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Abstract In this paper, we investigate the multiple-input multiple-output (MIMO) transceiver design under

an interesting power model named mixed power constraints. In the considered power model, several antenna

subsets are constrained by sum power constraints while the other antennas are subject to per-antenna power

constraints. This kind of transceiver designs includes both the transceiver designs under sum power constraint

and per-antenna power constraint as its special cases. This kind of designs is of critical importance for distributed

antenna systems (DASs) with heterogeneous remote radio heads (RRHs) such as cloud radio access networks

(C-RANs). In our work, we try to solve the optimization problem in an analytical way instead of using some

famous software packages e.g., CVX or SeDuMi. In our work, to strike tradeoffs between performance and

complexity, both iterative and non-iterative solutions are proposed. Interestingly the non-iterative solution can

be interpreted as a matrix version water-filling solution extended from the well-known and extensively studied

vector version. Finally, simulation results demonstrate the accuracy of our theoretical results.

Keywords Convex optimization, MIMO, matrix-version water-filling, transceiver designs, mix power con-

straints.
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1 Introduction

With channel state information (CSI), multiple-input multiple-output (MIMO) transceiver designs can

significantly improve the performance of the considered communication systems [1–5]. For transceiver

designs, power constraints are the most natural and fundamental constraints that should be carefully

addressed. With an antenna array deployed at transmitter, the most widely used power constraint is sum

power constraint i.e., the sum of transmit powers at different antennas is smaller than a threshold [1,2,4].

Later individual power constraint or per-antenna power constraint has been recognized as a more practical
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one than sum power constraint. The reason is that in practice each antenna has its own amplifier and is

limited individually by its own amplifier’s maximum power threshold [6–8].

An interesting question is whether the sum power constraint is impractical and meaningless. The

answer is definitely “not”. Although different antennas have their own individual amplifiers, it has been

shown in [9] that when each amplifier has the same power constraint, the gap between the designs with

individual power constraint and sum power constraint is very small and almost negligible. Importantly,

the design under sum power constraint is much easier than its counterpart under individual power con-

straints [7, 10, 12]. It can be concluded that if the wireless terminal is equipped with the same style

antennas sum power constraint is a reasonable assumption in the sense of engineering designs and this

may be the reason why sum power constraints are always chosen for transceiver designs [1, 2, 4].

On the other hand, can we say individual power constraints are less important. The answer is also

“not”. For some special network architectures, e.g., distributed antenna systems (DASs) [12], the largely

separated distributed antennas can have different sizes and then to avoid a drastic performance degra-

dation, individual power constraints cannot be replaced by a simple sum power constraint [8, 13, 17].

Regarding this fact, individual power constraints (per-antenna power constraints) have attracted a lot

of attention from wireless researchers in various areas [13–16]. However the transceiver designs under

individual power constraints are more challenging than their counterparts under sum power constraint,

in most cases the design problems can still be cast into standard convex optimization problems such

Semi-definite programming (SDP), Second order Cone Programming (SOCP), etc. Then they can be

efficiently solved by using some well-known software toolboxes [13]. In some special cases, relying on

Lagrange dual functions, the considered optimization problems can be efficiently solved by sub-gradient

methods [14].

Both sum power constraint and individual power constraint are important for wireless designs. The

design with sum power constraint is much simpler as it has less constraints and then less Lagrange

multipliers to compute. On the other hand, the design with individual power constraint is more realistic

and usually has better performance for DASs especially when antennas are powered by amplifiers with

different specifications. It should be highlighted that sum power constraint cannot be considered as a

special case of individual power constraint although individual power constraint is much stricter. In

this paper, we take a further step to investigate a more general case named mixed power constraint.

Under mixed power constraint, for a given set of antennas, several subsets of the antennas are subject to

sum power constraints and the other antennas have their own individual power constraints. This design

can realize a tradeoff between sum power constraint and individual power constraint/per-antenna power

constraint. In our design, the antennas of the same size at a certain wireless terminal can be taken as a

cluster under a sum power constraint at the expense of a slight performance loss. Then the corresponding

computation procedure is significantly simplified.

