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Several Classes of Negabent Functions over Finite Fields

Gaofei Wu ∗, Nian Li †, Yuqing Zhang ‡, and Xuefeng Liu

Abstract

Negabent functions as a class of generalized bent functions have attracted a lot of attention

recently due to their applications in cryptography and coding theory. In this paper, we consider

the constructions of negabent functions over finite fields. First, by using the compositional inverses

of certain binomial and trinomial permutations, we present several classes of negabent functions of

the form f(x) = Trn1 (λx
2
k
+1) + Trn1 (ux)Tr

n
1 (vx), where λ ∈ F2n , 2 ≤ k ≤ n− 1, (u, v) ∈ F

∗
2n × F

∗
2n ,

and Trn1 (·) is the trace function from F2n to F2. Second, by using Kloosterman sum, we prove that

the condition for the cubic monomials given by Zhou and Qu (Cryptogr. Commun., to appear,

DOI 10.1007/s12095-015-0167-0.) to be negabent is also necessary. In addition, a conjecture on

negabent monomials whose exponents are of Niho type is given.

Index Terms Finite field, Negabent function, Nega-Hadamard transform, Kloosterman sum,

Niho exponent.

1 Introduction

Bent functions are an important class of Boolean functions which were introduced by Rothaus [11]. A

Boolean function is called bent if and only if it has a flat spectrum with respect to the Walsh-Hadamard

transform. Bent functions have attracted a lot of attention due to their applications in coding theory

and cryptography. As a logical extension of bent functions, Kumar, Scholtz, and Welch [5] gave the

definition of p-ary bent functions from Z
n
p to Zp, where p is an integer. Schmidt [12] introduced the

generalized Boolean bent functions from Z
m
2 to Zp from the viewpoint of cyclic codes over Galois ring.

Motivated by a choice of local unitary transforms that are central to the structural analysis of pure

n-qubit stabilizer quantum states, Riera and Parker [10] introduced some generalized bent criteria for

Boolean functions. They considered Boolean functions that have a flat spectrum with respect to one or
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more matrix transforms from the {I,H,N}n set of matrices or subsets thereof, where I =

(

1 0

0 1

)

,

H = 1√
2

(

1 1

1 −1

)

, and N = 1√
2

(

1
√
−1

1 −
√
−1

)

. A 2n × 2n transform matrix, U , is in the set {I,H,N}n

if it can be written as U = U0 ⊗ U1 ⊗ . . . ⊗ Un−1 =
⊗n−1

j=0 Uj , where Uj ∈ {I,H,N} and ⊗ is the

tensor product. Thus {I,H,N}n is a set of 3n transform matrices. A negabent function is a Boolean

function which has flat spectrum with respect to the negaHadamard, N⊗n, transform. Bent-negabent

functions are Boolean functions that are both bent and negabent. In 2007, Parker and Pott [8] gave

an important connection between bent and negabent functions, and showed that if n is even, then

one can obtain negabent functions from any bent ones. By using this connection, Stǎnicǎ [14] gave

a class of n-variable bent-negabent functions with algebraic degree n
4 + 1. Su, Pott, and Tang [17]

considered the negaHadamard spectra of negabent functions, and constructed a class of bent-negabent

functions with optimal algebraic degree by using complete permutation polynomials. Recently, Zhang,

Wei, and Pasalic [18] used the indirect sum construction proposed by Carlet [2] to construct the first

class of bent-negabent functions which are not in the completed Maiorana-McFarland class. On the

other hand, it is also important to construct negabent functions over finite fields. Sarkar [15] considered

negabent functions over finite fields, and characterized all the quadratic negabent monomials over finite

fields. Recently, Zhou and Qu [19] gave a class of cubic monomial negabent functions and a class of

cubic negabent polynomials over finite fields.

In this paper, we first give the necessary and sufficient conditions for the functions Trk1(λx
2k+1) +

Trn1 (ux)Tr
n
1 (vx) to be negabent, where n = 2k, λ ∈ F2k , and (u, v) ∈ F

∗
2n × F

∗
2n . Then by using

some permutation trinomials over F2n , we present some classes of negabent functions of the form

Trn1 (λx
2k+1) + Trn1 (ux)Tr

n
1 (vx), where 0 < k < n. Third, we show that the condition for the cubic

monomials given by Zhou and Qu [19] to be negabent is also necessary. Kloosterman sum plays an im-

portant role in the proof. In addition, we present a conjecture on negabent monomials whose exponents

are of Niho type.

