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Abstract

We investigate the k-error linear complexity of p2-periodic binary sequences defined
from the polynomial quotients (including the well-studied Fermat quotients), which is
defined by

qp,w(u) ≡ uw − uwp

p
mod p with 0 ≤ qp,w(u) ≤ p− 1, u ≥ 0,

where p is an odd prime and 1 ≤ w < p. Indeed, first for all integers k, we determine
exact values of the k-error linear complexity over the finite field F2 for these binary
sequences under the assumption of 2 being a primitive root modulo p2, and then we
determine their k-error linear complexity over the finite field Fp for either 0 ≤ k < p
when w = 1 or 0 ≤ k < p − 1 when 2 ≤ w < p. Theoretical results obtained indicate
that such sequences possess ‘good’ error linear complexity.

Keywords: Fermat quotients, Polynomial quotients, Binary sequences, Linear complexity,
k-Error linear complexity, Cryptography
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1 Introduction

For an odd prime p and integers u ≥ 0 with gcd(u, p) = 1, the Fermat quotient qp(u) is
defined as the unique integer

qp(u) ≡ up−1 − 1

p
mod p with 0 ≤ qp(u) ≤ p− 1,

and
qp(lp) = 0, l ∈ Z.

An equivalent definition of the Fermat quotient is given below

qp(u) ≡ up−1 − up(p−1)

p
mod p, u ≥ 0. (1)

For any fixed positive integer w, by the fact that

(uw)p ≡ uw mod p, u ≥ 0

from the Fermat Little Theorem, Chen and Winterhof extended (1) to define

qp,w(u) ≡ uw − uwp

p
mod p with 0 ≤ qp,w(u) ≤ p− 1, u ≥ 0, (2)

which is called a polynomial quotient in [14]. In fact qp,p−1(u) = qp(u). It is easy to see that

qp,w(u+ lp) = qp,w(u) + wluw−1 (mod p) (3)

if gcd(u, p) = 1, and

qp,w(lp) =

{
0, if w > 1,
l, if w = 1,

l = 0, . . . , p− 1. (4)

Many number theoretic and cryptographic questions as well as measures of pseudoran-
domness have been studied for Fermat quotients and their generalizations [1, 5, 7, 9, 10, 11,
13, 14, 15, 16, 25, 26, 29, 31, 37, 38, 40, 41, 42, 43, 44, 45].

In this paper, we still concentrate on certain binary sequences defined from the polyno-
mial quotients (of course including the Fermat quotients) in the references. The first one is
the binary threshold sequence (eu) studied in [10, 11, 12, 13, 17, 26] by defining

eu =

{
0, if 0 ≤ qp,w(u)/p < 1

2 ,
1, if 1

2 ≤ qp,w(u)/p < 1,
u ≥ 0. (5)

The second one, by combining qp,w(u) with the Legendre symbol
(
·
p

)
, is defined in [12, 17,

26, 31] by

fu =

{
0, if

(
qp,w(u)

p

)
= 1 or qp,w(u) = 0,

1, otherwise,
u ≥ 0. (6)
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(In fact, in [26, 31] χ, a fixed multiplicative character modulo p of order m > 1, is applied
to defining m-ary sequences (f̃u) of discrete logarithms modulo a divisor m of p− 1 by

exp(2πif̃u/m) = χ(qp,w(u)), 0 ≤ f̃u < m if qp,w(u) 6≡ 0 mod p

and f̃u = 0 otherwise. When m = 2, we have f̃u = fu for all u ≥ 0.) We note that both
(eu) and (fu) are p2-periodic by (3).

The authors of [13, 31] investigated measures of pseudorandomness as well as linear
complexity profile of (eu) and (f̃u) (of course including (fu)) via certain character sums
over Fermat quotients. The authors of [12, 26] determined the linear complexity (see below
for the definition) of (eu) and (fu) if 2 is a primitive element modulo p2, and later the
authors of [10, 11, 17] extended to a more general setting of 2p−1 6≡ 1 (mod p2) when
w ∈ {p−1, (p−1)/2}. The authors of [17] also determined the trace representations of (eu)
and (fu). In this paper, our main aim is to study the k-error linear complexity (see below
for the definition) for (eu) and (fu). All results indicate that such sequences have desirable
cryptographic features.

For our purpose, we need to describe (eu) and (fu) in an equivalent way. From (3),
qp,w(−) induces a surjective map from Z∗p2 (the group of invertible elements modulo p2) to

Zp (the additive group of numbers modulo p). For each fixed 1 ≤ w < p, we define

Dl = {u : 0 ≤ u < p2, gcd(u, p) = 1, qp,w(u) = l}

for l = 0, 1, . . . , p− 1. Each Dl has the cardinality |Dl| = p− 1 by (3). Here and hereafter,
we use |S| to denote the cardinality of a set S. Let P = {lp : 0 ≤ l < p}, for w ≥ 2 one can
define (eu) and (fu) equivalently by

eu =

{
0, if u mod p2 ∈ D0 ∪ · · · ∪D(p−1)/2 ∪ P,
1, if u mod p2 ∈ D(p+1)/2 ∪ · · · ∪Dp−1,

and

fu =

{
0, if u mod p2 ∈ ∪l∈QDl ∪D0 ∪ P,
1, if u mod p2 ∈ ∪l∈NDl,

respectively, where Q is the set of quadratic residues modulo p and N is the set of quadratic
non-residues modulo p. For w = 1, it is easy to define (eu) and (fu) similarly by only re-
dividing the set P .