Actually, this kind of power constraint can be applied to several practical scenarios. For example,

in a cloud radio access network (C-RAN), radio units are separated from baseband units (BBUs) and

installed distributively. To realize a dense and seamless coverage, the remote radio heads (RRHs) may

have different settings, e.g., different sizes, different antenna elements and so on [21]. For each RRH,

more than one antenna can be installed and these antennas have the same specifications. Therefore at

each RRH the power constraint can be modeled as sum power constraint with slight or even negligible

performance loss, while among different RRHs it is natural to choose individual power constraints to

avoid significant performance losses.

A natural question is how to design the transceivers under mixed power constraints, numerically or

analytically? Recently, an interesting and excellent work shows that even under individual power con-

straints, an analytical iterative method can be used to give satisfied solutions [9]. This work motivates

the authors to think whether this logic can be extended to the transceiver design with mixed power

constraints and the final solutions can be derived in much simple closed forms without too many math-

ematical symbols. Complicated mathematics can reveal some important performance bounds, however

too many mathematical symbols and substitutions in the formulation will bury its physical meanings

and prohibit the practical implementations. For engineers, the solutions should be as simple as possible.
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Motivated by these facts, we try to solve the optimization problem in a much simpler manner. The main

contributions of this work are listed as follows.

• Firstly, in our work we investigate the transceiver design under mixed power constraint which can realize

any tradeoff between sum power constraint and per-antenna power constraint. From the theoretical

viewpoint mixed power constraint includes both sum power constraint and per-antenna power constraint

as its special cases. To the best of our knowledge, it is the first time to investigate the transceiver designs

for MIMO systems under mixed power constraints.

• Secondly, the formula of the optimal solution of the transceiver design under mixed power constraint

has been derived. Here, we would like to highlight that the derivation logic of our work is significantly

different from that in [4,9]. In the special case with only per-antenna power constraints, compared to [9]

our derivation procedure does not need case by case discussions i.e., classifying channel matrices into tall

matrices or fat matrices.

• Thirdly, in our work except an iterative solution, a non-iterative solution is proposed as well, which

does not need iterations and can be interpreted as a matrix version water-filling solution. It is shown by

simulation results that the non-iterative solution has a satisfied performance.

• Finally, for our work there is no constraint on the rank of channel matrix, however in the existing

work [9] the channel matrix should be column full rank or row full rank.

Notation: Throughout this paper, the following notations are used. First, boldface lowercase letters

denote vectors and boldface uppercase letters denote matrices, respectively. Transpose and Hermitian

transpose of a matrix are denoted by (·)T and (·)H. Tr{·} and rank(·) are used to represent the trace and

the rank of a matrix, respectively. The symbol E{·} represents the expectation operation. IM denotes

the M ×M identity matrix. In addition, Tr(Z) is the trace of the matrix Z. The notation Z1/2 is the

Hermitian square root of the positive semidefinite matrix Z. The symbol [Z]i,j represents the {i, j}th

element of the matrix Z. For two Hermitian matrices, C � D means that C−D is a positive semi-definite

matrix.

2 System Model and Problem Formulation

In this work, we consider a simple point-to-point MIMO system. The received signal equals y = Hx+n

where x is the transmitted signal from the source with covariance matrix Q and H is the MIMO channel

matrix. In addition, n denotes additive Gaussian noise and the noise covariance matrix is Rn. For MIMO

systems, transmitter at source node can be understood as a spatial filter and optimizing transmitter is

equivalent to optimizing Q. For the system model y = Hx + n with Gaussian distributed noises, the

optimal receiver isG = QHH(HQHH+Rn)
−1 [2], which is also a function ofQ. Therefore, the considered

transceiver optimization problem becomes how to optimize Q.

Based on the discussions above, the capacity maximization problem for a point-to-point MIMO system

under mixed power constraint is formulated as

max log|I+HQHHR−1
n |

s.t.
∑

j∈ψk

{eHj Qej} 6 pk,

Q � 0. (1)

where Q denotes the covariance matrix of the transmitted signal and H is the MIMO channel matrix. In

addition, the noise covariance matrix is Rn. The symbol ej denotes the vector with the jth element being

1 and the other elements being zeros. Furthermore, ψk is a subset of the antenna index set {1, 2, · · · , N},

and notice that for k1 6= k2, ψk1 ∩ ψk2 = ∅ and ∪ψk = {1, 2, · · · , N}. The antennas in the same ψk are

subject to a certain sum power constraint.

