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A generalized power iteration method for solving
quadratic problem on the Stiefel manifold

Feiping Nie, Rui Zhang, and Xuelong Li,Fellow IEEE

Abstract—In this paper, we first propose a novel generalized
power iteration method (GPI) to solve the quadratic problem
on the Stiefel manifold (QPSM) asminWT W=I Tr(W T

AW −

2W T
B) along with the theoretical analysis. Accordingly, its spe-

cial case known as the orthogonal least square regression (OLSR)
is under further investigation. Based on the aforementioned
studies, we then cast major focus on solving the unbalanced
orthogonal procrustes problem (UOPP). As a result, not only
a general convergent algorithm is derived theoretically but the
efficiency of the proposed approach is verified empirically as well.

Index Terms—quadratic problem, Stiefel manifold, power it-
eration, procrustes problem, orthogonal least square regression.

I. I NTRODUCTION

The orthogonal procrustes problem (OPP) is the least square
problem on the Stiefel manifold. The OPP originates from
the factor analysis in psychometrics during 1950s and 1960s
[1], [2]. The major purpose is to determine an orthogonal
matrix that rotates the factor matrix to best fit some hypothesis
matrix. The balanced case of the OPP was surveyed in multiple
introductory textbooks such as [3], [4].

Recently, due to the wide applications of the orthogonal
regression in computer science, see [5], [6], solving the
unbalanced OPP (UOPP) is under increasing concern. Multiple
approaches are proposed to solve UOPP such as the expansion
balanced algorithm (EB), the right hand side and the left
hand side relaxation (RSR), (LSR), the successive projection
(SP) and the Lagrangian relaxation (LR). In [7], the EB
method employs the expanded balanced OPP as its objective
function. In [8] and [9] respectively, the RSR and the LSR
approaches update the solution row by row or column by
column iteratively based on solving the least square regression
with a quadratic equality constraint (LSQE). In [10], the SP
method updates the solution column by column by virtue of
the projection method combined with correction techniques
(PMCT) discussed by [12], which is efficient to solve LSQE.
In [11], the LR method solves UOPP by selecting different
Lagrangian multipliers.

All the approaches mentioned above could converge to the
solution of UOPP successfully, whereas they deal with more
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complex procedures, which represent high orders of complex-
ity. Furthermore, all these methods initialize the parameters
deliberately to optimize their proposed algorithms. Last but
not least, all these approaches are unable to deal with a more
general problem known as the quadratic problem on the Stiefel
manifold (QPSM).

To address the referred deficiencies, we derive a novel
generalized power iteration method (GPI) for QPSM in order
to efficiently solve the orthogonal least square regression
(OLSR) and UOPP with a random initial guess and concise
computational steps. In sum, the proposed GPI method can
deal with a more general problem known as QPSM than other
approaches. Furthermore, the experimental results show that
the proposed GPI method not only takes much less CPU time
for the convergence but becomes more efficient dealing with
the data matrix of large dimension as well.

Notations: For any matrixM , Frobenius norm is defined
as ‖M‖2F = Tr(MTM), whereTr(·) is the trace operator.
For any positive integern, In denotes an×n identity matrix.

II. POWER ITERATION METHOD REVISITED

The power iteration method is an iterative algorithm to seek
the dominant eigenvalue and the related eigenvector of any
given symmetric matrixA ∈ R

m×m, where the dominant
eigenvalue is defined as the greatest eigenvalue in magnitude.
The power iteration can be performed as the following steps:

1. Initialization. Random initialize a vectorw ∈ R
m×1,

which has a nonzero
component in the direction of the dominant eigenvector.
2. Updatem← Aw.
3. Calculateq = m

‖m‖2

.
4. Updatew ← q.
5. Iteratively perform the step 2-4 until convergence.

The power iteration could be further extended to the orthogo-
nal iteration (also called subspace iteration or simultaneous
iteration) method to find the firstk (k ≤ m) dominant
eigenvalues and their associated eigenvectors for the given
matrixA. The orthogonal iteration method could be described
as the following iterative algorithm:

1. Initialization. Random initializeW ∈ R
m×k.

2. UpdateM ← AW .
3. CalculateQR = M via the compact QR factorization of
M , whereQ ∈ R

m×k andR ∈ R
k×k.