We need to mention that, the following relation holds between qp,w(u) and qp(u):

qp,w(u) ≡ −uwwqp(u) mod p (7)

for all u ≥ 0 with gcd(u, p) = 1. If w = lp for any positive integer l, we have qp,lp(u) = 0
by (7) and (4) for all u ≥ 0. For any positive w with p - w, write w = w1 + w2(p− 1) with
1 ≤ w1 ≤ p− 1 and w2 ≥ 0, by (7) again one can get

qp,w1+w2(p−1)(u) ≡ −uw1(w1 − w2)qp(u) ≡ w−11 (w1 − w2)qp,w1(u) mod p.

Note that w1 6≡ w2 mod p since p - w. Hence, a polynomial quotient qp,w(−) with large w
can be reduced to the one with 1 ≤ w1 ≤ p− 1 and we restrict ourselves to 1 ≤ w ≤ p− 1
from now on.
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We conclude this section by introducing the notions of the linear complexity and the
k-error linear complexity of periodic sequences.

Let F be a field. For a T -periodic sequence (su) over F, we recall that the linear
complexity over F, denoted by LCF((su)), is the least order L of a linear recurrence relation
over F

su+L = cL−1su+L−1 + · · ·+ c1su+1 + c0su for u ≥ 0,

which is satisfied by (su) and where c0 6= 0, c1, . . . , cL−1 ∈ F. Let

S(X) = s0 + s1X + s2X
2 + · · ·+ sT−1X

T−1 ∈ F[X],

which is called the generating polynomial of (su). Then the linear complexity over F of (su)
is computed by

LCF((su)) = T − deg
(
gcd(XT − 1, S(X))

)
, (8)

see, e.g. [34] for details. For integers k ≥ 0, the k-error linear complexity over F of (su),
denoted by LCF

k ((su)), is the smallest linear complexity (over F) that can be obtained by
changing at most k terms of the sequence per period, see [46, 36], and see [21] for the related
even earlier defined sphere complexity. Clearly LCF

0 ((su)) = LCF((su)) and

T ≥ LCF
0 ((su)) ≥ LCF

1 ((su)) ≥ . . . ≥ LCF
k ((su)) = 0

when k equals the number of nonzero terms of (su) per period, i.e., the weight of (su).
The linear complexity and the k-error linear complexity are important cryptographic

characteristics of sequences and provide information on the predictability and thus unsuit-
ability for cryptography. For a sequence to be cryptographically strong, its linear complexity
should be large, but not significantly reduced by changing a few terms. And according to
the Berlekamp-Massey algorithm [35], the linear complexity should be at least a half of the
period.

Instead of studying (eu) and (fu) directly, we define the p2-periodic binary sequence
(hu) by

hu =

{
1, if u mod p2 ∈ ∪l∈IDl,
0, otherwise,

u ≥ 0, (9)

for w ≥ 2, and

hu =

{
1, if u mod p2 ∈ ∪l∈I(Dl ∪ {lp}),
0, otherwise,

u ≥ 0, (10)

for w = 1, where I is a non-empty subset of {0, 1, . . . , p − 1}, and investigate the k-error
linear complexity over F2 for (hu) in Section 2. In Section 3, we investigate the k-error
linear complexity over Fp for (hu). Although (hu) is a binary sequence, it is constructed
based on the polynomial quotients modulo p (note that the linear complexity over Fp of the
polynomial quotients is p+w, see a proof in [37] for the Fermat quotients), thus, it is natural
to consider the k-error linear complexity over Fp for (hu). In fact, it is also motivated by
the ideas of [3, 4] and partially [2, 5, 8, 18, 28, 30, 32, 33].

4



2 k-Error Linear Complexity over F2

First we present some auxiliary statements. Define

Dl(X) =
∑
u∈Dl

Xu ∈ F2[X]

for 0 ≤ l < p.

Lemma 1. Let θ ∈ F2 be a primitive p-th root of unity. For 0 ≤ l < p, we have

Dl(θ
m) =

{
0, if m ≡ 0 (mod p),
1, otherwise.

Proof. For any fixed 1 ≤ v < p, the numbers v +mp belong to different Dl (0 ≤ l < p)
when m runs through the set {0, 1, . . . , p− 1} by (3), hence we have

{u (mod p) : u ∈ Dl} = Z∗p, 0 ≤ l < p.

We note that in the definition of Dl, we restrict 1 ≤ w < p. For 0 ≤ l < p, we derive

Dl(θ
m) =

∑
u∈Dl

θmu =
∑
j∈Z∗

p

θmj ,

which deduces the desired result for different m modulo p. The calculations here are per-
formed in finite fields with characteristic two. �

Lemma 2. Let θ ∈ F2 be a primitive p-th root of unity and G(X) ∈ F2[X] with 1 ≤
deg(G(X)) < p. If 2 is a primitive root modulo p, we have

G(θ) = 1⇐⇒ G(X) = X +X2 + . . .+Xp−1,

or
G(θ) = 0⇐⇒ G(X) = 1 +X +X2 + . . .+Xp−1.