Due to various antenna settings, i.e., the number of transmit antennas is larger or smaller than that of

receiver antennas, the channel matrix H may be a tall or fat matrix. To avoid case-by-case discussions,

exploiting the fact that the considered objective function is continuous an auxiliary variable α is intro-

duced first and then the following optimization problem will have the same optimal solution as that of
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the original optimization problem (1)

max
Qk

lim
α→0

log|I+ (HHR−1
n H+ αI)Q|

s.t.
∑

j∈ψk

{eHj Qej} 6 pk

Q � 0. (2)

Inspired by this fact, in the next section we will concentrate our attention on the following optimization

problem whose optimal solution is in nature a function of α and then we should take the limit α → 0 on

the derived optimal solution in order to achieve the exact optimal solution

max
Q

log|I+ (HHR−1
n H+ αI)Q|

s.t.
∑

j∈ψk

{eHj Qej} 6 pk

Q � 0. (3)

3 Matrix Version Water-Filling Solution

Introducing the auxiliary variables dk’s as the corresponding Lagrange multipliers to the k power con-

straints, the Lagrange function of the optimization problem (3) is given as

L(Q, {dk},Ψ) =log|I+ (HHR−1
n H+ αI)Q|+

∑

k

{dk[pk −
∑

j∈ψk

{eHj Qej}]}+Tr(ΨQ)

=log|I+ (HHR−1
n H+ αI)Q|+

∑

k

{dkpk} −
∑

k

{Tr(DQ)} +Tr(ΨQ) (4)

where D is a diagonal matrix defined as

[D]j,j = dk j ∈ ψk. (5)

Notice that the diagonal elements of D, dk’s, must be positive. Additionally, the Hermitian matrix Ψ is

the corresponding Lagrange multiplier of the constraint Q � 0. Based on convex optimization theory, if

dk = 0 it means that its corresponding power constraint is inactive and in other words this constraint can

be simply removed from the considered optimization problem. For a practical wireless system, with proper

interference mitigation, increasing transmit power seems always beneficial to the whole performance (at

least not harmful). In this paper, we only consider active power constraints.

For the simplicity of exposition, defining a new matrix given as H , (HHR−1
n H+αI)1/2 and H = H

H

and substituting H into (4), the Karush-Kuhn-Tucker (KKT) conditions of (3) can be derived to be

H
H(I+HQH

H)−1
H = D−Ψ

dk[pk − Tr(
∑

j

{eje
H
j }Q)] = 0

dk > 0, Tr(QΨ) = 0, Ψ � 0
∑

j∈ψk

{eHj Qej} 6 pk, Q � 0, (6)

where the first KKT condition comes from ∂L(Q, {dk},Ψ)/∂Q = 0. As the optimization problem (1) is

convex, the KKT conditions are the necessary and sufficient conditions for optimal solutions [22]. Based

on the first KKT condition in (6), the covariance matrix Q can be solved to be

Q = (D−Ψ)−1 − (HH
H)−1

= [D1/2(I−D−1/2ΨD−1/2)D1/2]−1 − (HH
H)−1
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= D−
1

2 [(I−D−
1

2ΨD−
1

2 )−1]D−
1

2 − (HH
H)−1. (7)

Note that as the term (I−D−1/2ΨD−1/2)−1 has a complicated mathematical formula for further analysis

and derivation, introducing an auxiliary matrix Π we will use a new formulation of (I−D−1/2ΨD−1/2)−1

for further analysis, i.e.,

(I−D−1/2ΨD−1/2)−1 , I+D1/2ΠD1/2, (8)

where Π is a positive semi-definite matrix that replaces the role of Ψ. Substituting (8) into (7), we

directly have

Q = D−1 − (HH
H)−1 +Π, (9)

based on which it can be seen that the term Π guarantees that Q is positive semi-definite. Then the

problem we are faced with is what characteristics Π owns can guarantee a suitable Ψ can be computed.

Conclusion 1: In order to find a suitable Ψ, Π must satisfy

Tr[(I−D1/2(HH
H)−1D1/2 +D1/2ΠD1/2)D1/2ΠD1/2] = 0. (10)

Proof. See the Appendix in Appendix A.