4. UpdateW ← Q.
5. Iteratively perform the step 2-4 until convergence.

Apparently, the orthogonal iteration method above indicates a
normalization process, which is similar as the normalization
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TABLE I
ORDERS OF COMPLEXITY FOR6 ALGORITHMS.

(t stands for the iteration number and(n,m, k) stands for the dimension.)
RSR [8] LSR [9] SP [10]

Order of the
O(mnk +m3kt) O(mnk +m3kt) O(mnk + (m2n+m3)t)complexity

LR [11] EB [7] GPI (our)
Order of the

O(m2n+ nk2 +m2kt) O(m3 + (m2n+m3)t) O(m2n+m2kt)complexity

in the power iteration method. When the matrixA is positive
semi-definite (psd), the orthogonal iteration method is equiv-
alent to solving the following optimization problem

max
WT W=Ik

Tr(WTAW ). (1)

Therefore, the orthogonal iteration method is equivalent to the
following steps under the psd matrixA:

1. Initialization. Random initializeW ∈ R
m×k.

2. UpdateM ← AW .
3. CalculateUSV T = M via the compact SVD method of

M ,
whereU ∈ R

m×k, S ∈ R
k×k andV ∈ R

k×k.
4. UpdateW ← UV T .
5. Iteratively perform the step 2-4 until convergence.

From the observation, the solution of the above algorithm
asWK differs from the solution of the orthogonal iteration
method asW by the form, whereKKT = Ik. However,
the difference between the solutions of these two algorithms
doesn’t affect the objective value of the problem (1) due to
the following derivation

Tr((WK)TAWK) = Tr(WTAWKKT ) = Tr(WTAW ).

III. QUADRATIC PROBLEM ON THE STIEFEL MANIFOLD

The Stiefel manifoldνm,k is a set of the matricesW ∈
R

m×k, which have orthonormal columns asνm,k = {W ∈
R

m×k : WTW = Ik}.
In this section, a novel approach is derived to unravel the

following quadratic problem on the Stiefel manifold (QPSM)
[13] as

min
WTW=Ik

Tr(WTAW − 2WTB) (2)

whereW ∈ R
m×k, B ∈ R

m×k and the symmetric matrix
A ∈ R

m×m. In order to solve the problem (2), QPSM in (2)
can be further relaxed into

max
WTW=Ik

Tr(WT ÃW ) + 2Tr(WTB) (3)

whereÃ = αIm − A ∈ R
m×m. The relaxation parameterα

is an arbitrary constant such thatÃ is a positive definite (pd)
matrix. Instead of the method of the Lagrangian multipliersto
deal with an optimization problem with orthogonal constraints,
one may use a geometric optimization algorithm tailored to
the Stiefel manifold, such as, for example, the one surveyed
in [14].

Accordingly, the Lagrangian function for the problem (3)
can be written as

L1(W,Λ) = Tr(WT ÃW )+2Tr(WTB)−Tr(Λ(WTW−Ik)).
(4)

From Eq. (4), we could obtain the KKT condition for the
problem (3) as

∂L1

∂W
= 2ÃW + 2B − 2WΛ = 0 (5)

which is difficult to solve directly. Thus, motivated by [16]
and the power iteration method mentioned in Section 2, we
could propose the following iterative algorithm:

1. Initialization. Random initializeW ∈ R
m×k such that

WTW = Ik.
2. UpdateM ∈ R

m×k ← 2ÃW + 2B.
3. CalculateW ∗ by solving the following problem

max
WTW=Ik

Tr(WTM). (6)

4. UpdateW ←W ∗.
5. Iteratively perform the step 2-4 until convergence.

Besides, a closed form solution of the problem (6) can be
achieved by the following derivation.

