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Abstract Network diffusion, such as spread of ideas, rumors, contagious disease, or a new type of behav-

iors, is one of the fundamental processes within networks. Designing effective strategies for influence spread

maximization, rumor spread minimization, or epidemic immunization has attracted considerable research at-

tention. However, a key challenge is that many times we can only observe the trace of contagion spreading

across network, but the underlying network structure is unknown and the transmission rates between node pairs

are unclear to us. In this paper, given the observed information cascades, we aim to address two problems:

diffusion network structure inferring and information diffusion pathways tracking. We propose a novel proba-

bilistic model called Network Inferring from Multidimensional Features of Cascades (NIMFC) which takes into

account heterogeneous features, including temporal and topological features of cascades, node attributes, and

information content, to infer the latent network structure and transmission rates of edges. Also, based on the

inferred network structure, we may track diffusion pathways of a cascade in social networks. We use blocked

coordinate descent method to learn a sparse estimation of the latent network. Our proposed model NIMFC

is evaluated both on large synthetic and real-world data sets, and experimental results show that our method

significantly outperforms state-of-the-art models both in terms of recovering the latent network structure and

information pathway tracking.
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1 Introduction

Diffusions over networks, such as the spread of technical innovations, infectious disease, information,

rumors, or emotions [1], are a pervasive phenomenon in many networks. Recently, with emergence of Web

2.0, more and more people use social media (e.g., Twitter or Weibo) or social networks (e.g., Facebook)

to share and spread ideas, photos, or even rumors. The information diffusion in social networks plays

an important role in many real-world events, like Facebook during the 2010 Arab spring [2] or Twitter

during the 2008 US presidential elections [3]. In China, Weibo has also proved to be a powerful tool for

propagation of news, hot events, and public opinions.
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Figure 1 Diffusion network inference and information pathways tracking problems. (a) Underlying diffusion network,

which is unknown to us; (b) a piece of information spread across the diffusion network, where the pathway is unknown to

us while the infected time of different nodes can be observed; (c) inferred network structure and transmission rates; and

(d) inferred diffusion pathways of a contagion.

Understanding the structure of diffusion network and uncovering the dynamics of information diffusion

in social networks have attracted much research attention in the past few years. Researchers have been

studying extensive problems like influence spread maximization [4,5], rumor spread minimization [6], and

information outbreak detection [7]. When doing this, they often take the assumption that the underlying

network is known, which in practice is not true in many situations.

Often, we can observe the trace of a contagion (e.g., a piece of information or a popular meme)

spreading in a network, which is often named cascade, without knowing the latent network structure or

the information diffusion pathways, as shown in Figure 1. For example, we see people get infected by an

infectious disease at different times, but we don’t know who infected them. We observe people talking

about a hot event or a fresh idea without knowing from whom did he heard of the information. So, a

natural question is how to infer the relationship between these nodes and how to quantify the strength of

the relationship in terms of information diffusion. Another interesting question is whether we can recover

the way that the information takes to spread across the network.

Given observed information cascades, we need to solve the following problems: (1) how to infer the

underlying diffusion network structure and (2) how to track the diffusion pathways of the information,

as shown in Figure 1.

To achieve these goals, there are some sources of information that can be used, such as temporal and

topological properties of cascades, node attributes, and information content. The temporal feature, that

is, the infected timestamps of nodes in a cascade, is used with the assumption that infection events closer

in time are more likely to be causally related, which is reasonable in practice. For node attributes, if two

nodes share more common attributes, such as interested topics, profession, and education background,

they are more likely to spread information between each other. So as to topological properties, we refer

it to as overlapping structure of different cascades.

Only recently we have approaches for network inference [8–15]. Some of them can only infer latent

edges of the diffusion network [9,12], while others like [8,10] can also calculate the transmission rate or

weight for each edge in the diffusion network. Most of them [8–10,15] use only temporal features of

information cascades as source data, while some of them try to take into account not only the temporal

features but also node attributes [13] or information content [14].

We emphasize that it is important to merge all these features together when inferring network structure,

because, first, node attributes and other rich features can complement the temporal feature, leading to

more precise inference of network structure, and second, if one source of information is noisy, or sparse,

others can make up for it. However, combining all these different modalities of information together is

also challenging.

In this paper, we propose a uniform probabilistic model which takes into account the temporal and
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topological features of cascades, node attributes, and information content features to infer underlying

diffusion network structure. We refer to this new model as Network Inferring from Multidimensional

Features of Cascades (NIMFC). Also, our model can also be used to track the diffusion pathways of the

information, that is, to infer the edges across which a piece of information was transmitted to the target

nodes in past time. This can be very helpful in locating the source of rumors (or misinformation), or

tracking the information diffusion pathways among criminals.

The rest of the paper is organized as follows. Section 2 briefly surveys related work. In Section 3, we

give an introduction of survival analysis theory used in our model. We describe the probabilistic model

of NIMFC in detail in Section 4. In Section 5, we discuss how to learn the parameters of our model. We

proceed by describing experimental evaluation in Section 6 and conclude in Section 7.