Based on the following eigenvalue decomposition (EVD) with eigenvalues in decreasing order

I−D1/2(HH
H)−1D1/2 = UMΛMUH

M, (11)

Conclusion 1 will be satisfied if the following equality holds

D1/2ΠD1/2 = UMΛ−

MUH
M, (12)

where the symbol − is defined as for a diagonal matrix Z with X = [Z]− if [Z]i,i > 0, [X]i,i = 0 and

otherwise [X]i,i = −[Z]i,i. It is obvious that the term Π in (9) guarantees D−1− (HH
Hk)

−1 is a positive

semi-definite matrix. Based on (12) and the following EVD with eigenvalues in decreasing order

D−1/2(HH
H)D−1/2 = UMΛ̃MUH

M (13)

the optimal solution of Qk in (9) is further rewritten as

Q = D−1/2UM

(

I− Λ̃−1
M

)+

UH
MD−1/2 (14)

where the symbol [Z]+ denotes that for the Hermitian matrix Z if the ith largest eigenvalue is negative,

if λi(Z) < 0 the operation + will set λi(Z) = 0. It is worth noting that the formulation (14) is not the

exactly the optimal solution for the original optimization problem (1) as it is still a function α. Only if

α→ 0, (14) will become to be the optimal solution of the original optimization problem (1).

Without loss of generality, assuming the number of nonzero singular values of H is K, the following

singular value decomposition is first defined as

HHR−1
n H = UH

[

ΛH 0

0 0

]

UH
H (15)

where the diagonal elements of the K × K diagonal matrix ΛH are positive real values in decreasing

order. Together with the relation limα→0 H
H
H = HHR−1

n H = [UH]:,1:KΛH[UH]H:,1:K . When α → 0,

for the diagonal matrix Λ̃M in (14) only the first K diagonal elements are nonzero and the remaining

diagonal elements tend to be zero. Therefore, we will have the following equation

lim
α→0

Q =D−1/2UM

(

I− Λ̃−1
M

)+

UH
MD−1/2

=D−1/2[UM]:,1:K

(

I− [Λ̃M]−1
1:K,1:K

)+

[UM]H:,1:KD−1/2. (16)
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In addition, when α → 0 based on the EVD in (13) the following equality holds

lim
α→0

[UM]:,1:K [Λ̃M]1:K,1:K [UM]H:,1:K = D−1/2[UH]:,1:KΛH[UH]H:,1:KD−1/2. (17)

In other words, when α → 0 the Eigenvalue Decomposition (EVD) of D−1/2[UH]:,1:KΛH[UH]H:,1:KD−1/2

can be denoted as [UM]:,1:K [Λ̃M]1:K,1:K [UM]H:,1:K . In summary, we have the following result.

Conclusion 2: The optimal Q of (1) has the following formulation

Q = D−1/2[UM]:,1:K(I− [Λ̃M]−1
1:K,1:K)+[UM]H:,1:KD−1/2 (18)

where the diagonal matrix [Λ̃M]1:K,1:K and the first K columns of a unitary matrix [UM]:,1:K are com-

puted based on the following EVD

D−1/2[UH]:,1:KΛH[UH]H:,1:KD−1/2 = [UM]:,1:K [Λ̃M]1:K,1:K [UM]H:,1:K . (19)

However the previous equation (18) gives the exact formula of the optimal solution. Unfortunately, it

is too complicated and the variables are coupled with each other. In the following, we will proceed to

simplify it. We begin with discussing a special case of HHR−1
n H is full rank, which is much easier.

The special case of HHR−1
n H is full rank.

Based on (19), if HHR−1
n H is full rank the second term in (18) satisfy the following relation directly

D−1/2[UM]:,1:K [Λ̃M]−1
1:K,1:K [UM]H:,1:KD−1/2

=D−1/2D1/2[UH]:,1:KΛ−1
H [UH]H:,1:KD1/2D−1/2

=[UH]:,1:KΛ−1
H [UH]H:,1:K

=(HHR−1
n H)−1, (20)

based on which and together with the fact that in this case [UM]:,1:K [UM]H:,1:K = UMUH
M = I, in high

SNR region the symbol + can be removed and the optimal solution of Q becomes to be

Q = D−1 − (HHR−1
n H)−1. (21)

Considering D is diagonal and together with the power constraints, the diagonal elements of D can be

easily solved to be

[D]j,j =
1

pk +
∑

j∈ψk
(HHR−1

n H)−1
j ∈ ψk. (22)

In the general case with HHR−1
n H being ill rank, the derivation of the optimal solutions becomes more

challenging and this is the focus of the following section.