Suppose the full SVD ofM is M = UΣVT with U ∈
R

m×m, Σ ∈ R
m×k andV ∈ R

k×k, then we have

Tr(WTM) = Tr(WT
UΣVT )

= Tr(ΣVTWT
U)

= Tr(ΣZ) =

k
∑

i=1

σiizii

whereZ = V
TWT

U ∈ R
k×m with zii and σii being the

(i, i)-th elements of the matrixZ andΣ, respectively.
Note thatZZT = Ik, thus |zii| ≤ 1. On the other hand,

σii ≥ 0 since σii is a singular value of the matrixM .
Therefore, we have

Tr(WTM) =

k
∑

i=1

ziiσii ≤

k
∑

i=1

σii.

Apparently, the equality holds whenzii = 1, (1 ≤ i ≤ k).
That is to say,Tr(WTM) reaches the maximum when the
matrix Z = [Ik, 0] ∈ R

k×m. Recall thatZ = V
TWT

U, thus
the optimal solution to the problem (6) can be represented as

W = UZT
V

T = U[Ik; 0]V
T . (7)

Since Eq. (7) is based upon the full SVD of the matrixM , Eq.
(7) can be rewritten asW = UV T via the compact SVD of the
matrix M , whereM = USV T with U ∈ R

m×k, S ∈ R
k×k

andV ∈ R
k×k.

Based on the above analysis, the generalized power iteration
method (GPI) can be summarized in the algorithm 1.
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Fig. 1. Comparisons of 6 different values ofδ are performed under the GPI method with 3 different data matrices.

Algorithm 1 Generalized power iteration method (GPI)

1: Input: The symmetric matrixA ∈ R
m×m and the matrix

B ∈ R
m×k.

2: Initialize a randomW ∈ R
m×k satisfyingWTW = Ik

and α such thatÃ = αIm − A ∈ R
m×m is a positive

definite matrix.
3: UpdateM ← 2ÃW + 2B.
4: CalculateUSV T = M via the compact SVD method of

M whereU ∈ R
m×k, S ∈ R

k×k andV ∈ R
k×k.

5: UpdateW ← UV T .
6: Iteratively perform the step 3-5 until the algorithm con-

verges.

We will prove that the proposed algorithm 1 converges
monotonically to the local minimum of QPSM (2).

Step 5 of algorithm 1 is an instance of a class of methods,
called manifold retractions, to update a matrix on the Stiefel
manifold, that were discussed in details in [15].

A. Theoretical analysis of GPI

Lemma 3.1:If the symmetric matrixÃ ∈ R
m×m is positive

definite (pd), then

Tr(W̃T ÃW̃ )− 2Tr(W̃T ÃW ) + Tr(WT ÃW ) ≥ 0

whereW̃ ∈ R
m×k andW ∈ R

m×k are arbitrary matrices.
Proof: Since the matrix̃A is positive definite (pd), we could

rewrite Ã = LTL via Cholesky factorization. Therefore, we
have the following proof for Lemma 3.1 as

‖LW̃ − LW‖2F ≥ 0

⇒ Tr(W̃T ÃW̃ )− 2Tr(W̃T ÃW ) + Tr(WT ÃW ) ≥ 0

�

Theorem 3.1:The algorithm 1 decreases the value of the
objective function in (2) monotonically in each iteration until
it converges.

Proof: Suppose the updatedW is W̃ in the algorithm 1,
then we have

Tr(W̃TM) ≥ Tr(WTM) (8)

sinceW̃ is the optimal solution of the problem (6). Based on
the fact thatM = 2ÃW+2B, Eq. (8) can be further illustrated
as

2Tr(W̃T ÃW )+2Tr(W̃TB) ≥ 2Tr(WT ÃW )+2Tr(WTB).
(9)

Based on Lemma 3.1 and Eq. (9), we could infer that

Tr(W̃T ÃW̃ ) + 2Tr(W̃TB) ≥ Tr(WT ÃW ) + 2Tr(WTB)

⇒ Tr(W̃TAW̃ )− 2Tr(W̃TB) ≤ Tr(WTAW )− 2Tr(WTB)

which indicates that the algorithm 1 decreases the objective
value of QPSM in (2) in each iteration until the algorithm
converges. �

