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A generalized power iteration method for solving
guadratic problem on the Stiefel manifold
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Abstract—In this paper, we first propose a novel generalized complex procedures, which represent high orders of complex
power iteration method (GPI) to solve the quadratic problem ity Furthermore, all these methods initialize the pararet
on the Stiefel manifold (QPSM) asminyryy—; Tr(W"AW —  qajiperately to optimize their proposed algorithms. Last b
2W* B) along with the theoretical analysis. Accordingly, its spe- .
cial case known as the orthogonal least square regression (SR) not least, all these approaches are un_able to deal with a more
is under further investigation. Based on the aforementiond general problem known as the quadratic problem on the $tiefe
studies, we then cast major focus on solving the unbalanced manifold (QPSM).
orthogonal procrustes problem (UOPP). As a result, not only  To address the referred deficiencies, we derive a novel
a general convergent algorithm is derived theoretically boithe  4anarglized power iteration method (GPI) for QPSM in order
efficiency of the proposed approach is verified empirically a well. . .

to efficiently solve the orthogonal least square regression
(OLSR) and UOPP with a random initial guess and concise
computational steps. In sum, the proposed GPI method can
deal with a more general problem known as QPSM than other
approaches. Furthermore, the experimental results shatv th
I. INTRODUCTION the proposed GPI method not only takes much less CPU time

The orthogonal procrustes problem (OPP) is the least squforsrathe convergence but becomes more efficient dealing with

: ; o € data matrix of large dimension as well.
problem on the Stiefel manifold. The OPP originates from Notations: For any matrixM, Frobenius norm is defined

the factor analysis in psychometrics during 1950s and 19605HMH% — Tr(MT M), where Tr(-) is the trace operator.

[1], [2]. The major purpose is to determine an orthogon or any positive integen, I,, denotes a x n identity matrix
matrix that rotates the factor matrix to best fit some hypsithe yp gen. In y '

matrix. The balanced case of the OPP was surveyed in multiple
introductory textbooks such as| [3[,] [4]. Il. POWERITERATION METHOD REVISITED

Recently, due to the wide applications of the orthogonal The power iteration method is an iterative algorithm to seek
regression in computer science, see [5], [6], solving thRe dominant eigenvalue and the related eigenvector of any
unbalanced OPP (UOPP) is under increasing concern. Mmltl@iven symmetric matrixA € R™*™, where the dominant
approaches are proposed to solve UOPP such as the expansigénvalue is defined as the greatest eigenvalue in magnitud

balanced algorithm (EB), the right hand side and the lefhe power iteration can be performed as the following steps:
hand side relaxation (RSR), (LSR), the successive projcti 1 |nitialization. Random initialize a vectow € R™*1,

(SP) and the Lagrangian relaxation (LR). lnl [7], the EByhich has a nonzero

method employs the expanded balanced OPP as its objectivgomponent in the direction of the dominant eigenvector.
function. In [&] and [9] respectively, the RSR and the LSR 5 ypdatem « Aw.

approaches update the solution row by row or column by g Calculateg = .

column iteratively based on solving the least square regres 4 Updatew + q_”m”2

with a quadratic equality constraint (LSQE). In [10], the SP 5 yieratively perform the step 2-4 until convergence.

method updates the solution column by column by virtue &g hower iteration could be further extended to the orthogo
the projection method combined with correction techniques, jteration (also called subspace iteration or simubase
(PMCT) discussed by [12], which is efficient to solve LSQEiteration) method to find the first: (k < m) dominant

In [11], the LR method solves UOPP by selecting differentigenyajues and their associated eigenvectors for then give

Lagrangian multipliers. matrix A. The orthogonal iteration method could be described
All the approaches mentioned above could converge to the o following iterative algorithm:

solution of UOPP successfully, whereas they deal with MOre, |nitialization. Random initializ&V € R™**.

Index Terms—quadratic problem, Stiefel manifold, power it-
eration, procrustes problem, orthogonal least square regrssion.
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TABLE |
ORDERS OF COMPLEXITY FORG ALGORITHMS.

(¢t stands for the iteration number aid, m, k) stands for the dimension.)