Proof. We only show the first assertion. Since 2 is a primitive root modulo p, we see
that 1 +X +X2 + . . .+Xp−1 is the minimal irreducible polynomial with the root θ. So if
G(θ) = 1, we derive

(1 +X +X2 + . . .+Xp−1)|(G(X)− 1).

With the restriction on deg(G(X)), we get G(X) = X +X2 + . . .+Xp−1. The converse is
true after simple calculations. �

Now we present our main results.

Theorem 1. Let (hu) be the binary sequence of period p2 defined in (9) using polynomial
quotients (2) with 2 ≤ w ≤ p − 1 and a non-empty subset I of {0, 1, . . . , p − 1} with
1 ≤ |I| ≤ (p − 1)/2. If 2 is a primitive root modulo p2, then the k-error linear complexity
over F2 of (hu) satisfies

LCF2
k ((hu)) =


p2 − 1, if k = 0,

p2 − p+ 1, if 1 ≤ k < p− 1,
p2 − p, if p− 1 ≤ k < (p− 1)|I|, |I| > 1,

0, if k ≥ (p− 1)|I|,
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if |I| is odd, and otherwise

LCF2
k ((hu)) =

{
p2 − p, if 0 ≤ k < (p− 1)|I|,

0, if k ≥ (p− 1)|I|.

Proof. From the construction of (hu), there are (p−1)|I| many 1’s in one period of (hu)
since each Dl contains p− 1 many elements. Changing all terms of 1’s will lead to the zero
sequence. So we always assume that k < (p− 1)|I|. Let

Hk(X) =
∑
l∈I

Dl(X) + e(X) ∈ F2[X] (11)

be the generating polynomial of the sequence obtained from (hu) by changing exactly k
terms of (hu) per period, where e(X) is the corresponding error polynomial with k many
monomials. We note that Hk(X) is a nonzero polynomial due to k < (p − 1)|I|. We will
consider the common roots of Hk(X) and Xp2 − 1, i.e., the roots of the form βn (n ∈ Zp2)

for Hk(X), where β ∈ F2 is a primitive p2-th root of unity. The number of the common
roots will help us to derive the values of k-error linear complexity of (hu) by (8).

On the one hand, we assume that Hk(β
n0) = 0 for some n0 ∈ Z∗p2 . Since 2 is a

primitive root modulo p2, for each n ∈ Z∗p2 , there exists a 0 ≤ jn < (p − 1)p such that

n ≡ n02jn mod p2. Then we have

Hk(β
n) = Hk(β

n02jn ) = Hk(β
n0)2

jn
= 0,

that is, all (p2 − p many) elements βn for n ∈ Z∗p2 are roots of Hk(X). Hence we have

Φ(X)|Hk(X) in F2[X],

where
Φ(X) = 1 +Xp +X2p + . . .+X(p−1)p ∈ F2[X],

the roots of which are exactly βn for n ∈ Z∗p2 . Let

Hk(X) ≡ Φ(X)π(X) (mod Xp2 − 1). (12)

Using the fact that
XpΦ(X) ≡ Φ(X) (mod Xp2 − 1),

we restrict deg(π(X)) < p and write

π(X) = Xv0 +Xv1 + . . .+Xvt−1 with 0 ≤ v0 < v1 < . . . < vt−1 < p,

where t ≥ 1 since Hk(X) is a nonzero polynomial. Then the exponent of each monomial in
Φ(X)π(X) mod Xp2 − 1 forms the set

{vj + lp : 0 ≤ j ≤ t− 1, 0 ≤ l ≤ p− 1},

which can be divided into two sets A and B with

A = {vj + lp : 0 ≤ j ≤ t− 1, 0 ≤ l ≤ p− 1, vj 6= 0, qp,w(vj + lp) ∈ I},
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B = {vj + lp : 0 ≤ j ≤ t− 1, 0 ≤ l ≤ p− 1} \A.

We note that by (3) A contains |A| many numbers with

|A| =
{

(t− 1)|I|, if v0 = 0,
t|I|, otherwise,

and B contains tp− |A| many numbers.
Hence, from (11) and (12), we find that the set of the exponents of monomials in e(X)

is
(∪l∈IDl \A) ∪B,

the cardinality of which is

(p− 1)|I| − |A|+ |B| = (p− 1)|I|+ tp−
{

2(t− 1)|I|, if v0 = 0,
2t|I|, otherwise.

That is, k = (p − 1)|I| − |A| + |B| since e(X) contains k many terms. However, the
assumption of 1 ≤ |I| ≤ (p− 1)/2 implies tp− 2t|I| > 0 and hence

(p− 1)|I| − |A|+ |B| > (p− 1)|I| > k,

a contradiction. So Hk(β
n) 6= 0 for all n ∈ Z∗p2 .

On the other hand, by Lemma 1 we get

Hk(β
ip) = e(βip) +

{
0, if i = 0,
|I|, if 1 ≤ i < p.

(13)

Hence below we only need to consider the number of roots of the form βip (0 ≤ i < p) for
Hk(X).

First, if |I| is odd, for k = 0 (in this case e(X) will not occur) it is easy to see that

LCF2
0 ((hu)) = LCF2((hu)) = p2 − 1.