4 The Proposed Solutions for the Case of Ill-Rank HHR−1
n H

In this section, we are concerned on the problem how to compute the optimal solution for the general

case. This problem will be solved following two different logics. The first one is an iterative solution

and the second one is non-iterative solution. Specifically, iterative solutions rely on iterative computation

procedure to soften the difficulty. Generally, iterative solution has a performance advantage at the expense

of computational complexity. On the other hand, a non-iterative solution is given as well, which has a

much clearer physical meaning. Moreover, it does not need any iterations and then has an advantage in

terms of computational complexity.

For the first term on the righthand side of (18), based on (19) [UM]:,1:K is a function of D. It is

very challenging to formulate an explicit function of D to represent [UM]:,1:K . We can only argue that
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[UM]:,1:K and D are coupled with each other. To circumvent this difficulty, iterative algorithms are

natural choices. In the general case, in Appendix B it is proved that the second term on the righthand

side of (18) has the following property

[UH]H1:KD−1/2[UM]:,1:K [Λ̃M]−1
1:K,1:K [UM]H:,1:KD−1/2[UH]:,1:K = Λ−1

H . (23)

This statement reveals a fact that no matter how transmit power varies, the term given by (23) is constant.

Based on this fact in the following an iterative solution is first proposed.

Iterative solution

From low to moderate SNRs, for a general diagonal matrix D the operation of + in (18) prohibits us

from precisely analyzing the optimal solutions. Therefore, an auxiliary variable T is introduced, which

denotes the number of diagonal elements of [Λ̃M]1:K,1:K larger than one, and then (18) becomes

Q = D−1/2[UM]:,1:T [UM]H:,1:TD
−1/2 −D−1/2[UM]:,1:T [Λ̃M]−1

1:T,1:T [UM]H:,1:TD
−1/2. (24)

Note that the introduction of T successfully removes the complicated operation +. Based on the previous

discussions, when K = T the second term in (24) is constant for the optimal D. It is worth noting that

for iterative solution, the number T is unknown and when T 6= K the second term in (24) cannot be

guaranteed to be constant, while inspired by (23) its value does not fluctuate dramatically. Therefore, in

the proposed iterative solution the second term in (24) will be simply fixed at each iteration and its value

is updated at the next iteration based on the value of D computed at the current iteration. At the nth

iteration, using the subscript n to denote the nth iteration, the signal covariance matrix Qn is computed

based on the following equation

Qn = D−1/2
n [UMn−1

]:,1:T [UMn−1
]H:,1:TD

−1/2
n

−D
−1/2
n−1 [UMn−1

]1:T [Λ̃Mn−1
]−1
:,1:T,1:T [UMn−1

]H:,1:TD
−1/2
n−1 (25)

where [Λ̃Mn−1
]:,1:T,1:T and [UMn−1

]:,1:T are computed based on the following EVD

D
−1/2
n−1 [UH]:,1:KΛH[UH]H:,1:KD

−1/2
n−1 = [UMn−1

]:,1:K [Λ̃Mn−1
]1:K,1:K [UMn−1

]H:,1:K . (26)

In addition, based on the definition of D in (5) it can be concluded that for mixed power constraint, in

the same ψk the corresponding diagonal elements of D are the same. Together with the fact that D is a

diagonal matrix, Dn is updated based on the following equation

[Dn]j,j =

∑

j∈ψk
[[UMn−1

]:,1:T [UMn−1
]H:,1:T ]j,j

pk +
∑

j∈ψk
[D

−1/2
n−1 [UMn−1

]1:T [Λ̃Mn−1
]−1
:,1:T,1:T [UMn−1

]H:,1:TD
−1/2
n−1 ]j,j

j ∈ ψk. (27)

In summary, the proposed iterative solution is given by the following pseudocode.