2 Related work

In recent years, a substantial amount of models or algorithms have been proposed for inferring underlying

network structure from observed data. Eagle et al. [16] proposed a method that used time series data of

collected mobile phone to infer weighted friendship network. Kolar et al. [17] attempted to learn time-

varying network structures from multivariate time series. A common feature is that they all treated time

as discrete step rather than a continuous random variable.

Some researchers then attempted to model information diffusion process in continuous time. For

example, Gomez-Rodriguez et al. [9] proposed a model called NETINF which aimed to infer near-optimal

set of k directed edges maximizing the likelihood of observed cascades, and they exploited submodular

function optimization to learn parameters of the model.

Meyers and Leskovec [10] inferred not only the connectivity but also a prior probability of infection for

every edge using a convex program and some heuristics. However, they considered the transmission rate

between all nodes as a fixed constant. Gomez-Rodriguez et al. [8] later proposed a more flexible model

called NETRATE, which used survival theory to model the process of information diffusion between node

pairs. An obvious advantage of this model is that the instantaneous infection rate can be changed over

time with different decaying model, like exponential, power-law, or Rayleigh model. However, all of the

aforementioned methods focused on only temporal features of cascades, ignoring other features like node

attributes or information content, which we believe are also important for inferring underlying network

structure.

Wang et al. [13] proposed a model called MoNET which took into account not only the time differences

between events but also node attributes to solve the problem. Du et al. [14] combined temporal feature

of information cascades and meme content to propose a probabilistic model TOPICCASCADE, which

explicitly modulated the transmission likelihood by the topic distribution of each meme. Yang et al. [18]

considered the problem of simultaneous and entangling diffusion process of multiple memes over a hidden

network, and proposed a probabilistic mixture model over multivariate Hawkes process for diffusion

network inference and meme tracking.

Our work is distinct from those existing works in two aspects: (1) our model provides a uniform

framework which can combine heterogeneous features, including temporal and topological properties

of cascades, node attributes, and information content, to yield a more precise estimation of the latent

network and (2) our model can be extended to track the information pathway. Other models like NETINF,

NETRATE, or MoNET were not clearly announced to be used in information pathway tracking.

We summarize the related work in Table 1 and compare them in several dimensions.

3 Preliminaries

In this section, we will give a brief introduction of survival analysis theory [19], which will be used to

handle temporal feature in our proposed model. Survival analysis deals with analysis of time duration

until one or more events happen, such as death in biological organisms and infection by a infectious disease.
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Table 1 Comparison of methods for diffusion network inferring

Methods
Goals to achieve Features used

Link Transmission Pathway Temporal Node Cascades Information

inference rate inference tracking feature attributes topology content

NETINF
√ × × √ × × ×

NETRATE
√ √ × √ × × ×

MoNET
√ √ × √ √ × ×

TOPICCASCADE
√ √ × √ × × √

NIMFC (our model)
√ √ √ √ √ √ √

The event in this paper is referred to as a piece of information transmitted from one node to another,

or in other words, an “infection”. Let T be a continuous non-negative random variable representing the

waiting time until the occurrence of an event. We assume the probability density function (p.d.f.) f(t)

and cumulative distribution function (c.d.f.) can be written as

F (t) = P (T < t) =

∫ t

0

f(x)dx, (1)

which represents the probability that the event has occurred by time t. The survival function is comple-

ment of F (t) in the form of

S(t) = P (T > t) =

∫ ∞

t

f(x)dx = 1− F (t), (2)

which gives the probability that the event of interest has not occurred by time t. The survival function

is non-increasing, that is, S(ta) � S(tb) if ta > tb and usually one assumes S(0) = 1 and S(t) → 0 as

t → ∞.

The hazard function is instantaneous rate of occurrence of the event at time t conditional on survival

until time t or later, which is defined as

H(t) = lim
dt→0

P (t � T � t+ dt)

dt · S(t) =
f(t)

S(t)
. (3)

Note that from (2), one can get −f(t) being the derivative of S(t), so H(t) can be rewritten as

H(t) =
−S′(t)
S(t)

= − d

dt
logS(t). (4)

Then, we can get S(t) = exp{− ∫ t

0
H(x)dx}.

4 Network structure inferring and information pathway tracking

In this section, we first give a formal definition of the inferring problem, and then build a probabilistic

model by adding different features into it step by step. These features include temporal and topological

features of cascades, node attributes, and information content. Note that all these features can be

extracted from the observed information cascades subtly, without adding any new data set as input.

Last, we describe how to extend NIMFC model to track information pathway.

