t + 1) and becomes active, starting to simulate the instruction lk of Mu. At step t + 3,  neurons  σlj and 
σbr receive potential −2 from neuron σbi3 , both of them have potential 0 and cannot spike.

(ii) The potential of neuron σr is 2n (n > 0) at step t (that is, the number stored in neuron σr is n). 
At step t + 1,  neuron  σli fires. At step t + 2,  neuron  σr has potential 2n + 1, which is greater than its 
threshold, and will keep unchanged. At step t + 2,  neuron  σbi3 receives potential 1 from neuron σbi1 , 
which is less than its threshold, hence it will not spike and its potential will vanish to 0 at step t + 3.  
At step t + 2,  neuron  σbi2 receives potential 1 from neuron σbi1 and it spikes at step  t + 3. Receiving 
potential −1 from neuron σbi2 , neuron σlj has potential 1 (it received potential 2 from neuron σli at step 
t + 1) and becomes active, starting to simulate the instruction lj of Mu.  Note  that at step  t + 3,  neuron  
σbr receives potential −1 from neuron σbi2 , it has potential 1 and spikes; neuron σr receives potential −3 
from neuron σbr ; in this way it correctly ends with potential 2n − 2, which simulates that the number 
stored in register r is decreased by one.

The system Π starts from σli and ends in σlj , if the  register r is non-empty and the number stored in 
register r is decreased by one. If the register r is empty, then the system Π starts from σli and ends in 
σlk . So the SUB instruction li : (SUB(r), lj , lk) is correctly simulated by the system Π.

The computation result of the register machine is stored in register 0. The system Π outputs the result 
by means of the OUTPUT module shown in Figure 5. Assume that the computation in Mu halts, which 
means that the halt instruction lh is reached. This means that neuron σlh receives potential 1 and fires 
by rule 1/1 → 1. At that moment, neuron σ0 has potential 2n, for the number n � 0 stored in register 
0 of Mu. When σlh fires, each neuron σc1 , σc2 , σc3 receives potential 1; neuron σ0 receives potential 1, 
changing its potential to 2n + 1. Suppose that this is step t. At step t +1,  neuron  σc3 spikes; neuron σout 

receives potential 1 from neuron σc3 , and spikes at step t + 2 (this is the first spike sent out by system Π).
From step t + 1  on,  neurons  σc1 and σc2 send potential 1 to each other, consuming one unit potential. 

This process continues until they receive potential −1 from neuron σ0. During this process, at each step, 
neuron σ0 receives potential −2 from neuron σc2 , which corresponds to decreasing by one the number
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Figure 6 A part of construction associated with two SUB instructions acting on different registers.

stored in register 0. At step t + n + 1, neuron σ0 has potential 1 and spikes; neurons σc1 and σc2 have

potential 0 after receiving potential −1 from neuron σ0. Receiving potential 1 from σ0 at step t+ n+ 1,

the output neuron σout spikes again at step t + n + 2, and the system sends the second spike to the

environment. The interval between these two spikes sent out by the system is (t + n+ 2)− (t+ 2) = n,

which is exactly the number stored in register 0 of Mu at the moment when the computation of Mu halts.

If the number stored in register 0 is 0 when register machine Mu halts, then at step t+1, neuron σout

has potential 2, which is greater than its threshold potential 1. In this case, neuron σout is blocked, and

system Π sends no spike to the environment. Recall that 0 is ignored when we investigate the power of

computing devices.

From the above description of the modules and their work, it is clear that the register machine Mu is

correctly simulated by the system Π.

We can check that each neuron in the system Π has only one rule; that is, the system Π is simple. The

system Π has

1) 16 neurons for the 8 registers: σ0, . . . , σ7, σb0 , . . . , σb7 ,

2) 23 neurons for the 23 labels: σlh , σli (0 � i � 21),

3) 39 neurons for the 13 SUB instructions: σbi1 , σbi2 , σbi3 ,

4) 5 neurons in the INPUT module: σin, σa1 , . . . , σa4 ,

5) 4 neurons in the OUTPUT module: σout, σc1 , σc2 , σc3 .