For 1 ≤ k < p− 1, we first consider e(X) = Xi0p for some 0 ≤ i0 < p, i.e., (hu) is changed
only one term at the position i0p per period, we have e(βip) = 1 for all 0 ≤ i < p and there
are exactly p− 1 many βip (1 ≤ i < p) such that Hk(β

ip) = 0. However, for any other e(X)
with k (1 ≤ k < p− 1) terms, the number of such kind of roots of Hk(X) does not increase,
since e(X) satisfying

e(βip) =

{
0, if i = 0,
1, if 1 ≤ i < p,

which guarantees all βip (0 ≤ i < p) are roots of Hk(X), should be of the form

e(X) ≡ X +X2 + . . .+Xp−1 (mod Xp − 1)

by Lemma 2, in other words, e(X) should contain at least p− 1 many terms if the number
of roots of Hk(X) increases (from p− 1 to p). So we derive

LCF2
k ((hu)) = LCF2

1 ((hu)) = p2 − p+ 1 for 1 ≤ k < p− 1.

7



For p− 1 ≤ k < (p− 1)|I| and |I| > 1, one can choose e(X) with p− 1 terms, as mentioned
above, of the form e(X) ≡ X +X2 + . . .+Xp−1 mod Xp − 1 such that all βip’s (0 ≤ i < p)
are roots of Hk(X). Hence, we get

LCF2
k ((hu)) = LCF2

p−1((hu)) = p2 − p for p− 1 ≤ k < (p− 1)|I|.

Second, we turn to the case of even |I|. When k = 0, all βip (0 ≤ i < p) are roots of
Hk(X) from (13). No other possible roots of the form βn will occur for 1 ≤ k < (p− 1)|I|.
So we have

LCF2
k ((hu)) = LCF2

0 ((hu)) = p2 − p for 0 ≤ k < (p− 1)|I|.

We complete the proof. �

In Theorem 1, we restrict 1 ≤ |I| ≤ (p − 1)/2. For |I| > (p − 1)/2, we can similarly
consider the complementary sequence, denoted by (h′u), of (hu), i.e., h′u ≡ hu + 1 mod 2 for
all u ≥ 0. The difference between the (k-error) linear complexity of (hu) and that of (h′u)
is at most 1 by the fact that

Hc(X) + e(X)

Xp2 − 1
=
H(X) + e(X)

Xp2 − 1
+

1

X − 1
,

where Hc(X) is the generating polynomial of (h′u), H(X) is the generating polynomial of
(hu) and e(X) is the error polynomial. In this case, one might ask how about the k-error
linear complexity for the complementary sequence (h′u), which in fact is defined by

h′u =

{
1, if u mod p2 ∈ ∪l∈JDl ∪ P,
0, otherwise,

u ≥ 0,

where J is a non-empty subset of {0, 1, . . . , p − 1} with 1 ≤ |J | ≤ (p − 1)/2. (Note that
h′u = 1 for u ∈ P , but hu = 0 in this case.) In particular, we can get some balanced binary
sequences when |J | = (p− 1)/2 for certain special applications.

Fortunately, following the same way as the proof of Theorem 1, we get

LCF2
k ((h′u)) =


p2 − p+ 1, if 0 ≤ k < p− 1,
p2 − p, if p− 1 ≤ k < (p− 1)|J |,
p, if k = (p− 1)|J |,
0, if k ≥ (p− 1)|J |+ 1,

if |J | is odd, and otherwise

LCF2
k ((h′u)) =


p2, if k = 0,

p2 − p, if 1 ≤ k < (p− 1)|J |,
p, if k = (p− 1)|J |,
0, if k ≥ (p− 1)|J |+ 1,

if 2 is a primitive root modulo p2.
The statement of the k-error linear complexities of (eu) and (fu) follows from Theorem

1 directly. We describe it in the following corollary.

8



Corollary 1. Let (eu) and (fu) be the binary sequences of period p2 defined in (5) and (6),
respectively. If 2 is a primitive root modulo p2, then their k-error linear complexity over F2

satisfies

LCF2
k ((eu)) = LCF2

k ((fu)) =


p2 − 1, if k = 0,

p2 − p+ 1, if 1 ≤ k < p− 1,
p2 − p, if p− 1 ≤ k < (p− 1)2/2,

0, if k ≥ (p− 1)2/2,

if p ≡ 3 mod 4, and otherwise

LCF2
k ((eu)) = LCF2

k ((fu)) =

{
p2 − p, if 0 ≤ k < (p− 1)2/2,

0, if k ≥ (p− 1)2/2.

For w = 1, the result is somewhat different because of (4) and we present it in the
following separate theorem.

Theorem 2. Let (hu) be the binary sequence of period p2 defined in (10) using polynomial
quotients (2) with w = 1 and a non-empty subset I of {0, 1, . . . , p − 1} with 1 ≤ |I| ≤
(p− 1)/2. If 2 is a primitive root modulo p2, then the k-error linear complexity over F2 of
(hu) satisfies

LCF2
k ((hu)) =


p2 − p+ 1, if 0 ≤ k < p,
p2 − p, if p ≤ k < p|I|, |I| > 1,

0, if k ≥ p|I|,
if |I| is odd, and otherwise

LCF2
k ((hu)) =

{
p2 − p, if 0 ≤ k < p|I|,

0, if k ≥ p|I|.