4.1 Problem statement

Let G(V,E) indicate a social network, and V is the node set and E is the edge set. A contagion spreads

across the network. Because the latent network structure is unknown, we can only get the trace of the

contagion spreading across the network, that is, the “infected ” time of different nodes that are infected by

the contagion. The diffusion trace can be defined as a cascade. It can be represented as a N -dimensional
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vector c := {tc1, tc2, . . . , tcN}, with tci the ith infection timestamp of information c. Let tc denote the upper

bound of different infection time in cascade c. In a considerable long time window T c, we may observe

many information cascades formed by different messages, which form a cascades set C = {c|tc < T c}.
In addition to the observed information cascades, we may also get some other information of a node,

for example, its interested topics, which can be drawn from messages published or forwarded by him in

history. In this paper, for a node’s attributes, we only focus on its interested topics, and this can be

extracted from the observed cascades C. Let’s denote the attributes of node j as a K-dimensional vector,

X(j) = {x(j)
1 , x

(j)
2 , . . . , x

(j)
K }, with x

(j)
i the ith attribute and X = {X(1),X(2), . . . ,X(|V |)}. Then, the

features of information can also be represented as a L-dimensional vector,Y (c) = {y(c)1 , y
(c)
2 , . . . , y

(c)
L }, and

then we have Y = {Y (1),Y (2), . . . ,Y (|C|)}. Here, we only focus on topical features of the information

content, and specifically, we use topic model like latent Dirichlet allocation (LDA) [20] to analyze it.

Therefore, Y (c) can be represented as the topic distribution of the information content of c.

For the underlying network, an adjacent matrix A = {αi,j |i, j ∈ [1, N ], i �= j, αi,j � 0} is defined with

αi,j being the strength or transmission rate of edge ei,j . If αi,j = 0, then there is no link between nodes

i and j, otherwise there is an edge, and a larger αi,j means a larger transmission rate. Parameter αi,j is

unknown and we aim to infer it.

So, the diffusion network structure inferring problem can be formally defined as, given the observed

cascades C, node attributes X, and information content feature Y , finding an estimation of A that can

maximize the likelihood of the observed cascades C, that is,

Â = argmax
A

L(C) = argmax
A

∏
c∈C

P (c|A,X,Y). (5)

The inferred network with adjacent matrix Â is represented as Ĝ.

4.2 Inferring network structure from multidimensional features of cascades

Diffusion state. For cascade c = {tc1, tc2, . . . , tcN} with N infected nodes, if tcj < tci , then node j has

a possibility to infect node i in past time, and we say node j is node i’s potential parent. Note that

the potential parent–child relationship is different from real parent–child relationship in the underlying

network. For an infected node i, all the infected nodes with timestamp smaller than node i are potential

parent of node i, and the number is denoted as M(i). For simplicity, we assume all potential infection

behaviors are independent and a node can only has one parent in a cascade. That is to say, if node i was

infected by node j, then it can’t be infected by all other parental nodes, that is, it survived from all other

parental nodes. We define such a scenario as a diffusion state of node i, which is denoted as Sc
ji. Thus,

node i has M(i) discrete diffusion states, with each diffusion state corresponding to one parental node.

All diffusion states form diffusion state space Sc
i . Figure 2 shows an example of possible diffusion states

of an infected node. The cascade has four infected nodes v1, v2, v3, v4, and their infected timestamps are

t1 = 0, t2 = 2, t3 = 5, t4 = 6. Node v4 has three potential parental nodes corresponding to three diffusion

states. Figure 2(a) shows the diffusion state Sc
14, where node v4 gets infected by node v1 and survives

from other nodes and Figure 2(b) shows the diffusion state Sc
34 where node v4 gets infected by node v3

and survives from other nodes.

We define the possibility distribution of diffusion states space Sc
i as

πc
i = {πc

1i, π
c
2i, . . . , π

c
M(i)i}, s.t.

M(i)∑
j=1

πc
ji = 1, (6)

where πc
ji denotes the possibility of diffusion state Sc

ji.

Different diffusion states may have different possibilities depending on node attributes and information

content, in addition to infection time difference. As shown in Figure 2, although node v3 is temporally

closer to node v4 than node v1, but if taken into consideration their interested topics and the message

content, node v1 may be more likely being node v4’s real parent than node v1, because they are both
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Figure 2 Diffusion states for an infected node. v1, v2, and v3 are potential parents of v4. (a) Diffusion state Sc
14. v4 was

infected by v1 and survived from other nodes; (b) diffusion state Sc
34. v4 was infected by v3 and survived from other nodes;

and (c) each node is assigned with a topic distribution. DM, data mining; NS, network security; HPC, high performance

computing; CV, computer vision.

interested in topics of “data mining” and the message content “KDD 2014” is exactly about “data

mining”.

Basically, our model is based on the following intuitions.

(1) Nodes that share common attributes are likely to spread information to each other, as the saying

goes, “birds of a feather flock together”. Such homophyly effect in social networks has been widely studied

by Crandall et al. and McPherson et al. [21,22].

(2) Nodes that have co-occurrence within the same cascades are likely to have larger strength between

each other than that have not. This property makes a sense in that one can view a cascade as a

group or loose community characterized by the unique information content, and nodes within the same

community have stronger ties than nodes out of the community. Such an effect can accumulate for nodes

within multiple overlapping cascades, that is, if two nodes both occurred in one or two cascades, it may

be a random phenomenon, but if they both occurred in many cascades, then there must be some special

relationship between them. We call such an attribute of a node as cascades affinity (CA), which we will

describe in detail later.

(3) The information content also plays an important role in information diffusion process. In particular,

people tend to read and spread messages they are interested in.

(4) Two infection events closer in time are more likely to be causally related. This is the base of

previous models like NETRATE [8], NETINF [9], and MoNET [13].