RSR[E] LSR9] SPI[LD]
Order of the : : :
complexity O(mnk 4+ m3kt) O(mnk 4+ m3kt) O(mnk + (m?n + m3)t)
CR [L1] EB [7] GPT (oun
Order of the O(m2n +nk? +m2kt)  O(m3 + (m3n + m3)t) O(m?2n + m2kt)

complexity

in the power iteration method. When the matrixis positive From Eg. [(4), we could obtain the KKT condition for the
semi-definite (psd), the orthogonal iteration method isivequ problem [B) as

alent to solving the following optimization problem oL, i
max Tr(WTAW). 1) W 2AW +2B —2WA =0 (5)
WTW=I

Therefore, the orthogonal iteration method is equivalerthe \\hich is difficult to solve directly. Thus, motivated by [16]

following steps under the psd matrik: o and the power iteration method mentioned in Section 2, we
1. Initialization. Random initializéV" € R™ " could propose the following iterative algorithm:
2. Update)M < ATW 1. Initialization. Random initializéd?/ € R™** such that
3. CalculateU SV M via the compact SVD method of WTW = I,

M, 2. UpdateM € R™** « 2AW + 2B.

mXxk kxk kxk
ZVhLeJIJedZtEVI[;&% U’{ETE R andV’ € R¥E. 3. CalculatelV* by solving the following problem

5. lteratively perform the step 2-4 until convergence. max Tr(WTM). (6)
From the observation, the solution of the above algorithm WIW=Ix
as WK differs from the solution of the orthogonal iteration 4. Updatel « W*.
method asW by the form, whereK K™ = I.. However, 5, teratively perform the step 2-4 until convergence.
the difference between the solutions of these two algosthrBesides, a closed form solution of the problem (6) can be
doesn't affect the objective value of the problem (1) due tachieved by the following derivation.
the following derivation Suppose the full SVD off is M = UXVT with U €

mxXm mxk kxk
Tr(WTM) = Tr(WTUsvT)

I11. QUADRATIC PROBLEM ON THE STIEFEL MANIFOLD Tt
=Tr(XV-W*U)

Thke Stiefel manifoldy,,, ,, is a set of the matrice$l < )
mX i —
gmm,:vlg;];cgvrf\/[tz}(.)rthonormal columns &g, j {W e —Tr(2Z) = Zo—“z“
In this section, a novel approach is derived to unravel the
following quadratic problem on the Stiefel manifold (QPSMyhere Z = VIWTU € R¥*™ with z;; and o;; being the
[13] as (i,1)-th elements of the matri¥ and X, respectively.
min  Tr(WTAW — 2W7TB) 2) Note thatZZ” = I, thus|z;| < 1. On the other hand,
WIW=Ii oi > 0 since oy is a singular value of the matri¥/.
where W € R™*F B ¢ R™** and the symmetric matrix Therefore, we have
A € R™*™_In order to solve the probleril(2), QPSM O (2)

can be further relaxed into r(WTM) = Zzuau < Z Oii.-

max Tr(WTAW) + 2Tr(WT B) 3)
WTW=I}
Apparently, the equality holds when; = 1,(1 < i < k).
where A = al,, — A € R™*™. The relaxation parameter That is to sayZr(IW7 M) reaches the maximum when the
is an arbitrary constant such thdtis a positive definite (pd) matrix Z — [I,0] € RF*™ Recall thatZ = VIWTU, thus
matrix. Instead of the method of the Lagrangian multiplirs the optimal solution to the probleril (6) can be represented as
deal with an optimization problem with orthogonal consttsj

one may use a geometric optimization algorithm tailored to W =UZ"V" = U[L; 0]V". )

the Stiefel manifold, such as, for example, the one surveygﬂ1Ce Eq.[7) is based upon the full SVD of the matti Eq

in [14]. ; T \i
. . . can be rewritten ad/ = UV* via the compact SVD of the
Accordingly, the Lagrangian function for the problem (3 atrix M, where M = USVT with U € R™*%, § ¢ RFxF

can be written as andV € RFxF,

Li(W,A) = Tr(WT AW)+2Tr(WTB)-Tr(A(WTW—1,)).  Based on the above analysis, the generalized power iteratio
(4) method (GPI) can be summarized in the algorifim 1.
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Fig. 1. Comparisons of 6 different values dfare performed under the GPI method with 3 different data ioestr

Algorithm 1 Generalized power iteration method (GPI)  sinceV is the optimal solution of the problerfll (6). Based on
1: Input: The symmetric matrix4A € R™*™ and the matrix the fact thatV/ = 2AW +2B, Eq. [8) can be further illustrated
B € R™*k, as