The remainder of this paper is organized as follows. In Section 2, some preliminaries including

Kloosterman sum and permutation polynomials over finite fields are introduced. In Section 3, by using

the compositional inverses of some binomial and trinomial permutations, several classes of negabent

functions of the form Trn1 (λx
2k+1) + Trn1 (ux)Tr

n
1 (vx) are given. A class of negabent monomials over

finite fields is considered in Section 4, and some concluding remarks are given in Section 5.
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2 Preliminaries

A Boolean function f(x) is a mapping from F
n
2 to F2. The Walsh-Hadamard transform of a function

f(x) at a ∈ F
n
2 is defined by

Wf (a) =
∑

x∈F
n
2

(−1)f(x)+a·x,

where a · x is the standard inner product. If for any a ∈ F
n
2 , |Wf (a)| = 2

n
2 , then f(x) is called a bent

function. It is known that an n-variable Boolean function f(x) is bent if and only if f(x) + f(x+ a) is

balanced for all nonzero a ∈ F
n
2 . In [10], Riera and Parker introduced the notion of negabent function.

The negaHadamard transform of f(x) at a ∈ F
n
2 is defined by

Nf (a) =
∑

x∈F
n
2

(−1)f(x)+a·x
√
−1

wt(x)
,

where wt(x) is the weight of the vector x = (x0, x1, · · · , xn−1), i.e., wt(x) = #{i | xi = 1, i ∈ Zn}. A
function f(x) is called a negabent function if |Nf (a)| = 2

n
2 for all a ∈ F

n
2 . Similarly, a function f(x) is

negabent if and only if f(x) + f(x+ a) + a · x is balanced for all nonzero a ∈ F
n
2 .

In this paper, we focus on negabent functions over finite fields. It is well known that the vector

space F
n
2 is homomorphic to the finite field F2n . Let k be an integer such that k|n. The trace function

from F2n onto F2k is defined by

Trnk (x) =

n/k−1
∑

i=0

x2ik , x ∈ F2n .

If k = 1, we call Trn1 (x) the absolute trace function from F2n to F2. Let {α1, α2, · · · , αn} be a self dual

basis of F2n over F2. Let x =
n
∑

i=1

xiαi and a =
n
∑

i=1

aiαi, then Trn1 (ax) =
n
∑

i=1

aixi = a · x. Thus we have

the following equivalent definition of negabent functions over finite fields, which was first introduced by

Sarkar in [15].

Theorem 1 [15] Let f(x) be a Boolean function from F2n to F2. Then f(x) is negabent if and only if

∑

x∈F2n

(−1)f(x)+f(x+a)+Trn1 (ax) = 0

for all nonzero a in F2n .

In what follows we present some results on certain exponential sums and permutation polynomials

over finite fields, which will play an important role in our proofs.
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Let a, b ∈ F2n , the Kloosterman sum over F2n is defined by

Kn(a, b) =
∑

x∈F
∗

2n

(−1)Tr
n
1 (ax+bx−1).

Lemma 1 [6, Theorem 5.45] If a, b ∈ F2n are not both zero, then the Kloosterman sum satisfies

|Kn(a, b)| ≤ 2
√
2n.

Lemma 2 Let k be a positive integer and q = 2k. For any b ∈ F
∗
q and c ∈ F

∗
q, define A = #{x ∈

F
∗
q |Trk1(bx) = 0,Trk1(cx

−1) = 1}. Then A > 0 if k > 2.

Proof: Let B = #{x ∈ F
∗
q |Trk1(bx) = 1,Trk1(cx

−1) = 0}, C = #{x ∈ F
∗
q |Trk1(bx) = 0,Trk1(cx

−1) =

0}, and D = #{x ∈ F
∗
q |Trk1(bx) = 1,Trk1(cx

−1) = 1}. Then it is readily to verify that A + C =

2k−1 − 1, B+D = 2k−1 and A+D = 2k−1. This together with Lemma 1, i.e., |A+B−C −D| ≤ 2
√
q,

leads to |4A− 2k + 1| ≤ 2
√
q, which implies that A > 0 if k > 2. This completes the proof. �

A polynomial f ∈ Fq[x] is called a permutation polynomial if the associated polynomial mapping

f : c 7→ f(c) from Fq to itself is a permutation of Fq [6].