Now, we shall proceed by describing how these intuitions are captured by NIMFC in further details.

We will add multidimensional features, including topological and temporal features of cascades, nodes

attributes, and information content feature, into our model step by step.

Modeling topological features of cascades, node attributes, and information content. To

capture how these features influence the transmission behavior, we propose

πc
ji = P (Sc

ji) =
1

Zi
g(zcji). (7)

In (7), zcji is an index that captures dissimilarity among three entities: node j, node i, and meme content

c. In particular, we define zcji as

zcji = d(X(j),X(i)) + d(X(j),Y (c)), (8)

where d(X(j),X(i)) represents distance between node j and node i, and d(X(j),Y (c)) represents the

distance between node j and information content. In (7), g(x) is a monotonic function which satisfies

g(x) : x ∈ [0,+∞) �→ [0, 1], and without loss of generality, here we define

g(x) = e−x. (9)

Zi is a normalizing constant in the form of Zi =
∑

tj<ti
g(zcji).
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Figure 3 Cascades affinity (CA). (a) Overlapping structure of cascades, including c1, c2 and, c3. Nodes v2 and v3 are

potential parents of node v4 in c1 and (b) cascades affinity of different nodes. Jaccard distance of v3 and v4 is smaller than

that of v2 and v4. So, v3 is more likely to be v4’s parent.

Note that in (7), as zcji shrinks, π
c
ji grows and vice versa. In other words, without other information,

if node j and node i are more similar in their interest topics and cascades affinity (CA), the possibility

node j being node i’s parent is higher. The same is for node j and meme content c.

Now, we describe the feature extraction process as follows.

(1) Information content features. We focus on the topical features which can be readily obtained using

standard topic model such as LDA [20].

(2) Node attributes. We exploit two kinds of features in particular. The first is topic distribution of

a node, denoted as θi. For a node, the content of all cascades that occurred to him together reflects his

topic distribution, which can be obtained in the way of information content feature extraction. The other

is CA of a node, which is extracted from the topology of cascades as below.

(3) Topological features of cascades. The overlapping structure of cascades is shown in Figure 3. Node

i’s CA is the set of cascades that the node participates in, which can be obtained by examining all cascades

that occurred to node i. Figure 3 gives a simple example of a node’s CA. Node vi’s CA is denoted as

CA(i). In Figure 3, node v3’s CA is CA(3) = {c1, c2, c3}, while node v5’s CA is CA(5) = {c1, c3}.
Next, as for the choice of distance function d(·, ·), we propose that

(1) For topical similarity, a good choice would be Kullback–Leibler divergence DKL(θi, θj), which

measures the difference between two discrete probability distributions. Assuming there are K topics,

then Kullback–Leibler divergence can be represented as

DKL(θi, θj) =

k=K∑
k=1

ln

(
θi(k)

θj(k)

)
θi(k), (10)

where θi(k) represents the kth element of vector θi.

(2) For node’s CA, Jaccard distance is suitable here, that is,

DJ (i, j) = 1− J(CA(i),CA(j)) =
|CA(i) ∪ CA(j)| − |CA(i) ∩ CA(j)|

|CA(i) ∪ CA(j)| , (11)

where J(CA(i),CA(j)) is Jaccard similarity coefficient of CA(i) and CA(j).

The above model captures the influence of cascades topological features, node attributes, and infor-

mation content on transmission probability. Next we will incorporate temporal features of cascade into

our model.

Modeling temporal features of cascades. We define transmission function from node j to node

i as f(ti|tj ;αj,i), which is the conditional likelihood of an event happening to node i at time ti given

that the same event has already happened to node j at time tj . The value depends on time difference

Δj,i = ti − tj and transmission rate αj,i. It captures the temporal distance between two successive

events from node j to i. If αj,i = 0, then it means that directed edge j → i doesn’t exist in underlying

network, and f(ti|tj ;αj,i) = 0, h(ti|tj ;αj,i) = 0. Three models are often used for function f(ti|tj ;αj,i),

that is, exponential model, power–law model, and Rayleigh model. In this paper, we use Rayleigh

distribution to model transmission likelihood, where the infection possibility increases fast to a peak and

then drops slowly. This Rayleigh distribution is widely used to model epidemiology [23] and information
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diffusion [13,14]. The likelihood function for Rayleigh model is

αj,i(ti − tj) exp

{
− αj,i

(ti − tj)
2

2

}
, (12)

where the survival function and hazard function are exp
{− αj,i

(ti−tj)
2

2

}
and

αj,i

(ti−tj)
, respectively.