Algorithm 1 The proposed iterative solution

Require: D0, e.g., D0 = I;

Ensure: Q;

1: Using Dn−1 computed in the preceding iteration, compute [UMn−1
]:,1:K , [Λ̃M]1:K,1:K and T based on (26);

2: while The increase of the capacity is larger than a threshold or the maximum iteration number is not achieved; do

3: Compute the diagonal matrix Dn using (27) and substitute it into (25) to obtain Qn. Reset the negative eigenvalues

of the corresponding Qn to be zeros. After that multiply the right-hand and left-hand sides of Qn with a diagonal

matrix UD , i.e., UDQnUD , to make sure that the power constraints are satisfied;

4: end while

The main difference between our iterative solution and the existing work [9] is that our solution still

works when the rank of channel matrix is strictly smaller than both column and row numbers. Regarding

the convergence property of the proposed iterative algorithm, however in the special case of D ∝ I,

the convergence can be proved easily [24], for a general case with arbitrary diagonal matrix D it is very

challenging. In the simulation part, extensive numerical simulations are exploited to show the convergence
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behavior of the proposed iterative solution. It is shown that the convergence property of the iterative

solution is pretty good even for massive MIMO systems. Another problem is how to choose the initial

values. In order to overcome these disadvantages of the iterative solution, in the following a non-iterative

solution is proposed.

Non-iterative Solution

From (23) it can be concluded that if the following equality holds,

D−1/2[UM]:,1:K [Λ̃M]−1
1:K,1:K [UM]H:,1:KD−1/2 = [UH]1:KΛ−1

H [UH]H:,1:K , (28)

the equation (23) can be achieved directly. It is worth noting that (28) is the generalized inversion of

HHR−1
n H [26]. We notice that in these two cases, i.e., HHR−1

n H is full rank ([UM]:,1:K = UM) or D

proportional to identity matrix, [UM]:,1:K in the first term in (18) can replaced with [UH]:,1:K without

loss of optimality. Here, for non-iterative solution, this replacement is used for the general case. As

a result, the optimal Q of the optimization (1) can be simplified greatly into the following simple but

interesting formulation as it can be understood as a matrix version water-filling solution

Q =
[

D−1/2[UH]:,1:K [UH]H:,1:KD−1/2 − [UH]:,1:KΛ−1
H [UH]H:,1:K

]+

. (29)

It is obvious that the matrix version water-filling (29) includes (21) and traditional water-filling so-

lution [1, 2] as its special cases. If D is proportional to an identity matrix, (29) will reduce to the

traditional water-filling solution and this case corresponds to the transceiver designs under sum power

constraint [1, 2]. For the matrix version water-filling solution, D−1/2[UH]:,1:K [UH]H:,1:KD−1/2 is the ma-

trix version water-filling level. The formulation of matrix version water-filling is just a weighted operation

for [UH]:,1:K [UH]H:,1:K in matrix field [27]. It is different from the classical water-filling solutions which

simply multiply [UH]:,1:K [UH]H:,1:K with a scalar. Meanwhile, [UH]:,1:KΛ−1
H [UH]H:,1:K is the matrix ver-

sion water bottom.

The operation + is also extended from vector version to matrix version, which guarantees the positivity

of the whole matrix. In other words, the matrix solution must be positive semi-definite instead a vector

with each element being nonnegative. At high SNR, the matrix water-filling level (the first term) will be

much larger than the second term and thus + can be simply removed, and then we have

Q = D−1/2[UH]:,1:K [UH]H:,1:KD−1/2 − [UH]:,1:KΛ−1
H [UH]H:,1:K . (30)

The solution given by (30) is of great importance in high SNR region. In high SNR region, the computation

of the diagonal matrix D becomes much easy. Notice that D is diagonal and then based on its definition

in (5) the jth element of D with j ∈ ψk equals

[D]j,j =

∑

j∈ψk
[[UH]:,1:K [UH]H:,1:K ]j,j

pk +
∑

j∈ψk
[[UH]:,1:KΛ−1

H [UH]H:,1:K ]j,j
j ∈ ψk. (31)

However, high SNRs are usually desired for reliable communications [18–20], we still want to make the

proposed solution applicable for any value of SNR.