Proof. The proof is similar to that of Theorem 1. Here we present a sketch. Let

Hk(X) =
∑
l∈I

Dl(X) +
∑
l∈I

X lp + e(X) ∈ F2[X]

be the generating polynomial of the sequence obtained from (hu) by changing exactly k
terms of (hu) per period, where e(X) is the corresponding error polynomial with k many
monomials.

For k < p|I|, under the assumption of 2 being primitive root modulo p2, we can show
Hk(β

n) 6= 0 for all n ∈ Z∗p2 , as proved in Theorem 1. So we only need to determine the

number of roots of the form βip (0 ≤ i < p) for Hk(X). By Lemma 1, we have

Hk(β
ip) =

∑
l∈I

Dl(β
ip) +

∑
l∈I

(βip)lp + e(βip)

= e(βip) +

{
|I|, if i = 0,
0, if 1 ≤ i < p.

For odd |I|, all βip (1 ≤ i < p) are roots of Hk(X) when k = 0 and Hk(X) has one more
root if e(X) satisfies

e(βip) =

{
1, if i = 0,
0, if 1 ≤ i < p,

9



from which we derive by Lemma 2

e(X) ≡ 1 +X +X2 + . . .+Xp−1 (mod Xp − 1).

That is to say, only that e(X) modulo Xp− 1 is of the form above, which contains p terms,
can guarantee that all βip (0 ≤ i < p) are roots of Hk(X), thus

LCF2
k ((hu)) = LCF2

0 ((hu)) = p2 − p+ 1 for 0 ≤ k < p

and
LCF2

k ((hu)) = LCF2
p ((hu)) = p2 − p for p ≤ k < p|I|.

For even |I|, all βip (0 ≤ i < p) are roots of H0(X) and any e(X) with k terms for k < p|I|
will not increase the number of the common roots of Hk(X) and Xp2 − 1. Then the result
follows. �

We restrict that 2 is a primitive root modulo p2 in the theorems above. A conjecture
of Artin suggests that approximately 3/8 of all primes have 2 as a primitive element ([39,
p.81]), and it is very seldom that a primitive element modulo the prime p is not a primitive
element modulo p2. If 2 is not a primitive root modulo p2, it seems that our method is not
suitable for computing the exact number of the common roots of Hk(X) and Xp2−1 without
additional ideas, as mentioned in the proof of Theorem 1. But we have some partial results,
as described in the following theorem, under certain special conditions. We conjecture that
Theorems 1 and 2 are true for most primes p, e.g. p satisfying 2p−1 6≡ 1 (mod p2), see
[19, 10] for the applications of such primes. We note that 2p−1 6≡ 1 (mod p2) if and only if
the order of 2 modulo p2 is lager than p.

Theorem 3. Let I ⊆ {0, 1, . . . , p− 1} with 1 ≤ |I| ≤ (p− 1)/2 and the order of 2 modulo
p2 be λp with 1 < λ ≤ p− 1 and λ|(p− 1).

(i). Let (hu) be the binary sequence of period p2 defined in (9) using polynomial quotients
(2) with w ≥ 2 and I.

(ii). Let (hu) be the binary sequence of period p2 defined in (10) using polynomial
quotients (2) with w = 1 and I.

If 0 ≤ k < (p− 1)|I| for (i) or 0 ≤ k < p|I| for (ii), the k-error linear complexity over
F2 of (hu) satisfies

LCF2
k ((hu)) ≥ λp,

and otherwise LCF2
k ((hu)) = 0.

Proof. First for 0 ≤ k < (p − 1)|I| for (i), according to the proof of Theorem 1, there
do exist an n0 ∈ Z∗p2 such that Hk(β

n0) 6= 0 for Hk(X), the generating polynomial of the

sequence obtained from (hu) by changing exactly k terms of (hu) per period. (Otherwise,
we will get a more accurate result, as described in Theorem 1.) Thus there are at least λp
many n ∈ {n02j mod p2 : 0 ≤ j < λp} such that Hk(β

n) 6= 0. Then the result follows.
For the case of 0 ≤ k < p|I| for (ii), the discussion is similar by using the proof of

Theorem 2. �
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3 k-Error Linear Complexity over Fp
In this section, we view the binary sequences (hu) defined in (9) and (10) as sequences
over Fp and consider their (k-error) linear complexity over Fp, which is also an interesting
problem for binary sequences. Such kind of work has been done in many references, such
as [2, 3, 4, 5, 8, 18, 28, 30, 32, 33].

We will employ the j-th Hasse derivative of a polynomial F (x) = a0 + a1X + . . . +
aT−1X

T−1 ∈ Fp[X], which is defined to be

F (j)(X) =

T−1∑
n=j

(
n

j

)
aiX

n−j , j ≥ 1.

The multiplicity of µ as a root of F (X) is n if F (µ) = F (1)(µ) = . . . = F (n−1)(µ) = 0 and
F (n)(µ) 6= 0, see e.g. [34, Ch 6.4] for details.

Before presenting the main results, we introduce a technical lemma, which will be used
in the proofs.