Lemma 3 [6, p.118] Let q be a prime power and f(x) =
∑m−1

i=0 aix
qi ∈ Fq[x]. Then f(x) is a per-

mutation polynomial over Fqm if and only if gcd(
∑m−1

i=0 aix
i, xm − 1) = 1. Moreover, if g(x) is the

compositional inverse of f(x), i.e., f(g(x)) ≡ x mod (xqm − x), then g(x) is a q-polynomial over Fq.

Lemma 4 Let k be a positive integer and f(x) = x+x2k +x22k , then f(x) is a permutation polynomial

over F2n if and only if gcd(n, 3k) = gcd(n, k). Further, let g(x) be the compositional inverse of f(x).

Then g(x) is a 2-polynomial over F2 and Trn1 (g(x)) = Trn1 (x).

Proof: According to Lemma 3, f(x) is a permutation polynomial over F2n if and only if gcd(x
3k

−1
xk−1

, xn−

1) = 1. Note that gcd(x
3k

−1
xk−1 , x

k − 1) = gcd(3, xk − 1) = 1. This implies that gcd(x3k − 1, xn − 1) =

gcd(x
3k

−1
xk−1

, xn − 1) · gcd(xk − 1, xn − 1) which leads to gcd(x
3k

−1
xk−1

, xn − 1) = xgcd(n,3k)
−1

xgcd(n,k)−1
. Thus, f(x) is

a permutation polynomial over F2n if and only if gcd(n, 3k) = gcd(n, k).

If g(x) is the compositional inverse of f(x), then we have g(x) is a 2-polynomial over F2 due to

Lemma 3. Moreover, we have g(1) = 1 since f(1) = 1, i.e., g(x) has odd number of terms. This leads

to Trn1 (g(x)) = Trn1 (x) since g(x) is a 2-polynomial over F2. This completes the proof. �

Lemma 5 Let n = rk and f(x) = λx+x2k +λx22k , where r, k are positive integers and λ ∈ F
∗

2k . Then

f(x) is a permutation polynomial over F2n if and only if gcd(λ+ x+λx2, xr − 1) = 1. Further, let g(x)

be the compositional inverse of f(x). Then g(x) is a 2k-polynomial over F2k and Trn1 (g(x)) = Trn1 (x).
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Proof: Note that f(x) is a 2k-polynomial over F2k . Thus the first assert follows directly from Lemma

3. Further, by Lemma 3 we have that g(x) is also a 2k-polynomial over F2k if g(x) is the compositional

inverse of f(x). Suppose that g(x) =
∑r−1

i=0 cix
2ki

, where ci ∈ F2k . Then, we have Trn1 (g(x)) =

Trk1(Tr
rk
k (g(x))) = Trk1(Tr

rk
k (

∑r−1
i=0 cix

2ki

)) = Trk1(
∑r−1

i=0 ciTr
rk
k (x2ki

)) = Trk1(g(1)Tr
rk
k (x)). Then the

result follows from the fact that g(1) = 1 since f(1) = 1. This completes the proof. �

3 Some classes of negabent polynomials

In this section, by using some permutation polynomials over F2n , we present several classes of negabent

functions of the form Trn1 (λx
2k+1) + Trn1 (ux)Tr

n
1 (vx) over F2n , where 2 ≤ k ≤ n − 1, λ ∈ F2n , and

(u, v) ∈ F
∗
2n × F

∗
2n .

Theorem 2 Let n = 2k, λ ∈ F2k and (u, v) ∈ F
∗
2n × F

∗
2n . Then f(x) = Trk1(λx

2k+1) + Trn1 (ux)Tr
n
1 (vx)

is negabent on F2n if and only if one of the following conditions is satisfied:

1. λ 6= 1, (Trn1 (
u

1+λ),Tr
n
1 (

(λu2k+u)v
1+λ2 ),Trn1 (

v
1+λ )) ∈ {(0, 0, 0), (0, 0, 1), (1, 0, 0), (1, 1, 1)};

2. λ = 1, k = 2, u, v, u+ v 6∈ F2k ;

3. λ = 1, k = 1, u 6= v.