Directly using (31) to compute D cannot guarantee the positivity of the eigenvalues ofQ. Here a brute-

force method is utilized. After computing D based on (31) and substituting it into (30), the negative

eigenvalues of the resulting Q are forced to be zeros directly. This brute-force operation will increase the

diagonal elements of Q as some eigenvalues of Q increases from negative values into zeros. As a result,

the power constraints will be exceeded and it means that the solution is not feasible. Then we multiply

a diagonal matrix UD on both the righthand and lefthand sides of Q, i.e., UDQUH
D, to make sure the

power constraints satisfied. It is worth noting that the resulting new signal covariance matrix is still

positive semi-definite. The diagonal matrix UD is defined as

[UD]j,j =

√

pk/(
∑

j∈ψk

[Q]j,j)−1. (32)
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We want to highlight that non-iterative algorithm is very attractive for practical implementation be-

cause several reasons. Referring to iterative algorithms, in most cases it cannot be guaranteed the global

optimality even with proved convergence. Moreover, for iterative algorithms the final solutions have close

relationship with initial values. Even if an iterative algorithm can be proved to converge to globally

optimal solutions, the iteration numbers cannot be predicted a priori. As a result, the scare wireless

resources such as hardware memory, power, etc., cannot be allocated precisely for iterative algorithms in

the system design stage.

Remark: In this paper, perfect CSI is assumed, however in practical systems, many factors will result

in imperfect CSI. As a result, the designs with imperfect CSI are of importance as they can reduce the

negative effects of channel errors [28–31]. Robust designs for MIMO systems under per-antenna power

constraints are also an important research topic for future research.
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Figure 1 Performance comparison between the proposed solutions and the optimal solution solved by CVX when M = 4

and N = 8.
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Figure 2 The comparisons between the optimal solution and the proposed solutions with different settings with more

transmit antennas.
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Figure 3 The comparisons between the optimal solution and the proposed solutions with different settings with more

receive antennas.
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Figure 4 The convergence speed of the proposed iterative solution at SNR=20dB with M = 2 and N = 8.

5 Simulation Results

In this section, our theoretical conclusions are assessed by the simulation results. In specific, a point-to-

point MIMO system under per-antenna power constraint is simulated, with N transmit antennas and M

receive antennas. Notice that as the optimization problem (1) is convex, it can be directly solved using

some famous optimization software toolboxes [25], e.g., CVX software toolbox [32]. The solution of (1)

computed by CVX will act as a benchmark in the following comparisons. In addition, the signal-to-noise

ratio is defined as P/σ2
n where P is total transmit power and σ2

n is the noise variance. To make comparisons

between existing work, per-antenna power constraints are adopted in the simulation. Specifically, the

power ratio from the 1st antenna to the N th antenna is arbitrarily chosen as N : N − 1 : · · · : 1. This

setting aims at making different antenna subject to significantly different power constraints. Then per-

antenna power constraint model is much more important than simple sum power constraint model. In

the following figures, each point is an average of 500 channel realizations.

In Fig. 1, it is shown that the proposed iterative solution has exactly the same performance as

the optimal solution solved by CVX and its convergence speed is very fast. It is worth noting that



Xing C W, et al. Sci China Inf Sci June 2015 Vol. xx xx:11

0 2 4 6 8 10 12 14 16 18 20
5.75

5.8

5.85

5.9

5.95

6

6.05

6.1

Iteration Index 

C
ap

ac
ci

ty
 (

B
its

/s
/H

z)

8 × 4

 

 

The existing algorithm 

The proposed iterative solution with
non−iterative solution as its initial value

The proposed non−iterative solution

Figure 5 The convergence speed of the proposed iterative solution at SNR=0dB with M = 8 and N = 4.
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Figure 6 The convergence speed of the proposed iterative solution at SNR=20dB with M = 40 and N = 80.

the proposed non-iterative solution also has almost the same performance as the optimal solution. In

addition, without iteration the proposed non-iterative performs better than the existing algorithm in [9]

via setting the iteration number of the algorithm in [9] to be 1. Furthermore, in Figs. 2 and 3, it is shown

that for various simulation settings both the proposed solutions always have a pretty good performance

very close to the optimal solutions solved by CVX, no matter more transmit antennas or more receive

antennas. We have also tried a lot of simulation settings and the similar results can always be achieved.

Due to space limitation, these results are not listed in this section.