2: Initialize a randomW € R™** satisfyingW™W = I, =7 =7 T % T
and « such thatd = al,, — A € R™*™ js a positive 2Tr(W™ AW)+2Tr(W" B) 2 2Tr(W= AW)+2Tr(W f(g)

definite matrix. .
3 UpdateM « 2AW + 2B. Ba:sed~o~n LemmE?.l and E@l (9), \ive could infer that
4: CalculateUSVT = M via the compact SVD method of Tr(WTAW) + 2Tr(WTB) > Tr(WTAW) + 2Tr(WT B)
mxk kxk kxk ~ - -
M whereU e R™mX y S eR *kandV eR xR = TT(WTAW) _ 2TT(WTB) S TT(WTAW) _ 2TT(WTB)
5. UpdateW « UV, o _ 7
6: Iteratively perform the step 3-5 until the algorithm conWhich indicates that the algorithdd 1 decreases the objectiv

value of QPSM in[(R) in each iteration until the algorithm
converges. 0
Theorem 3.2The algorithni L converges to a local minimum

; : f the QPSM probleni{2).
We will prove that the proposed algorithtd 1 converge <. 5 .
monotonically to the local minimum of QPSNII(2). %roof. Since the algorithil 1 performs based on solving the

Step 5 of algorithni]l is an instance of a class of metho ’obllem [6) in each .iteration, the Lagrangian function fog t
called manifold retractions, to update a matrix on the Stiefsc’lmIon of the algorithril]1 can be represented as

verges.

manifold, that were discussed in details [inl[15]. La(W,A) = TT(WTM) — TT(A(WTW —I})). (10)
. ) Therefore, the solution of the algoritHh 1 satisfies theof@!l
A. Theoretical analysis of GPI ing KKT condition
Lemma 3.11if the symmetric matrixd € R"™*™ is positive OLo
definite (pd), then o~ M-2WA=0 (11)
Tr(WTAW) — 2Tr(WTAW) + Tr(WTAW) > 0 Generally speaking, the matrix/ will be updated by’

- : : [ h iteration under the algoritimh 1. Since the algor{iim
where R™** and R™*k are arbitrary matrices. " ©2¢ ) o
we We y converges to the optimal solutidf i.e. W = W due to The-

Proof: Since the matri¥ is positive definite (pd), we could -~
rewrite A = LTL via CholesEy factorization.('rl)'h)erefore Weorem[_3_71, Eq.[{1I1) can be further formulated by substituting

have the following proof for Lemmia_3.1 as M =24W +;f as
HLW—LWHQFZO 6—V; = 2AW + 2B —2WA = 0. (12)

= Tr(WTAW) — 2Tr(WEAW) + Tr(WTAW) > 0 By comparing Eq.[{5) and {12), we could draw the conclusion
that the solution of the algorithid 1 and the probléin (3) §atis

Theorem 3.1:The algorithm[ll decreases the value of thif1e same KKT condition.

- L : : . P Therefore, the algorithra] 1 converges to a local minimum
objective function in monotonically in each iterationtil '
it (ionverges @) y of QPSM [2) since the problemis (2) ard (3) are equivalént.

Proof: Suppose the updatddl is 1 in the algorithm(L, Besides, the prc_)blenE](G) has an unique solution under full
then we have column-rank matrixM due to the uniqueness of the SVD
R method. On the other hand, the experimental results in@ecti

Tr(WEM) > Tr(WT M) (8) 5 representthat the proposed GPI method uniformly congerge



(100,10,100) (100,15,100)

(200,15,200)

9000

\ LSR 3500 8000 %
3000 Y o RSR \

7000

A our 3000

2500 )

dual
8
8

]
5 200 5000 g

&
= 20001 §

of re:
alue of residual

R 4000
8 15001y

1500

value of residual

val

s
3000
1000 |
\ 1000, \
2000

K
500
5001138 1000

30 35 0 45 50 10 20 30 40 50 60 70 5 10 15 20 2 30 35 20 a5

5 10 15 20 25
iteration iteration iteration

(a) (100, 10, 100) (b) (100, 15, 100) (c) (200, 15,200)

Fig. 2. Comparisons of the convergence rate are performe@ &pproaches including EBI[7], RSRI[8], LSR [9], SP1[10] LRL[Iand our proposed GPI
method under 3 different data matrices.

to the same objective value with a large amount of randoB1 Unbalanced Orthogonal Procrustes Problem

initial guesses. Based on the unique solution of the problempefinition 4.1: With Q € R™**, E € R™*™ and G €
() and the associated experimental results, it is ratiémal grnxk e name the optimization problem

conjecture that the proposed GPI method converges to the

global minimum of QPSM. min  ||EQ — G||2F (16)
QTQ=Iy
IV. Two SPECIAL CASES OFQUADRATIC PROBLEM ON 1. balanced orthogonal procrustes problem (OPP) if and
THE STIEFEL MANIFOLD only if m = k.
A. Orthogonal Least Square Regression 2. unbalanced orthogonal procrustes problem (UOPP) if and
The orthogonal least square regression (OLSR) can Y if m > k. Especially wher@) serves as a column vector
written as (k = 1), the problem[(16) degenerates to
. T T 2 min ||Eq — g||2 17
i IXTW o 25T - Y (13) Jnin 1Eq — gll3 a7

where the data matri¥ € R™*" and the hypothesis matrix which is known as the least square problem with a quadratic
Y € R™F with 1 = (1,1,---,1)T € R™*!. Moreover, equality constraint (LSQE). .