First, let us consider the infected nodes in cascade c. In the diffusion state Sc
ji, node i was infected by

node j, and it survived from all other parental nodes. Let Lc,+
ji represent the likelihood of Sc

ji, when we

only consider temporal feature of cascade c, that is,

Lc,+
ji = P (Sc

ji) = f(tci |tcj ;αj,i)
∏

tck<tci ,k �=j

S(tci |tck;αk,i). (13)

Merging all features together. The likelihood of node i being infected at time ti, given other

infected timestamps, can be obtained by summing over all diffusion states Sc
ji of node i and incorporating

factor of πc
ji, that is,

Lc,+
i =

∑
tcj<tci

πc
jiM(i)Lc,+

ji =
∑
tcj<tci

πc
jiM(i)f(tci |tcj ;αj,i)

∏
tc
k
<tci ,k �=j

S(tci |tck;αk,i)

=
∑
tcj<tci

πc
jiM(i)H(tci |tcj ;αj,i)

∏
tck<tci

S(tci |tck;αk,i). (14)

The term πc
ji in (14) serves as a bias for different diffusion state Sc

ji, and it can be viewed as a weight of

Lc,+
ji in final likelihood Lc,+

i .

Note that, besides the infected nodes within cascade, there are also nodes not infected by the meme

until time T c. Next we consider the uninfected nodes outside cascade c. If node i is not infected by any

nodes within cascade c, we say it survives from all the infected nodes within cascade c until time window

T c. Let Lc,−
i denote the likelihood of such situation for node i, then we get

Lc,−
i =

∏
tcj<tc

S(T c|tcj ;αj,i)). (15)

Then, by combining the above two components together, we can obtain the overall likelihood of a cascade,

that is,

L(c) =
∏
tci<tc

Lc,+
i

∏
tci>tc

Lc,−
i

=
∏
tci<tc

{ ∑
tcj<tci

πc
jiM(i)H(tci |tcj ;αj,i)

∏
tck<tci

S(tci |tck;αk,i)
} ∏

tci>tc

∏
tcj<tc

S(T c|tcj ;αj,i)). (16)

Assuming all cascades are independent, the likelihood of cascades set C can be written as a product of

these individual cascade likelihoods (in the form of logarithm), that is,

L(C) = log
∏
c∈C

L(c) =
∑
c∈C

logL(c). (17)

Specially, we can write

L(C) = Ψ1 +Ψ2 +Ψ3, (18)

with

Ψ1 =
∑
c∈C

∑
tci<tc

log
∑
tcj<tci

πc
jiM(i)H(tci |tcj ;αj,i),

Ψ2 =
∑
c∈C

∑
tci<tc

∑
tck<tci

log S(tci |tck;αk,i),

Ψ3 =
∑
c∈C

∑
tci>tc

∑
tcj<tc

logS(T c|tcj ;αj,i)).

(19)
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4.3 Information pathway tracking

The proposed model NIMFC can be further extended to track the diffusion pathway of contagion spatially

across the network. The main idea for diffusion pathway tracking is, given a cascade c and infected nodes

within c, to infer the most likely parent for each infected node. In real world, a node within c may be

infected by nodes outside c or even nodes outside the network G, but here we take the assumption that

an infected node can only be infected by nodes within cascade c. Let parentc(i) denote node i’s real

parent. Based on the value of transmission rate αj,i, i, j ∈ [1, N ], we propose

parentc(i) = argmax
j,tcj<tci ,αj,i �=0

∑
tcj<tci

πc
jiM(i)Lc,+

ji = argmax
j,tcj<tci ,αj,i �=0

πc
jif(t

c
i |tcj ;αj,i)

∏
tck<tci ,k �=j

S(tci |tck;αk,i)

= argmax
j,tcj<tci ,αj,i �=0

πc
jiH(tci |tcj ;αj,i)

∏
tck<tci

S(tci |tck;αk,i). (20)

The edge from parentc(i) to node i is the path which the contagion takes to spread to node i. By

linking all these selected edges within cascade c, we can recover the whole picture of information spreading

history across the underlying network, as shown in Figure 1(d).

5 Optimization algorithm

The maximization of L(C) in (18) can be transformed and decomposed into N independent subproblems,

with each corresponding to one specific node in network G. The subproblem with respect to node i can

be defined as

maximize
{αj,i}N

j=1

Li({αj,i}Nj=1), s.t. αj,i � 0, (21)

where

Li({αj,i}Nj=1) =
∑

{c|tci<tc}
log

∑
tcj<tci

πc
jiM(i)H(tci |tcj ;αj,i) +

∑
{c|tci<tc}

∑
tcj<tci

log S(tci |tcj ;αj,i)

+
∑

{c|tci>tc}

∑
tcj<tc

logS(T c|tcj ;αj,i)). (22)

Note that in real world the diffusion networks are often sparse. To guarantee such a property and to avoid

overfitting, we add an l1-norm (Lasso) [24] regularization to (21). Then, we can rewrite the optimization

subproblem as

maximize
{αj,i}N

j=1

Li({αj,i}Nj=1)− λ

N∑
j=1

|αj,i|, s.t. αj,i � 0, (23)

where λ is a regularization parameter.

By Using l1-norm regularization, the algorithm will yield a sparse network structure with some of

the parameter estimations being exactly zero. If αj,i = 0, then there is no edge between node i and

node j. The larger the value of λ, the further some parameter estimations will shrink toward zero. Note

that Li({αj,i}Nj=1) is a convex differentiable function and
∑N

j=1 |αj,i| is separable. For such optimization

problem, one can use blocked coordinate descent to obtain the global maximum, which is proved by Tseng

and Mangasarian [24].