Lemma 3. With notations of Dl (0 ≤ l < p) defined in Section 1. Let Dl(X) =
∑
u∈Dl

Xu ∈

Fp[X] and D
(j)
l (X) be the j-th Hasse derivative of Dl(X) for 0 ≤ l < p. Then for 0 ≤ l < p,

we have
Dl(X) ≡ (X − 1)p−1 − 1 (mod Xp − 1)

and hence
Dl(1) = p− 1, D

(j)
l (1) = 0 and D

(p−1)
l (1) = 1,

where 1 ≤ j ≤ p− 2.

Proof. In the proof of Lemma 1, we have shown that

{u (mod p) : u ∈ Dl} = Z∗p, 0 ≤ l < p,

i.e.,
Dl = {v +mlvp : 1 ≤ v < p,mlv = (wvw−1)−1(l − qp,w(v)) mod p},

from which we derive

Dl(X) ≡ X +X2 + . . .+Xp−1

≡ (1 +X +X2 + . . .+Xp−1)− 1

≡ Xp − 1

X − 1
− 1

≡ (X − 1)p

X − 1
− 1

≡ (X − 1)p−1 − 1 (mod Xp − 1).

Then write
Dl(X) = (X − 1)p−1 − 1 + η(X)(Xp − 1) ∈ Fp[X]

11



for some η(X) ∈ Fp[X], it is easy to check the rest equalities by using

D
(j)
l (X) =

(
p− 1

j

)
(X − 1)p−1−j +

∑
j1+j2=j

0≤j1,j2≤j

(
p

j1

)
(X − 1)p−j1η(j2)(X)

for 1 ≤ j < p, where we use Xp − 1 = (X − 1)p. �
Now we present our main results.

Theorem 4. Let (hu) be the (binary) sequence of period p2 defined in (10) using polynomial
quotients (2) with w = 1 and a non-empty subset I of {0, 1, . . . , p − 1} with 1 ≤ |I| ≤
(p− 1)/2. Then we have

LC
Fp

k ((hu)) = LC
Fp

0 ((hu)) = p2 − p+ 1

for 0 ≤ k < p, and LC
Fp

k ((hu)) ≤ p2 − p for k ≥ p.

Proof. Let
Hk(X) =

∑
l∈I

(Dl(X) +X lp) + e(X) ∈ Fp[X]

be the generating polynomial of the sequence obtained from (hu) by changing exactly k
terms of (hu) per period, where e(X) is the corresponding error polynomial with k many
monomials. In particular, H0(X) =

∑
l∈I

(Dl(X) +X lp) is the generating polynomial of (hu).

Since Xp2 − 1 = (X − 1)p
2

over Fp, we only need to consider the multiplicity of 1 as a root
of Hk(X).

It is easy to check by Lemma 3 that

H0(1) = 0, H
(j)
0 (1) = 0 for 1 ≤ j ≤ p− 2, H

(p−1)
0 (1) = |I| 6= 0,

where H
(j)
0 (X) is the j-th Hasse derivative of H0(X). So we have

(X − 1)p−1‖H0(X),

where the notation ‘‖’ means (X − 1)p−1 | H0(X) but (X − 1)p - H0(X). Hence the linear
complexity of (hu) is

LCFp((hu)) = LC
Fp

0 ((hu)) = p2 − (p− 1)

by (8).
Now we consider the case of k ≥ 1. For e(X) with k terms, since (X − 1)p−1‖H0(X) it

is easy to see that
(X − 1)p−1‖Hk(X)

if (X − 1)p|e(X), and
(X − 1)m‖Hk(X)
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if (X−1)m‖e(X) and m ≤ p−2. So for such e(X), the multiplicity of 1 as a root of Hk(X)
is at most p− 1 and hence the k-error linear complexity will not decrease. Now we assume
(X − 1)p−1‖e(X) and write

e(X) ≡ (X − 1)p−1(α0X
v0 + α1X

v1 + . . .+ αt−1X
vt−1) (mod Xp − 1),

where α0, . . . , αt−1 ∈ F∗p, α0 + . . .+ αt−1 6= 0 and 0 ≤ v0 < v1 < . . . < vt−1 ≤ p2 − p. Using
the facts that

(X − 1)p−1 =
Xp − 1

X − 1
= 1 +X +X2 + . . .+Xp−1 ∈ Fp[X]

and

(1 +X +X2 + . . .+Xp−1) · αiXvi

≡ (1 +X +X2 + . . .+Xp−1) · (αiXvi − αiXvi−1 + αiX
vi−1)

≡ (1 +X +X2 + . . .+Xp−1) · αiXvi−1

≡ . . .

≡ (1 +X +X2 + . . .+Xp−1) · αi (mod Xp − 1),

we get

e(X) ≡ (1 +X +X2 + . . .+Xp−1)(α0 + α1 + . . .+ αt−1) (mod Xp − 1).

That is to say, e(X) modulo Xp− 1 should be of the form above and it has at least p terms
if (X − 1)p−1‖e(X).