As convergence of iterative algorithms is a critical issue, extensive simulations are performed to evaluate

the convergence behavior of the proposed iterative solution. Generally speaking the proposed iterative

solution enjoys a very fast convergence speed for all the simulation settings. Shown in Fig. 4, for the

antenna setting with more transmit antennas, M = 6 and N = 8, taking the non-iterative solution as

the initial value, the iterative solution converges very faster than the algorithm proposed in [9]. On the

other hand, the performance of the proposed non-iterative solution is satisfied. A similar result is also

achieved in the setting with more receive antennas shown in Fig. 5. It should be highlighted that in Fig.
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5, the curve of the existing algorithm in [9] is decreasing with iteration number. It is because in [9] the

iterative algorithm iteratively finds the optimal solutions satisfying the power constraints. For Vu Mai’

algorithm, the iterative procedure is based on iteratively checking whether the per-antenna powers are

satisfied or not. Before it converges, the solution of Vu Mai’s algorithm does not satisfy the per-antenna

power constraints. The reason why in Fig. 5 before converging the capacity of the solution is larger than

the optimal one is in the iterative computing procedure the power constraints are not satisfied.

After that we vary the antenna numbers and even a 40× 80 massive MIMO system is simulated. It is

interesting that the antenna array increases, the proposed iterative solution still enjoys a fast convergence

speed. Even in a 40 × 80 massive MIMO system, for the proposed iterative solution the convergence is

achieved after a small number of iterations. It means that the proposed solution is well-suited to massive

or large MIMO systems that enable high special efficiency for future communication systems.

6 Conclusions

In this paper, transceiver designs for MIMO systems under mixed power constraint were discussed. With

mixed power constraint, some of the antennas at transmitter have their sum power constraints while

the other ones are subject to per-antenna power constraints. As a result, both the transceiver designs

under sum power constraint and per-antenna constraint can be considered as the special cases of the

considered transceiver design. This kind of designs also have several important application scenarios e.g.,

C-RANs. Furthermore, the exact formula of the optimal solution has been derived. In order to compute

the solution, both iterative and non-iterative solutions were proposed in this paper. The non-iterative

solution has a very simple formula and can be interpreted as matrix version water-filling solution, an

extension from vector domain to matrix domain. At the end the performance of the proposed solutions

was assessed by the simulation results.
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Appendix A Proof of Conclusion 1

Proof: Because (I −D−1/2ΨD−1/2)−1 = I+D1/2ΠD1/2, denoting Φ = D1/2ΠD1/2 we have

D−1/2ΨD−1/2 = I− (I+Φ)−1, (A1)

from which we can easily draw a conclusion that for a positive semi-definite matrix M, if Tr(MΦ) = 0 we will have

Tr(MD−1/2ΨD−1/2) = 0. Together with the fact that

Tr[(I−D1/2(HH
H)−1D1/2 +Φ)Φ] = 0, (A2)

we straightforwardly have Tr[(I−D1/2(HH
H)−1D1/2 +Φ)D−1/2ΨD−1/2] = 0 based on which it is obvious that

Tr[D−1/2[I−D1/2(HH
H)−1D1/2 +Φ]D−1/2

︸ ︷︷ ︸

=Q

Ψ] = 0.

Finally, it can be concluded that

Tr[(I−D1/2(HH
H)−1D1/2 +Φ)Φ] = 0 → Tr(QΨ) = 0.

�

Appendix B The proof of (23)

Proof: Based on the EVD defined in (19), [Λ̃M]−1

1:K,1:K is solved to be

[Λ̃M]−1

1:K,1:K = ([UH]H
:,1:KD−1/2[UM]:,1:K)−1Λ

−1

H
([UM]H

:,1:KD−1/2[UH]:,1:K)−1 (B1)

based on which the second term of (18) equals

D−1/2[UM]:,1:K [Λ̃M]−1

1:K,1:K [UM]H
:,1:KD−1/2

=D−1/2[UM]:,1:K([UH]H
:,1:KD−1/2[UM]:,1:K)−1Λ

−1

H
([UM]H

:,1:KD−1/2[UH]:,1:K)−1[UM]H
:,1:KD−1/2. (B2)

To further simply the above complicated formula we multiply [UH]H
:,1:K and [UH]:,1:K on the left and right sides and then

we have a much simpler form given as

[UH]H
:,1:KD−1/2[UM]:,1:K [Λ̃M]−1

1:K,1:K [UM]H
:,1:KD−1/2[UH]:,1:K

=[UH]H
:,1:KD−1/2[UM]:,1:K([UH]H

:,1:KD−1/2[UM]:,1:K)−1Λ−1

H
([UM]H

:,1:KD−1/2[UH]:,1:K)−1[UM]H
:,1:KD−1/2[UH]:,1:K

=Λ
−1

H
. (B3)

�
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