The coordinate descent procedure starts with some initial guess like {α(0)
j,i = 0}Nj=1 and repeat for

k = 1, 2, 3, . . . , kmax. In every loop, we iteratively update each element of {αj,i}Nj=1 while keeping all
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other parameters fixed, that is,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

α
(k)
1,i = argmax

α1,i>0
Li(α1,i, α

(k−1)
2,i , α

(k−1)
3,i , . . . , α

(k−1)
N,i )− λ|α1,i|,

α
(k)
2,i = argmax

α2,i>0
Li(α

(k)
1,i , α2,i, α

(k−1)
3,i , . . . , α

(k−1)
N,i )− λ|α2,i|,

· · ·
α
(k)
N,i = argmax

αN,i>0
Li(α

(k)
1,i , α

(k)
2,i , . . . , α

(k)
N−1,i, αN,i)− λ|αN,i|.

(24)

Note that after we update α
(k)
j,i , we use its new value from then on. We stop iterating once the likelihood

does not increase (by at least 0.01%) after a full iteration over all αj,i. In the following presentation, for

the sake of notational convenience, we let Q
(k)
j,i denote Li(α

(k)
1,i , . . . , α

(k)
j−1,i, αj,i, α

(k−1)
j+1,i , . . . , α

(k−1)
N,i )−λ|αj,i|.

For each α
(k)
j,i in (24), because Li({αj,i}Nj=1) is convex, we use projected gradient ascent method. The

gradient can be computed straightforwardly as

∂Q
(k)
j,i

∂αj,i
=

∂Li(α
(k)
1,i , . . . , α

(k)
j−1,i, αj,i, α

(k−1)
j+1,i , . . . , α

(k−1)
N,i )

∂αj,i
− λ. (25)

Then, we update α
(k)
j,i by a step toward the direction of gradient ascent. Because of the constrain of

α
(k)
j,i � 0, we project α

(k)
j,i to a non-negative value in [0,+∞), that is,

α
(k)
j,i := max

(
0, α

(k)
j,i + δ

∂Q
(k)
j,i

∂αj,i

)
, (26)

where δ is a learning rate.

Tuning of parameter. For l1-norm penalty, large value of λ tends to shrink some αj,i to be exactly

zero, and thus imposes a sparse structure on network G. To tune parameter λ, we use cross-validation

approach to test what value of λ can yield the best result on test data.

The whole algorithm is summarized in Algorithm 1.

Algorithm 1 NIMFC: Network Inferring from Multidimensional Features of Cascades

1: INPUT: C = {c|tc < T c}, X = {X(1) ,X(2), . . . ,X(|V |)}, Y = {Y (1),Y (2), . . . ,Y (|C|)}
2: OUTPUT: A = {αi,j |i, j ∈ [1, N ], αi,j � 0}
3: computation of {πc

ji}i,j∈[1,N],c∈C

4: for i = 1 to N do

5: initialize: {α(0)
j,i = 1}Nj=1

6: while no convergence do

7: for j = 1 to N do

8: while no convergence do

9: computation of
∂Q

(k)
j,i

∂αj,i
according to (24) and (25)

10: α
(k)
j,i := max

(
0, α

(k)
j,i + δ

∂Q
(k)
j,i

∂αj,i

)

11: end while

12: end for

13: k = k + 1

14: end while

15: end for

6 Experiments

In this section, we will evaluate our model on both synthetic data set and real-world data set,which is

crawled from China’s most popular online social media Sina Weibo. We choose two non-trivial models

NETRATE and MoNET as baselines. For NETRATE, MoNET, and our model, we all use Rayleigh

distribution to fit the diffusion process.
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6.1 Experiment on synthetic data

We made synthetic data by generating social networks and information cascades on it which mimic

information diffusion scenarios in real-world social networks. In such a situation, the structure of the

network and transmission rate along each edge is predefined and can serve as ground truth when we

quantify the performance of different models.

Network generation. We used the Kronecker graph model [25] to generate three types of directed

diffusion networks: (1) core-periphery network with parameters ([0.9, 0.5; 0.5, 0.3]), (2) hierarchical

Kronecker network with parameters [0.9, 0.1; 0.1, 0.9], and (3) random network with parameters [0.5,

0.5; 0.5, 0.5]). Each type of network has 2000 nodes.

Topics generation. Each node i is assigned with a topic distribution, which can be represented as

a K-dimension vector θi. It is convenient to use a symmetric Dirichlet distribution Dir(βi) to generate

θi. The value βi can be drawn from uniform distribution (0, 1). Then, we sample K-dimension vector θi
from Dir(βi) for each node i. Note that βi < 1 guarantees a sparse distribution over topics for node i,

that is, node i’s interest focuses on a small set of topics.

Cascade generation. For a cascade c, root node i is uniformly chosen at random. Then, the topic

distribution of meme content is drawn from Dir(βi). The edge ei,j is assigned with a transmission rate

αi,j , which has a negative correlation with zci,j . Without loss of generality, we set αi,j = (zcj,i)
−1 + ε,

where ε ∼ N(0, σ2) represents a noise. The infected time tci of root node i is set to 0. Once node i is

infected, its neighbor has a possibility of being infected by it with a time delay Δc
j,i = tcj − tci , where

Δc
j,i is drawn from Rayleigh distribution specified by parameter αj,i. The diffusion processes carry on in

a breadth-first fashion until they exceed a predefined observation time window T c or there are no more

nodes that can be infected.