Proof: According to Theorem 1, to complete this proof, it is sufficient to prove that f(x) + f(x+ a) +

Trn1 (ax) is balanced for all nonzero a ∈ F2n if and only if λ, u, v satisfy one of the conditions given in

Theorem 2. A direct calculation gives

f(x) + f(x+ a) + Trn1 (ax) = Trk1(λ(a
2kx+ ax2k)) + Trn1 (ua)Tr

n
1 (vx) + Trn1 (va)Tr

n
1 (ux) + Trn1 (ax)

+Trk1(λa
2k+1) + Trn1 (ua)Tr

n
1 (va)

= Trn1 ((λa
2k + a)x) + Trn1 (vTr

n
1 (ua)x) + Trn1 (uTr

n
1 (va)x)

+Trk1(λa
2k+1) + Trn1 (ua)Tr

n
1 (va).

This implies that f(x)+f(x+a)+Trn1 (ax) is balanced if and only if λa2
k

+a+vTrn1 (ua)+uTrn1 (va) 6= 0.

Notice that λa2
k

+ a is a 2k-polynomial and gcd(λak + 1, a2k + 1) = gcd(λak + 1, (ak + 1)2) = gcd(λ+

1, ak+1) = 1 only if λ 6= 1. This together with Lemma 3 shows that λa2
k

+a is permutation polynomial

if λ 6= 1. Moreover, for any λ 6= 1 and b ∈ F2n , if λa
2k + a = b, then one gets λa + a2

k

= b2
k

since

n = 2k and λ ∈ F2k . These two identities lead to

a =
b+ λb2

k

λ2 + 1
, (1)
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which is the unique solution to λa2
k

+ a = b.

For simplicity, define h(a) = λa2
k

+ a+ vTrn1 (ua) + uTrn1 (va). Then by (1), for λ 6= 1 we have

1) (Trn1 (ua),Tr
n
1 (va)) = (0, 0): For this case, h(a) = 0 has the only solution a = 0.

2) (Trn1 (ua),Tr
n
1 (va)) = (0, 1): By (1), a = u+λu2k

λ2+1 is the unique solution to λa2
k

+ a + u = 0.

Note that Trn1 (ua) = Trn1 (u · λu2k+u
1+λ2 ) = Trn1 (

λu2k+1

1+λ2 ) + Trn1 (
u2

1+λ2 ) = Trn1 (
u

1+λ) since n = 2k and

λu2k+1

1+λ2 ∈ F2k . Thus, in this case h(a) = 0 has the only solution a = u+λu2k

λ2+1 if and only if

Trn1 (
u

1+λ) = 0 and Trn1 (va) = Trn1 (v · λu2k+u
1+λ2 ) = 1.

3) (Trn1 (ua),Tr
n
1 (va)) = (1, 0): Similar as above, for this case h(a) = 0 has the only solution a =

v+λv2k

λ2+1 if and only if Trn1 (
v

1+λ) = 0 and Trn1 (ua) = Trn1 (u · λv2k+v
1+λ2 ) = 1.

4) (Trn1 (ua),Tr
n
1 (va)) = (1, 1): In this case, a = u+v+λ(u+v)2

k

λ2+1 is the unique solution to λa2
k

+a+u+

v = 0 due to (1). By the same techniques used in Cases 2) and 3) one can conclude that h(a) = 0

has the only solution if and only if Trn1 (
u

1+λ + (λv2k+v)u
1+λ2 ) = 1 and Trn1 (

v
1+λ + (λu2k+u)v

1+λ2 ) = 1.

Notice that Trn1 (
(λv2k+v)u

1+λ2 ) = Trn1 (
(λvu2k )2

k

(1+λ2)2k
) + Trn1 (

vu
1+λ2 ) = Trn1 (

λvu2k

1+λ2 ) + Trn1 (
vu

1+λ2 ) = Trn1 (
(λu2k+u)v

1+λ2 )

due to n = 2k and λ ∈ F2k . Therefore, if λ 6= 1, by combining Cases 1)–4), one has that h(a) =

λa2
k

+ a + vTrn1 (ua) + uTrn1 (va) 6= 0 for any nonzero a ∈ F2n if and only if the first condition in

Theorem 2 is satisfied.