Theorem 3.2:The algorithm 1 converges to a local minimum
of the QPSM problem (2).
Proof: Since the algorithm 1 performs based on solving the
problem (6) in each iteration, the Lagrangian function for the
solution of the algorithm 1 can be represented as

L2(W,Λ) = Tr(WTM)− Tr(Λ(WTW − Ik)). (10)

Therefore, the solution of the algorithm 1 satisfies the follow-
ing KKT condition

∂L2

∂W
= M − 2WΛ = 0 (11)

Generally speaking, the matrixM will be updated byW̃
in each iteration under the algorithm 1. Since the algorithm1
converges to the optimal solutionW i.e. W̃ = W due to The-
orem 3.1, Eq. (11) can be further formulated by substituting
M = 2ÃW + 2B as

∂L2

∂W
= 2ÃW + 2B − 2WΛ = 0. (12)

By comparing Eq. (5) and (12), we could draw the conclusion
that the solution of the algorithm 1 and the problem (3) satisfy
the same KKT condition.

Therefore, the algorithm 1 converges to a local minimum
of QPSM (2) since the problems (2) and (3) are equivalent.�

Besides, the problem (6) has an unique solution under full
column-rank matrixM due to the uniqueness of the SVD
method. On the other hand, the experimental results in Section
5 represent that the proposed GPI method uniformly converges
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Fig. 2. Comparisons of the convergence rate are performed for 6 approaches including EB [7], RSR [8], LSR [9], SP [10] LR [11] and our proposed GPI
method under 3 different data matrices.

to the same objective value with a large amount of random
initial guesses. Based on the unique solution of the problem
(6) and the associated experimental results, it is rationalto
conjecture that the proposed GPI method converges to the
global minimum of QPSM.

IV. T WO SPECIAL CASES OFQUADRATIC PROBLEM ON

THE STIEFEL MANIFOLD

A. Orthogonal Least Square Regression

The orthogonal least square regression (OLSR) can be
written as

min
WTW=Ik,b

‖XTW + 1bT − Y ‖2F (13)

where the data matrixX ∈ R
m×n and the hypothesis matrix

Y ∈ R
n×k with 1 = (1, 1, · · · , 1)T ∈ R

n×1. Moreover,
W ∈ R

m×k is the regression matrix andb ∈ R
k×1 is the bias

vector. Obviously,b is free from any constraint. By virtue of
the extreme value condition w.r.t.b, we can derive as

∂‖XTW + 1bT − Y ‖2F
∂b

= 0

⇒WTX1+ b1T 1− Y T 1 = 0

⇒ b =
1

n
(Y T1−WTX1).

By substituting the above result asb = 1

n
(Y T1−WTX1),

Eq. (13) can be simplified to the following form as

min
WT W=Ik

‖H(XTW − Y )‖2F (14)

whereH = In −
1

n
11T .

Accordingly, the problem (14) can be further reformulated
into

min
WTW=Ik

Tr(WTAW − 2WTB) (15)

in which
{

A = XHXT

B = XHY
.

Apparently, Eq. (15) is in the exact same form as QPSM in
(2). Therefore, OLSR in (13) can be solved via the algorithm
1.

B. Unbalanced Orthogonal Procrustes Problem

Definition 4.1: With Q ∈ R
m×k, E ∈ R

n×m and G ∈
R

n×k, we name the optimization problem

min
QTQ=Ik

‖EQ−G‖2F (16)

1. balanced orthogonal procrustes problem (OPP) if and
only if m = k.

2. unbalanced orthogonal procrustes problem (UOPP) if and
only if m > k. Especially whenQ serves as a column vector
(k = 1), the problem (16) degenerates to

min
qT q=1

‖Eq − g‖2
2

(17)

which is known as the least square problem with a quadratic
equality constraint (LSQE).