Hence we conclude that, if 1 ≤ k < p, the multiplicity of 1 as a root of e(X), which
contains k terms, is not equal to p − 1. (Otherwise, e(X) modulo Xp − 1 has at most k
terms, a contradiction.) So we have

(X − 1)p - Hk(X) for 1 ≤ k < p

and we derive the desired result.
For k = p, one can choose

e(x) = −α(1 +X +X2 + . . .+Xp−1) = −α(X − 1)p−1 ∈ Fp[X],

where α = H0(X)
(X−1)p−1

∣∣∣∣
X=1

6= 0. From

Hk(X) = H0(X) + e(X) = (X − 1)p−1
(

H0(X)

(X − 1)p−1
− α

)
,

we find (X − 1)p | Hk(X) and the value LC
Fp
p ((hu)) ≤ p2 − p. �

Theorem 5. Let (hu) be the (binary) sequence of period p2 defined in (9) using polynomial
quotients (2) with 2 ≤ w ≤ p − 1 and a non-empty subset I of {0, 1, . . . , p − 1} with
1 ≤ |I| ≤ (p− 1)/2. Then we have

LC
Fp

k ((hu)) =

{
p2, if k = 0,

p2 − p+ 1, if 1 ≤ k < p− 1,

and LC
Fp

k ((hu)) ≤ p2 − p for k ≥ p− 1.
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Proof. Let
Hk(X) =

∑
l∈I

Dl(X) + e(X) ∈ Fp[X]

be the generating polynomial of the sequence obtained from (hu) by changing exactly k
terms of (hu) per period, where e(X) is the corresponding error polynomial with k many
monomials.

We check that H0(1) = (p− 1)|I| 6= 0 mod p, hence LCFp((hu)) = p2 by (8).
Below we consider the case of k = 1. For e(X) = ξXip for any ξ ∈ F∗p and 0 ≤ i < p, we

have

H1(1) = (p− 1)|I|+ ξ

{
= 0, if ξ = |I|,
6= 0, otherwise

and

H
(j)
1 (X)

∣∣∣∣
X=1

=
∑
l∈I

D
(j)
l (X)

∣∣∣∣
X=1

+

(
ip

j

)
ξXip−j

∣∣∣∣
X=1

=

{
0, if 1 ≤ j ≤ p− 2,
|I|, if j = p− 1

by Lemma 3. So we derive

(X − 1)p−1‖H1(X) if ξ = |I|

and
(X − 1) - H1(X) if ξ 6= |I|.

For e(X) = ξXn for any ξ ∈ F∗p and n ∈ Z∗p2 , we find that H1(1) = (p− 1)|I|+ ξ and

H
(1)
1 (X)

∣∣∣∣
X=1

=
∑
l∈I

D
(1)
l (X)

∣∣∣∣
X=1

+ nξXn−1
∣∣∣∣
X=1

= nξ 6= 0,

hence the multiplicity of 1 as a root of H1(X) is ≤ 1. So we conclude that

LC
Fp

1 ((hu)) = p2 − (p− 1).

Now we want to find the smallest k ≥ 2 such that

(X − 1)p|Hk(X).

From Hk(1) = 0 and H
(j)
k (1) = 0 for 1 ≤ j ≤ p− 1, we have

e(1) = |I|,
e(j)(1) = 0 for 1 ≤ j ≤ p− 2,

e(p−1)(1) = (p− 1)|I|,

by Lemma 3, where e(j)(X) is the j-th Hasse derivative of e(X). We define a new polynomial
ẽ(X) ∈ Fp[X] with

ẽ(X) = e(X) + (p− |I|)Xip

14



for some 0 ≤ i < p, and compute

ẽ(1) = 0, ẽ(j)(1) = 0 for 1 ≤ j ≤ p− 2, ẽ(p−1)(1) = (p− 1)|I| 6= 0.

Then we have (X − 1)p−1‖ẽ(X). Following the proof of Theorem 4, we derive

ẽ(X) ≡ µ(1 +X +X2 + . . .+Xp−1) (mod Xp − 1)

for µ ∈ F∗p. Hence e(X) should be of the form

e(X) = ẽ(X) + |I|Xip ≡ |I|+ µ(1 +X +X2 + . . .+Xp−1) (mod Xp − 1),

which contains at least p− 1 terms, since |I|+µ can take 0 as its output. Hence k ≥ p− 1.
So we conclude that if 1 ≤ k < p − 1, (X − 1)p - Hk(X), from which the first desired

result follows. For k = p− 1, one can directly choose

e(x) = −|I|(X +X2 + . . .+Xp−1) = |I| − |I|(X − 1)p−1 ∈ Fp[X],

and then compute
Hk(1) = H0(1)− (p− 1)|I| = 0

and

H
(j)
k (X)

∣∣∣∣
X=1

= H
(j)
0 (X)

∣∣∣∣
X=1

− |I|
(
p− 1

j

)
(X − 1)p−1−j

∣∣∣∣
X=1

= 0

for 1 ≤ j ≤ p− 1 by Lemma 3, so we have (X − 1)p | Hk(X) and LC
Fp

p−1((hu)) ≤ p2 − p. �

It seems difficult for us to consider the case of larger k without additional ideas. We
leave it open. However, motivated by [3, 4], we have a more accurate upper bound for I
being the set of quadratic non-residues modulo p. In this case, (hu) in (9) or (10) is in fact
(fu) defined in (6).