So the system Π has 87 neurons in total.

In what follows, we show that the number of neurons in system Π can be decreased by exploiting some

particularities of the register machine Mu. Particularly, in the new system, there is only one neuron with

the spiking rule 2/2 → 1.

Theorem 2. There exists a universal simple and semi-homogeneous WSN P system with 48 neurons for

computing functions.

Proof. We show that all SUB modules can share a neuron with the spiking rule 2/2 → 1; that is, each

neuron has the spiking rule 1/1 → 1 except for a neuron with the spiking rule 2/2 → 1. Therefore, the

system is semi-homogeneous. Specifically, all SUB modules can share three auxiliary neurons σb1 , σb2

and σb3 : (1) remove neurons σbi1 , σbi2 and σbi3 from the SUB module associated with the instruction

li : (SUB(r), lj , lk); (2) add neurons σb1 , σb2 and σb3 ; (3) for each neuron σt (except for neurons σbi1 , σbi2

and σbi3) in the SUB module associated with the instruction li : (SUB(r), lj , lk), if there is a synapse

(t, bij) (resp. (bij , t)), then a synapse (t, bj) (resp. (bj , t)) is added, where j = 1, 2, 3. We show that

there is no undesired effect appears by sharing the three auxiliary neurons when a SUB instruction

li : (SUB(r), lj , lk) is simulated. To this aim, we consider the following two cases.

i) For any other SUB instruction l′i : (SUB(r′), l′j , l
′
k) with r′ �= r, the construction associated with

these two SUB instructions li and l′i is shown in Figure 6. Let us examine the work of the construction
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Figure 7 A part of construction associated with two SUB instruc-

tions acting on the same register.
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Figure 8 A module for consecutive ADD in-

structions.

from Figure 6. Assume that the system starts to simulate the SUB instruction li : (SUB(r), lj , lk) at

time t, then σl′j , σl′
k
, and σbr′ will receive potential −1 or potential −2 from neuron σb2 (or from neuron

σb3 , if register r is empty) at time t+ 3. However, after receiving these negative potentials, neurons σl′j ,

σl′k and σbr′ have less potentials than their corresponding firing thresholds, so their potentials return to 0

at the next step. Hence, after the simulation of li : (SUB(r), lj , lk), all the neurons will go back to their

initial state except for neuron σr. The next simulation can continue correctly.

ii) For any other SUB instruction l′i : (SUB(r), l′j , l
′
k) with r′ = r, the construction associated with

these two SUB instructions li and l′i is shown in Figure 7. Similar to the case (i), we can check that there

is no undesired effect appears by sharing the three auxiliary neurons.

In what follows, we present the modules that allow further decreasing the number of neurons but we

do not go into details explaining their work.

Let us observe that the sequence of two consecutive ADD instructions l17 : (ADD(2), l21) and l21 :

(ADD(3), l18) has no other instruction addressing label l21, which can be simulated by the module from

Figure 8. In this way, a neuron associated with l21 is saved.

The module from Figure 9 can simulate the consecutive ADD-SUB instructions l5 : (ADD(5), l6)

and l6 : (SUB(7), l7, l8). A similar module can be constructed to simulate the consecutive ADD-SUB

instructions l9 : (ADD(6), l10) and l10 : (SUB(4), l0, l11). So two neurons (associated with the labels l6
and l10) are saved.

From the above description about the decrease of the number of neurons, we can check that 39 neurons

are saved. In the modified system, each neuron has the same spiking rule 1/1 → 1 except for one neuron

with the spiking rule 2/2 → 1.

5 A small universal WSN P system used as a number generator

In this section, a small universal WSN P system for generating numbers is constructed.

Theorem 3. There exists a universal almost simple WSN P system with 45 neurons that can be used

as a number generator.