Now we consider the case of λ = 1. First we discuss the number of solutions of h(a) = λa2
k

+ a+

vTrn1 (ua)+uTrn1 (va) under the condition (Trn1 (ua),Tr
n
1 (va)) = (0, 0). In this case, h(a) = 0 is equivalent

to a ∈ F2k . Let N(u, v) denote the number of nonzero a ∈ F2k such that (Trn1 (ua),Tr
n
1 (va)) = (0, 0),

where (u, v) ∈ F
∗
2n×F

∗
2n . Then, according to the balanced property of the trace function and the fact that

(Trn1 (ua),Tr
n
1 (va)) = (Trk1(a(u+u2k)),Trk1(a(v+v2

k

))), it can be readily verified that N(u, v) = 2k−1 if

u, v ∈ F2k , N(u, v) = 2k−1−1 if exactly one of u, v belongs to F2k , N(u, v) = 2k−1−1 if u, v 6∈ F2k with

u + v ∈ F2k and N(u, v) = 2k−2 − 1 if u, v, u+ v 6∈ F2k respectively. This implies that h(a) = 0 under

the condition (Trn1 (ua),Tr
n
1 (va)) = (0, 0) has at least one nonzero solution for any given u, v ∈ F2n if

k > 2, i.e., f(x) cannot be negabent if λ = 1 and k > 2. The conditions on u, v ∈ F2n such that f(x) is

negabent for k = 1, 2 can be easily verified based on a simple discussion. This completes the proof. �

Remark 1 Let u = v in Theorem 2, then f(x) is negabent on F2n if and only if λ 6= 1, which is

Proposition 5 in [16].
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Corollary 1 Let f(x) with u 6= v be given as in Theorem 2 and Nλ denote the number of ordered pairs

(u, v) such that f(x) is negabent. Then Nλ = (2n−1 − 2)(2n − 1) for any fixed λ 6= 1 and N1 = 6, 96 for

k = 1, 2 respectively.

Proof: We only give the proof for λ 6= 1 since the proof for λ = 1 is trivial due to Theorem 2. For λ 6= 1,

we first determine the number of ordered pairs (u, v) such that (Trn1 (
u

1+λ ),Tr
n
1 (

(λu2k+u)v
1+λ2 ),Trn1 (

v
1+λ)) ∈

{(0, 0, 0), (0, 0, 1)}. Note that (Trn1 (
u

1+λ ),Tr
n
1 (

(λu2k+u)v
1+λ2 ),Trn1 (

v
1+λ)) ∈ {(0, 0, 0), (0, 0, 1)} is equivalent

to (Trn1 (
u

1+λ),Tr
n
1 (

(λu2k+u)v
1+λ2 )) = (0, 0). Clearly, the number of u ∈ F

∗
2n satisfying Trn1 (

u
1+λ) = 0 is

2n−1 − 1, and for each such u, there are 2n−1 − 2 v’s in F
∗
2n \ {u} such that Trn1 (

(λu2k+u)v
1+λ2 ) = 0. Thus,

in this case we get (2n−1 − 1)(2n−1 − 2) ordered pairs (u, v) such that f(x) is negabent.

Next we count the number of the pairs (u, v) such that (Trn1 (
u

1+λ ),Tr
n
1 (

(λu2k+u)v
1+λ2 ),Trn1 (

v
1+λ)) ∈

{(1, 0, 0), (1, 1, 1)}, which is equivalent to counting the number of the pairs (u, v) satisfying Trn1 (
u

1+λ ) = 1

and Trn1 (
(λu2k+u)v

1+λ2 ) + Trn1 (
v

1+λ ) = Trn1 (
(λu2k+u+1+λ)v

1+λ2 ) = 0. Similar as above, for this case the number

of u ∈ F
∗
2n satisfying Trn1 (

u
1+λ) = 1 is 2n−1, and for each such u, there are 2n−1 − 2 v’s in F

∗
2n \ {u}

such that Trn1 (
(λu2k+u+1+λ)v

1+λ2 ) = 0, i.e., we have 2n−1(2n−1 − 2) ordered pairs (u, v) such that f(x) is

negabent. This completes the proof. �

The function f(x) in Theorem 2 has been investigated recently by Mesnager [7] in order to construct

new classes of bent functions.

Theorem 3 [7] Let n = 2k, λ ∈ F
∗

2k and (u, v) ∈ F
∗
2n×F

∗
2n, then f(x) = Trk1(λx

2k+1)+Trn1 (ux)Tr
n
1 (vx)

is bent if and only if Trn1 (λ
−1u2kv) = 0.