Experiment setup. For each type of network, we generate five sets of cascades respectively, with the

cascade number varying from 1000, 3000, 5000, 10000 to 15000. The parameter λ in (23) is tuned by

fourfold cross validation.

We implement NIMFC based on Stanford Network Analysis Platform (SNAP)1).

Evaluation metrics. We evaluate the performance of three models via two measures. First, we

consider F1 score with definition of F1 := 2·precision·recall
precision+ recall , where precision is the fraction of edges in the

inferred network Ĝ that are also present in the true network G∗, and recall is the fraction of edges of the

true network G∗ that are also present in the inferred network Ĝ. The second metrics is mean relative

error (MRE). MRE = E[|α∗ − α̂|/α∗], where α∗ is the true transmission rate and α̂ is the estimated

transmission rate. The first measure is used to quantify the ability of three models for recovering latent

network structure, while the other gives a deeper examination on the performance of inferring detailed

transmission rate for the right inferred edges.

Experiment results. In Figure 4 (a)–(c), we display F1 scores for NETARTE, MoNET, and NIMFC

on three types of synthetic networks as we increase the cascades number from 1000 to 15000. We compare

the performance of three models for three types of networks, respectively. In all cases, we can see that

as cascades number increase, the F1 scores of three models increase fast first and then get steady slowly.

Three models all suffer from sparsity of data set when the number of cascades in smaller than 5000. Note

that NIMFC outperforms NETARTE and MoNET consistently for each type of networks. For random

network, the performance improvement of NIMFC is not as large as that in core–periphery network and

hierarchy network. We expect that in social network with strong community structure, like core-periphery

network and hierarchy network structure, the cascades structure shows strong topological properties,

which can help to yield a better result, while for random network without community structure, the

topological properties are weak.

Figure 4 (d)–(f) show the MREs of inferred transmission rates for NETARTE, MoNET and NIMFC

on three types of synthetic networks. For the right inferred edges, we know the true transmission rates

in advance, so we can test how close the inferred transmission rate is to the real one quantitatively.

We observe that when cascade number is small (less than 3000), NIMFC shows no advantage over the

1) http://snap.stanford.edu.
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Figure 4 (a) F1 scores of network inferring for core–periphery structure network; (b) F1 scores of network inferring for

hierarchy structure network; (c) F1 scores of network inferring for random network; (d) MREs of transmission rate inferring

for core–periphery structure network; (e) MREs of transmission rate inferring for hierarchy structure network; (f) MREs of

transmission rate inferring for random network.

baselines, even with a worse performance. As cascade number increases, the performance improvement

of NIMFC over NETARTE and MoNET is augmented, and after cascade number increases to 10000,

the improvement gets steady. The reason behind is with a large number of cascades, NIMFC can model

node topic distribution and node CA feature more accurately, while with sparse data set, such additional

information may be noisy and useless. We see that when the cascades number is larger than 10000, the

MRE of NIMFC can reduce to below 15% for all three types of networks. That means our model can

give an evaluation of transmission rate with a mean accuracy exceeding 85%.

Running time of NIMFC. We run the inference problem on a DELL server with 2 Xeon 2.26 GHz
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Table 2 Performance comparison in terms of network structure inferring

Model Recall Precision F1 score Log-likelihood (on test data)

NATERATE 0.62 0.59 0.60 −4.6

MoNATE 0.68 0.61 0.64 −4.1

NIMFC 0.85 0.82 0.83 −2.2

CPUs and 16 GB memory. The main process in Algorithm 1 contains two parts: precomputation of πc
ji

and iterations of coordinate descent procedure. For a network of 2000 nodes, the precomputation of πc
ji

can be completed in no more than 1 min. The running time of coordinate descent procedure depends on

the cascades number and cascades length, and in our experiment the average time is about 2 min. Note

that, here we only use one core of the CPU. For larger scale networks, because the N subproblems are

independent, we can speed up the optimization procedure by running it on multicores in a parallel style.

6.2 Experiment on real data

Data description. We crawled a subset of users from Sina Weibo, including their profiles and messages

in a breadth-first way from March of 2013 to March of 2014. Then, a directed graph is built with each

node representing a user and each edge representing a following relationship. The network has 61605

nodes and 1631228 edges. For cascade extraction, we characterize a topic by one hashtag or some similar

hashtags. The forwarding of messages, including hashtags that are related to the same topic generalizes

a cascade. For example, hashtags like #Ukraine riots# or #Ukraine crisis# represent riots breaking

out in Ukraine in January 2014, while hashtag like #Andrew Ng joining Baidu# represents the topic

of Andrew Ng, the founder of “Google Brain”, joining Baidu. Note that topics like “Ukraine crisis” are

more popular and discussed by many people, while topics like #Andrew Ng joining Baidu# may be more

“local” and “specific”. We prefer the latter when using them to infer the network structure. Another way

for extracting cascade is to use Uniform Resoure Locator (URL) in Weibo messages. Finally, we extract

10600 cascades, and the average size of these cascades is 32.4. Totally, 35065 unique users participate in

at least one cascade.