Proof. We prove this theorem by modifying the proof of Theorem 2. Following the definition of gen-

erating numbers given Section 2, the WSN P system Πu constructed here works as follows. (1) read

the string 10g(x)−11 from the environment and load 2g(x) spikes in neuron σ1; (2) load neuron σ2 non-

deterministically with 2n spikes (corresponding to that number n is input in register 2), where n is an

arbitrary natural number; at the same time, output the spike train 0b10n−11 (hence the number n),
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Figure 9 A module for consecutive ADD-SUB instruc-

tions.

1/1 → 1 in

1/1 → 1a2
1/1 → 1

a3

3
1/1 → 1a1

−1

1/1 → 1
out

3
1/1 → 1 l0

−1

2/1 → 1
2/2 → 1 a5

1/1 → 1
a4

1/1 → 121/1 → 11

−1
2

2

Figure 10 Module INPUT-OUTPUT.

where b � 0; (3) if system Πu with 2g(x) spikes in neuron σ1 and 2n spikes in neuron σ2 halts, then n

is introduced in the set of generated numbers. To this aim, the INPUT module and OUTPUT module

given in Section 4 are combined as the INPUT-OUTPUT module, which is shown in Figure 10.

The INPUT-OUTPUT module starts “reading” the spike train 10g(x)−11 from the environment and

loads potential 2g(x) in neuron σ1. After “reading” the second spike from the environment, the module

passes to load neuron σ2 non-deterministically with an arbitrary potential 2n (corresponding to natural

number n); at the same time, neuron σout outputs number n in the form of a spike train 0b10n−11, for

some b � 0. After neuron σout sends the second spike to the environment and to neuron σl0 , neuron σl0

is activated to start the simulation of the register machine Mu from Figure 1, with g(x) in register 1 and

n in register 2. If the computation in Mu halts, then the computation in system Πu also halts.

The ADD modules and SUB modules in system Πu are the same as those in Section 4.

In the case of generating number, when the instruction lh is reached, the system halts (instead of

starting to output the computation result as in the case of computing functions). So, the label lh in

l18 : (SUB(4), l0, lh) can be omitted just halting.

The system Πu contains

1) 16 neurons for the 8 registers: σ0, . . . , σ7, σb0 , . . . , σb7 ,

2) 19 neurons for the 19 labels (lh is saved, and three neurons are saved in ADD–ADD and ADD–SUB

modules): σli (0 � i � 20, i �= 6, 10),

3) 3 neurons for the 13 SUB instructions: σb1 , σb2 , σb3 ,

4) 7 neurons in the INPUT-OUTPUT module: σin, σout, σa1 , . . . , σa5 .

Hence, there are 45 neurons in total. Furthermore, each neuron in Πu has only one rule except for

neuron σa5 with two rules inside.

6 Conclusion and remarks

In this work, the problem of constructing universal WSN P systems with a small number of neurons is

investigated. In the systems constructed in this work, the neurons are quite “simple” in the sense that

each neuron has only one rule; the system is almost homogeneous in the sense that all neurons have the

same set of rules except for one neuron.

The system given in Theorem 2 has 48 neurons and each neuron has only one spiking rule. The system

given in Theorem 3 has 45 neurons and each neuron has only one rule except for one neuron with 2

spiking rules. It is possible to use less neurons to construct universal WSN P systems provided that

neurons have more spiking rules.

In this work, the parameters, the number of neurons and the number of rules, are considered. Other

complexity parameters of universal WSN P systems such as the number of types of weights, the number

of synapses, are also worth investigating.
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7 Csuhaj-Varjú E, Margenstern M, Vaszil G, et al. On small universal antiport P systems. Theor Comput Sci, 2007,

372: 152–164

8 Rogozhin Y, Verlan S. On the rule complexity of universal tissue P systems. In: Proceedings of 6th Workshop On

Membrane Computing. Berlin: Springer-Verlag, 2006. 356–363
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