Combining Theorem 2 and Theorem 3, we have the following corollary.

Corollary 2 Let n = 2k, λ ∈ F
∗

2k and (u, v) ∈ F
∗
2n ×F

∗
2n . Then f(x) = Trk1(λx

2k+1)+Trn1 (ux)Tr
n
1 (vx)

is bent-negabent on F2n if and only if one of the following conditions is satisfied:

1. λ 6= 1, (Trn1 (
u

1+λ),Tr
n
1 (

(λu2k+u)v
1+λ2 ),Trn1 (λ

−1u2kv)) = (0, 0, 0) or (Trn1 (
u

1+λ), Tr
n
1 (

(λu2k+u+1+λ)v
1+λ2 ),

Trn1 (λ
−1u2kv)) = (1, 0, 0);

2. λ = 1, k = 2, u, v, u+ v /∈ F2k and Trn1 (u
2kv) = 0.

As a special case of Theorem 2, if λ = 0, then it gives the necessary and sufficient conditions for

Trn1 (ux)Tr
n
1 (vx) to be negabent on F2n for even n. In the following we consider the negabent property

of Trn1 (ux)Tr
n
1 (vx) for both even and odd n.
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Theorem 4 Let f(x) = Trn1 (ux)Tr
n
1 (vx), where (u, v) ∈ F

∗
2n × F

∗
2n . Then f(x) is negabent on F2n if

and only if one of the following conditions is satisfied:

1. Trn1 (u) = 0 and Trn1 (uv) = 0;

2. Trn1 (u) = 1 and Trn1 ((u + 1)v) = 0.

Proof: According to Theorem 1, it is sufficient to prove that

f(x) + f(x+ a) + Trn1 (ax) = Trn1

(

(Trn1 (va)u +Trn1 (ua)v + a)x
)

+Trn1 (ua)Tr
n
1 (va)

is balanced for all nonzero a ∈ F2n , which is equivalent to show that Trn1 (va)u + Trn1 (ua)v + a 6= 0 for

all nonzero a. Let h(a) = Trn1 (va)u +Trn1 (ua)v + a, we have

1) (Trn1 (ua),Tr
n
1 (va)) = (0, 0): For this case, h(a) = 0 has the only solution a = 0.

2) (Trn1 (ua),Tr
n
1 (va)) = (0, 1): In this case, h(a) = 0 has the only solution a = u if and only if

Trn1 (u) = 0 and Trn1 (uv) = 1.

3) (Trn1 (ua),Tr
n
1 (va)) = (1, 0): Similar as above, for this case h(a) = 0 has the only solution a = v

if and only if Trn1 (uv) = 1 and Trn1 (v) = 0.

4) (Trn1 (ua),Tr
n
1 (va)) = (1, 1): In this case, a = u+v is the only solution to Trn1 (va)u+Trn1 (ua)v+a =

0 if and only if Trn1 (u(u+ v)) = 1 and Trn1 (v(u + v)) = 1.

Based on Cases 1)-4), it can be seen that Trn1 (va)u +Trn1 (ua)v + a 6= 0 for all nonzero a if and only if

one of the two conditions in Theorem 4 is satisfied. �

Remark 2 Theorem 4 shows that Trn1 (x)Tr
n
1 (vx) is negabent for any nonzero v ∈ F2n when n is odd

and u = 1, which was given in Theorem 8 in [19]. Note that the negabent property is not preserved

by linear transform, i.e., f(x) is negabent on F2n does not imply that f(ax) is negabent on F2n for all

a ∈ F
∗
2n [13]. Thus, Theorem 4 is not a special case of Theorem 8 in [19].

Theorem 5 Let n be an even integer and k be a positive integer such that gcd(n, 3k) = gcd(n, k). Then

f(x) = Trn1 (x
2k+1) + Trn1 (x)Tr

n
1 (vx) is negabent on F2n if Trn1 (v) = 0.