Metrics. we choose the following evaluation metrics. The first is F1 score which is described before.

The other is average log-likelihood of cascades in test data set. Because in real data set, the ground

truth of transmission rate is unknown to us, we use this measure to test how well the transmission rates

inferred from the train dataset can fit the test dataset. To test the performance of pathway tracking of

our model, we designed the third measure, that is, average accuracy of inferred cascade pathways. For a

cascade c, assuming the number of nodes with right inferred parents is TP(c), and the number of nodes

within c is |c|, then accuracy of c is TP(c)/|c|. For NETRATE model and MoNET model, because they

are not explicitly proposed to be used in pathway tracking, for the need of comparison, we use similar

methods like (20) to infer the pathways.

Experiment results. First, we use all the data set as input to infer possible edges in real network.

We get the best F1 score for each model and at the same time we record the recall and precision values,

as shown in Table 2. Table 2 displays the results for the three models.

First, we compare the F1 scores. This measure is to test the performance of recovery of underlying

network structure. The NETRATE model performs worst with a score of 0.60 and the MoNET model

makes a better result with a score of 0.64. Our model gives the best result of 0.83, achieving a 38.3%

relative improvement over NETRATE and a 29.7% relative improvement over MoNET. At this point,

the recall value is 0.85 and the precision value is 0.82. Considering we are using a sparse and noisy data

set with only 10600 cascades, we think this a remarkable result.

Similarly, from Table 2 we can see the results of log-likelihood of test data. NETRATE and MoNET

get log-likelihood values of −4.6 and −4.1, respectively, while NIMFC gets a result of −2.2, which is about

two orders of magnitude higher than that of NETRATE and MoNET. That means with node attributes,

cascade structure, and information content merged into our model, we can infer the transmission rate for

pairwise nodes more accurately.

For the second metrics, we use fourfold cross-validation approach, that is, to use 3/4 of the data set as
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Table 3 Performance comparison in terms of information pathway tracking

Cascade length < 40 40–100 > 100 Average accuracy

NATERATE 0.38 0.29 0.26 0.325

MoNATE 0.42 0.33 0.30 0.364

NIMFC 0.76 0.65 0.57 0.683

training data to learn the transmission rate of each edge and calculate the log-likelihood of the left 1/4

data set. The results of information pathway tracking are illustrated in Table 3. We list the accuracy for

different ranges of cascades length and finally the weighted average accuracy.

First, one can see that as the cascades length increases, it gets harder to track the information pathway

accurately for all three models. For cascades with length below 40, the results of three models are 0.38,

0.42, and 0.76, respectively. For cascades with length above 100, the results of three models reduce to

0.26, 0.30 and 0.57 respectively.

Second, baseline models perform poorly on the data set. They get weighted average accuracy of

0.325 and 0.364, respectively, while NIMFC yields a value of 0.683, which is 110.2% higher than that

of NETRATE or 87.6% higher than that of MoNET. As explained before, this is mainly due to the

fact that in real social networks like Weibo, node attributes and information content play an important

role in information diffusion process. NETRATE only focuses on temporal features when modeling node

pairwise transmission behavior, resulting in a situation something like “under-fitting”. While MoNET

takes into consideration the influence of node attributes, it ignores the factor of information content.

Third, the average accuracy of NIMFC model indicates that besides the correctly inferred pathways,

there are still considerable information pathways that are not correctly inferred. For the pathways inferred

incorrectly, a possible explanation is that in real world, user’s behaviors of choosing to forward or not

to forward a message, or choosing to forward what message, are often with some randomness and the

information diffusion process may also be influenced by external factors. These factors increase the

complexity when inferring information pathways, and they will be covered in our future work.

In summary, the above values in Tables 2 and 3 clearly show that the topological features of cascades,

node attributes, and information content jointly play a crucial role in the information diffusion process.

This fully justifies our will to take into account these heterogeneous features when inferring the network

structure and tracking information pathways.

7 Conclusion and future work

In this paper, we developed NIMFC, a novel probabilistic model for social network structure and trans-

mission rate inferring. Our model extracts multidimensional features from observed information cascades,

including temporal, and topological features of cascades, node attributes and information content feature.

We extend NIMFC model to track information diffusion pathways in social networks, which can give us a

deeper insight into the dynamics of information diffusion. We compare the performance of NIMFC with

state-of-the-art baselines on synthesis and real-world data set, and it turns out that by incorporating

heterogeneous features of cascades, NIMFC can improve performance both in terms of network structure

recovery and transmission rate inferring. These works may improve our understanding of the dynamics

of information diffusion and serve as a base for managing propagation in social networks.

The proposed model is an open framework and some future works may include exploiting new features

of nodes (e.g., location and education background) and information content (e.g., sentiment feature) for

better inferring, taking into consideration external influence [26] outside the diffusion network to build

a more realistic model and applying the inferred results to influence maximization, rumor detection,

epidemic immunization, and others.
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