1) Balanced orthogonal procrustes problem revisited:To
solve the balanced OPP (m = k), we could expand Eq. (16)
into

min
QT Q=Ik

‖EQ−G‖2F

⇒ min
QTQ=Ik

‖E‖2F + ‖G‖2F − 2Tr(QTETG)

⇒ max
QTQ=Ik

Tr(QTETG)

which is same as the problem (6) with treatingETG = M .
Thus, the balanced OPP has the analytical solution of the

closed form (7).
2) Unbalanced orthogonal procrustes problem:Whenm >

k, UOPP (16) can be expanded into

min
QTQ=Ik

‖EQ−G‖2F

⇒ min
QTQ=Ik

Tr(QTETEQ− 2QTETG).
(18)

DenoteETE = A andETG = B, then Eq. (18) is in the
exact same form as QPSM (2). Based on the algorithm 1, the
algorithm 2 can be proposed to converge to a local minimum
of UOPP monotonically due to the theoretical supports proved
in Section 3.

Generally speaking, QPSM can not be reformulated into
UOPP while UOPP could always be rewritten into QPSM.
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Fig. 3. Comparisons of PMCT [12] and GPI are performed over 2 different data matrices.

TABLE II
COMPARISONS OFCPUTIME UNDER THE SQUARE MATRIXE FOR CASE 2.

(Iteration stops when‖EQi−1 −G‖2
F

− ‖EQi −G‖2
F

≤ τ whereτ = 10−3 .)
(n = m = 200) RSR[8] LSR[9] SP[10] LR[11] EB[7] GPI(our)

k = 10 CPU time 64.940s 23.426s 2.386s 0.541s 0.337s0.228s
k = 15 CPU time 136.020s 21.635s 3.221s 1.134s 0.347s0.226s
k = 20 CPU time 229.851s 20.560s 5.054s 1.806s 0.445s0.273s

(n = m = 1000) RSR[8] LSR[9] SP[10] LR[11] EB[7] GPI(our)
k = 10 CPU time - 842.849s 132.232s 3.869s 11.440s1.290s
k = 15 CPU time - 851.231s 196.761s 5.180s 12.534s1.434s
k = 20 CPU time - 860.746s 260.132s 7.700s 12.625s1.575s

Algorithm 2 GPI for solving UOPP in (16)

1: Input: The matrixE ∈ R
n×m and the matrixG ∈ R

n×k

wherem > k.
2: Initialize Q ∈ R

m×k andγ such thatQTQ = Ik and the
matrix γIm − ETE is positive definite, respectively.

3: While not convergedo
4: Update matrixM ← 2(γIm − ETE)Q + 2ETG.
5: CalculateU ∈ R

m×k and V ∈ R
k×k via the compact

SVD of M asM = USV T .
6: UpdateQ← UV T .
7: End while
8: Return Q.

Therefore, the GPI method is more general than other ap-
proaches, which can only cope with UOPP. Based on the
experimental results involved in the next section, the proposed
GPI method takes much less time to converge to the solution
of UOPP.

V. EXPERIMENTAL RESULTS

In this section, we analyze and report the numerical results
of the generalized power iteration method (GPI) represented
by both the algorithm 1 and the algorithm 2. We randomly
choose the test data matrix with normally distributed singular
values. Besides, the computer we use is MacBook Air, whose
CPU is 1.4 GHz Intel Core i5, RAM is 4 GB 1600 MHz
DDR3 and operating system is OS X Yosemite 10.10.5.
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Fig. 4. CPU time comparison under Case 3.

Case 1: (parameter dependence)Firstly, we try to inves-
tigate the GPI method in the algorithm 2 via varying the
relaxation parameterγ. Supposele is the largest eigenvalue
of ETE, then we can letγ = δle such thatγIm − ETE is a
positive definite matrix, whereδ is an arbitrary constant.

1) From the figure 1, we can further notice that although the
convergence rate for the algorithm 2 is inversely proportional
to the value ofγ, the relaxation parameterγ does not affect
the uniform convergence of the GPI method.

Case 2:(CPU time comparison for solving UOPP)Sec-
ondly, we further investigate the proposed GPI method in the
algorithm 2 by comparing it with five existing approaches
mentioned in section 1 as EB [7], RSR [8], LSR [9], SP [10]
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TABLE III
COMPARISON OF THECPUTIME UNDER THE GENERAL DIMENSION FORCASE 2.