W € R™*F is the regression matrix aride R**1 is the bias 1) Balanced orthogonal procrustes problem revisiteétb
vector. Obviouslyp is free from any constraint. By virtue of ;c;l(;/e the balanced OPPu(= k), we could expand EqL{16)

the extreme value condition w.ri, we can derive as )
min [|EQ - G|

o XTW + T —Y|% _ 0 QT Q=1
L = min [E}+[Gl} - 27r(QTETG)
==W'X1+01'1-Y"'1=0 QTQ=Iy

= max Tr(QTETG
=b= l(YT1 -wTX1). QTQ=Iy ( )
n
By substituting the above result as= L(y71— W7 x1), Wwhich is same as the problefd (6) with treatiflg G' = M.
Eq m) can be s|mp||f|ed to the f0||owing form as Thus, the balanced OPP has the analytical solution of the
. closed form[().
Wﬁlvég[k IH(XTW —Y)|I% (14) 2) Unbalanced orthogonal procrustes problelvhenm >

k, UOPP [[IB) can be expanded into

Jmin [£Q -Gl
=1k

whereH = I,, — 1117,
Accordingly, the problem{14) can be further reformulated

into . T T T T (18)
T E'EQ-2Q"E"G).
L min Tr(WTAW — 2w B) (15) = htn Tr(@ @-2 )
=1k
in which Denote ETE = A and ETG = B, then Eq.[(IB) is in the
A=xgxT exact same form as QPSM] (2). Based on the algorithm 1, the
B— XHY algorithm[2 can be proposed to converge to a local minimum
o of UOPP monotonically due to the theoretical supports pilove

Apparently, Eq.[(db) is in the exact same form as QPSM in Section 3.
(2). Therefore, OLSR in(13) can be solved via the algorithm Generally speaking, QPSM can not be reformulated into
@ UOPP while UOPP could always be rewritten into QPSM.
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Comparisons of PMCT [12] and GPI are performed oveifferdnt data matrices.

TABLE Il
COMPARISONS OFCPUTIME UNDER THE SQUARE MATRIX EE FORCASE 2.

(Iteration stops whellEQ;_1 — G||Z — |EQ; — G||% < 7 wherer = 10-3))

(n = m = 200) RSR[8] LSR[9] SRI[10] LR[11] EBI[7] GPlI(our)
k=10 CPU time 64.940s 23.426s 2.386s 0.541s 0.337s0.228s
k=15 CPUtime 136.020s 21.635s 3.221s 1.134s 0.347s0.226s
k=20 CPUtime 229.851s 20.560s 5.054s 1.806s 0.445s0.273s

(n = m = 1000) RSR[&] LSRI[9] SRI[10] LR[11] EBI7] GPlI(our)
k=10 CPU time - 842.849s 132.232s 3.869s 11.440s1.290s
k=15 CPU time 851.231s 196.761s 5.180s  12.534s1.434s
k=20 CPU time 860.746s 260.132s  7.700s  12.625s1.575s

Algorithm 2 GPI for solving UOPP in[{16)

250

Dimension (n,m)
T T T

1: Input: The matrix & € R™*™ and the matrixG € R"**
wherem > k. ol GPilou)
2: Initialize Q € R™** and~ such that)”Q = I;, and the .
matrix v1I,, — ETE is positive definite, respectively. G
3: While not convergedo £
4: Update matrix\/ + 2(yI,, — ETE)Q + 2ETG.
5. CalculateU € R™** and V' € R¥** via the compact et
SVD of M asM = USVT. N T
6: Update@ « UVT. e ‘ ‘ ‘ ‘
7: End while
8: Return Q.

Fig. 4. CPU time comparison under Case 3.