Since

qp,w(u) ≡ qp,w(i0 + i1p)

≡
p−1∑
c=0

qp,w(c)
(
1− (i0 − c)p−1

)
+ wiw−10 i1 (mod p),

for all integers u ≡ i0 + i1p (mod p2) with 0 ≤ i0, i1 < p, according to [4] we see that (fu)
can be represented by

fi0+i1p+jp2 = ρ(i0, i1) for all integers 0 ≤ i0, i1 < p and j,

where the multivariate polynomial ρ(X0, X1) ∈ Fp[X0, X1]/〈Xp
0 − X0, X

p
1 − X1〉 is of the

form

ρ(X0, X1) = 2−1

(
p−1∑
c=0

qp,w(c)
(
1− (X0 − c)p−1

)
+ wXw−1

0 X1

)p−1

−2−1

(
p−1∑
c=0

qp,w(c)
(
1− (X0 − c)p−1

)
+ wXw−1

0 X1

) p−1
2

.
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We reduce ρ(X0, X1) modulo Xp
0 − X0 and Xp

1 − X1 such that the degree strictly less
than p in each indeterminate. And then the linear complexity over Fp of (fu) equals to
1+deg(ρ(X0, X1)), we refer the reader to [6, Theorem 8] for the assertion and the definition
of the degree of multivariate polynomials.

For 2 ≤ w < p, Substituting 0 by 2−1(= p+1
2 ) at those positions u with u mod p2 ∈ D0∪P

in (fu), we get a new sequence (fu) represented by the polynomial

2−1 − 2−1

(
p−1∑
c=0

qp,w(c)
(
1− (X0 − c)p−1

)
+ wXw−1

0 X1

) p−1
2

,

from which we derive after some simple calculations

LCFp((fu)) =

{
(p− 1)p/2 + p, if w ≡ 1 mod 2,
(p− 1)p/2 + (p− 1)/2 + 1, otherwise,

by [6, Theorem 8]. Since |D0 ∪P | = 2p− 1, we obtain an upper bound on the k-error linear
complexity of (fu) defined in (6) as follows

LC
Fp

k ((fu)) ≤
{

(p− 1)p/2 + p, if w ≡ 1 mod 2,
(p− 1)p/2 + (p− 1)/2 + 1, otherwise,

for k ≥ 2p− 1.
For w = 1, We only use {0} instead of P above and obtain

LC
Fp

k ((fu)) ≤ (p− 1)p/2 + 1

for k ≥ p.

Finally, we mention a lower bound on the k-error linear complexity over Fp of (hu)
defined in (9) or (10). From [6, Theorem 8], each p2-periodic sequence over Fp can be
represented by a unique polynomial %(X0, X1) ∈ Fp[X0, X1]/〈Xp

0 − X0, X
p
1 − X1〉 with

degX1
(%(X0, X1)) ≥ 1, otherwise the period is reduced to p. We find by (3) that changing

at most k (smaller than the weight of (hu) per-period) terms from (hu) will not reduce the
period, hence the k-error linear complexity over Fp is ≥ p+ 1.

4 Concluding Remarks

In this paper, we study the error linear complexity spectrum (see [27] for details) of p2-
periodic binary sequences defined from the polynomial quotients, that is, we determine
exact values of their k-error linear complexity over the finite field F2 for all integers k under
the assumption of 2 being a primitive root modulo p2. Main results can be described in the
following figures, which visually reflect how the linear complexity of the binary sequences
decreases as the number k of allowed bit changes increases. It is of interest to consider this
problem for the case of 2 being not a primitive root modulo p2. We only estimate a lower
bound on their k-error linear complexity if 2p−1 6≡ 1 (mod p2), with which most primes p
are satisfied, see [19].
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Figure 1: Error linear complexity spectrum of (hu) when 2 ≤ w < p (Theorem 1)

Figure 2: Error linear complexity spectrum of (hu) when w = 1 (Theorem 2)

We also view the binary sequences as sequences over the finite field Fp and determine
their k-error linear complexity over Fp for either 0 ≤ k < p when w = 1 or 0 ≤ k < p − 1
when 2 ≤ w < p. Results indicate that the linear complexity is large (close to the period)
and not significantly reduced by changing a few terms. It is interesting to consider this
problem for larger k.

We finally remark that, the definition of binary sequences studied in this manuscript
is related to generalized cyclotomic classes modulo p2, as you can see in Section 1. In
particular, the Fermat quotient qp(−) defines a group epimorphism from Z∗p2 to Zp by the

fact, see e.g. [37], that

qp(uv) ≡ qp(u) + qp(v) (mod p), gcd(uv, p) = 1.

So if g is a (fixed) primitive root modulo p2, we have

D0 = {gjp mod p2 : 0 ≤ j < p}
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and
Dlδ = gjD0 = {gjp+l mod p2 : 0 ≤ j < p}, 1 ≤ l < p,

where δ = qp(g) and the subscript of D is performed modulo p. (Note that for w 6= p − 1,
we don’t have this property.) Sequences related to cyclotomic classes modulo a prime and
generalized cyclotomic classes modulo the product of two distinct primes have been widely
investigated since several decades ago, the well-known basic examples are the Legendre
sequences and the Jacobi sequences, see [20, 22, 23, 24] and references therein. As we know,
the k-error linear complexity of the Jacobi sequences and their generalizations [22, 23] has
not been solved thoroughly. Hence we hope that our idea and method might be helpful for
considering this problem and lead to furtherly study applications of the theory of cyclotomy
in cryptography.
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