(Iteration stops when‖EQi−1 −G‖2
F

− ‖EQi −G‖2
F

≤ τ whereτ = 10−3 .)
Dimension

RSR[8] LSR[9] SP[10] LR[11] EB[7] GPI(our)
(n,m, k)

(5000, 500, 15)
CPU 713.156s 528.034s 450.028s 20.709s 16.554s 3.581s
time

(10000, 1000, 30)
CPU

- - - 56.772s 191.970s 9.384stime

(3000, 3000, 90)
CPU - - - 186.125s 395.401s 17.320stime

(30000, 1500, 30)
CPU

- - - 306.132s 1056.311s 19.440stime

(5000, 4000, 100)
CPU - - - 405.937s 1187.512s 30.128stime

(100000, 3000, 50)
CPU - - - - - 215.173s
time

and LR [11].
Based on solving LSQE problem, RSR [8] and LSR [9]

respectively update the solution row by row and column by
column iteratively. EB [7] utilizes the expanded balanced OPP
as the objective function. SP [10] employs the projection
method combined with correction techniques (PMCT) [12].
LR [11] solves UOPP by fixing different Lagrangian multipli-
ers. The proposed GPI method includes two terms asETE

outside the loop and̃AW within the loop, whose orders of
complexity arem2n andm2k, respectively. Besides, these two
terms have the highest orders of complexity for the proposed
GPI method. Besides, the order of the complexity for each
method is shown in the table I.

The comparative results are based on fixingE as the square
matrix at first hand (Table II) and then extendE to a more
general case (Table III) afterwards. (Mark− in the table II and
the table III represents that it takes too much time to record
in the tables.)

1) From the figure 2, we notice that the existing methods as
EB [7], RSR [8], LSR [9], SP [10] LR [11] and the proposed
GPI method converge to the same objective value under the
same input data. Besides, our proposed GPI method converges
faster than other approaches during iteration.

2) From the table I, the proposed GPI method has the
lowest order of complexity due to its succinct computational
process to obtain the optimal solution. During the experiments,
we observe that the iteration numbert for the LR method
is usually very large for the convergence. Thus, the time
consumption for LR method is much larger than that for the
proposed GPI method though orders of complexity for these
two approaches seem close. Besides, the GPI method becomes
more efficient whenn (the number of data) is large.

3) From the table II, the proposed algorithm 2 (GPI) serves
as the most efficient method under the square matrix case.

4) From the table III, we can observe that LSR [9], SP [10]
and RSR [8] are unable to compete with LR [11], EB [7]
and GPI due to the complex updating procedures including
the expanded OPP and solving LSQE. Especially when the
dimension increases, the superiority of our proposed GPI
method would be more obvious.

Case 3:(CPU time comparison for solving LSQE)Finally,
the projection method combined with correction techniques

(PMCT) [12] is compared to the GPI method in the algorithm 2
targeting at solving the least square regression with a quadratic
equality constraint (LSQE) in (17). Actually, solving LSQE
(17) is no different from solving UOPP (16) underk = 1.

1) From the figure 3, we can notice that PMCT [12] and
the algorithm 2 (GPI) converge to the same objective value
though in terms of the different patterns.

2) From the figure 4, the algorithm 2 (GPI) takes much less
time for convergence than PMCT [12] does.

VI. CONCLUDING REMARKS

In this paper, we analyze the quadratic problem on the
Stiefel manifold (QPSM) by deriving a novel generalized
power iteration (GPI) method. Based on the proposed GPI
method, two special and significant cases of QPSM known
as the orthogonal least square regression and the unbalanced
orthogonal procrustes problem are under further investigation.
With the theoretical supports, the GPI method decreases the
objective value of the QPSM problem monotonically to a local
minimum until convergence. Eventually, the effectivenessand
the superiority of the proposed GPI method are verified em-
pirically. In sum, the proposed GPI method not only takes less
CPU time to converge to the optimal solution with a random
initial guess but becomes much more efficient especially for
the data matrix of large dimension as well.
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