Therefore, the GPI method is more general than other ap-
proaches, which can only cope with UOPP. Based on theCase 1: (parameter dependendegjstly, we try to inves-
experimental results involved in the next section, the psel tigate the GPI method in the algorithil 2 via varying the
GPI method takes much less time to converge to the solutitgiaxation parametey. Suppose. is the largest eigenvalue
of UOPP. of ETE, then we can lety = §l. such thatyl,, — ETE is a
positive definite matrix, wheré is an arbitrary constant.
V. EXPERIMENTAL RESULTS 1) From the figur&ll, we can further notice that although the

In this section, we analyze and report the numerical resufi@nvergence rate for the algoritfith 2 is inversely propaglo
of the generalized power iteration method (GPI) represknt® the value ofy, the relaxation parameter does not affect
by both the algorithni]1l and the algoritHth 2. We randomi§he uniform convergence of the GPI method.
choose the test data matrix with normally distributed slagu Case 2:(CPU time comparison for solving UOPBgc-
values. Besides, the computer we use is MacBook Air, whosadly, we further investigate the proposed GPI method in the
CPU is 1.4 GHz Intel Core i5 RAM is 4 GB 1600 MHzalgorithm[2 by comparing it with five existing approaches
DDR3 and operating system is OS X Yosemite 10.10.5. mentioned in section 1 as EBI[7], RSR [8], LSR [9], SPI[10]



TABLE Il
COMPARISON OF THECPUTIME UNDER THE GENERAL DIMENSION FORCASE 2.

(Iteration stops whellEQ;_1 — G||Z — |EQi — G||% < 7 wherer =10-3)

'?;mfgsé‘;” RSR[E] LSR[9] SH[ID] L[] EBY]  GPl(our)
(5000, 500, 15) ﬁrﬁg 713.156s 528.034s  450.028s  20.709s  16.554s 3.581s
(10000, 1000, 30) Sn’:g - - - 56.772s  191.970s  9.384s
(3000,3000,90) &P ; - ; 186.125s  395.401s 17.320s
(30000, 1500, 30) ﬁrﬁg ; - ; 306.132s  1056.311s 19.440s
(5000, 4000, 100) Sn':g - - - 405.937s  1187.512s 30.128s
(100000, 3000, 50) En’:g - - - - - 215.173s
and LR [11]. (PMCT) [12] is compared to the GPI method in the algoriffm 2

Based on solving LSQE problem, RSR [8] and LSR [dlargeting at solving the least square regression with arqtiad
respectively update the solution row by row and column bgquality constraint (LSQE) il (17). Actually, solving LSQE
column iteratively. EBI[[7] utilizes the expanded balancg®PO (17) is no different from solving UOPP {1L6) under= 1.
as the objective function. SP_[10] employs the projection 1) From the figuré I3, we can notice that PMCT][12] and
method combined with correction techniques (PMCT)| [12}he algorithm[ 2 (GPI) converge to the same objective value
LR [11] solves UOPP by fixing different Lagrangian multipli-though in terms of the different patterns.
ers. The proposed GPI method includes two terms=as 2) From the figurél4, the algorithim 2 (GPI) takes much less
outside the loop andiiW within the loop, whose orders of time for convergence than PMCT[12] does.
complexity aren?n andm?2k, respectively. Besides, these two
terms have the highest orders of complexity for the proposed VI. CONCLUDING REMARKS
GPI method. Besides, the order of the complexity for eachlIn this paper, we analyze the quadratic problem on the
method is shown in the tablé I. Stiefel manifold (QPSM) by deriving a novel generalized

The comparative results are based on fixii@s the square power iteration (GPI) method. Based on the proposed GPI
matrix at first hand (TablgJll) and then extedtito a more method, two special and significant cases of QPSM known
general case (Tablelll) afterwards. (Matkin the tabldé Tl and as the orthogonal least square regression and the unbdlance
the table[Tl) represents that it takes too much time to recoadthogonal procrustes problem are under further investiga
in the tables.) With the theoretical supports, the GPI method decreases the

1) From the figur&l2, we notice that the existing methods abjective value of the QPSM problem monotonically to a local
EB [7], RSR [8], LSR[9], SPI[10] LRI[T1] and the proposedninimum until convergence. Eventually, the effectivenasd
GPI method converge to the same objective value under thie superiority of the proposed GPI method are verified em-
same input data. Besides, our proposed GPI method convergigsally. In sum, the proposed GPI method not only takes les
faster than other approaches during iteration. CPU time to converge to the optimal solution with a random

2) From the tabld]l, the proposed GPI method has tffitial guess but becomes much more efficient especially for
lowest order of complexity due to its succinct computatlonhe data matrix of large dimension as well.
process to obtain the optimal solution. During the expenitaie
we observe that the iteration numbeifor the LR method REFERENCES
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