Proof: According to Theorem 1, we only need to show that f(x) + f(x + a) + Trn1 (ax) is balanced for

all nonzero a ∈ F2n if Trn1 (v) = 0. A direct calculation gives

f(x) + f(x+ a) + Trn1 (ax) = Trn1 (a
2kx+ ax2k) + Trn1 (a)Tr

n
1 (vx) + Trn1 (va)Tr

n
1 (x) + Trn1 (ax)

+Trn1 (a
2k+1) + Trn1 (a)Tr

n
1 (va)

= Trn1 ((a
2k + a2

−k

+ a)x) + Trn1 ((vTr
n
1 (a))x) + Trn1 (Tr

n
1 (va)x)

+Trn1 (a
2k+1) + Trn1 (a)Tr

n
1 (va).
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This shows that f(x)+f(x+a)+Trn1 (ax) is balanced if and only if a2
k

+a2
−k

+a+vTrn1 (a)+Trn1 (va) 6= 0,

i.e., a+ a2
k

+ a2
2k

+ v2
k

Trn1 (a) + Trn1 (va) 6= 0. Notice that a+ a2
k

+ a2
2k

is a permutation of F2n due

to Lemma 4. Let g(a) = a+ a2
k

+ a2
2k

+ v2
k

Trn1 (a) +Trn1 (va) and h(a) be the compositional inverse of

a+ a2
k

+ a2
2k

, then we have

1) (Trn1 (a),Tr
n
1 (va)) = (0, 0): For this case, g(a) = 0 has the only solution a = 0.

2) (Trn1 (a),Tr
n
1 (va)) = (0, 1): In this case, g(a) = 0 means that a+a2

k

+a2
2k

= 1, i.e., a = h(1) = 1.

However, Trn1 (va) = Trn1 (v) = 0, which shows that g(a) = 0 has no solution in this case.

3) (Trn1 (a),Tr
n
1 (va)) = (1, 0): In this case, g(a) = 0 is reduced to a+a2

k

+a2
2k

= v2
k

, i.e., a = h(v2
k

).

However, by Lemma 4, Trn1 (a) = Trn1 (h(v
2k)) = Trn1 (v

2k) = Trn1 (v) = 0. This shows that g(a) = 0

has no solution in this case.

4) (Trn1 (a),Tr
n
1 (va)) = (1, 1): Similar as above, g(a) = 0 implies that a+ a2

k

+ a2
2k

= 1 + v2
k

, i.e.,

a = h(1+v2
k

). Note that Trn1 (1) = 0 since n is even. From Lemma 4, Trn1 (a) = Trn1 (h(1+v2
k

)) =

Trn1 (1 + v2
k

) = Trn1 (v) = 0, which shows that g(a) = 0 has no solution in this case.

From the above Cases 1)-4), we can see that a+ a2
k

+ a2
2k

+ v2
k

Trn1 (a) + Trn1 (va) 6= 0 for all nonzero

a ∈ F2n if Trn1 (v) = 0. This completes the proof. �

By the same techniques used in the proof of Theorem 5, we can derive the following result.

Theorem 6 Let r and k be two integers such that rk is even. Let n = rk, λ ∈ F
∗

2k and gcd(λ + x +

λx2, xr − 1) = 1. Then f(x) = Trn1 (λx
2k+1) + Trn1 (x)Tr

n
1 (vx) is negabent on F2n if Trn1 (v) = 0.

Proof: According to Theorem 1, it is enough to prove that f(x) + f(x + a) + Trn1 (ax) is balanced for

all nonzero a ∈ F2n for the v ∈ F2n satisfying Trn1 (v) = 0. Note that

f(x) + f(x+ a) + Trn1 (ax) = Trn1 (λ(a
2kx+ ax2k)) + Trn1 (a)Tr

n
1 (vx) + Trn1 (va)Tr

n
1 (x) + Trn1 (ax)

+Trn1 (λa
2k+1) + Trn1 (a)Tr

n
1 (va)

= Trn1 ((λa
2k + (λa)2

−k

+ a)x) + Trn1 (vTr
n
1 (a)x) + Trn1 (Tr

n
1 (va)x)

+Trn1 (λa
2k+1) + Trn1 (a)Tr

n
1 (va).

Thus, f(x) + f(x+ a) + Trn1 (ax) is balanced if and only if

λa2
k

+ (λa)2
−k

+ a+ vTrn1 (a) + Trn1 (va) 6= 0. (2)
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Raising both sides of (2) to the 2k-th power, we get λa2
2k

+λa+ a2
k

+ v2
k

Trn1 (a) +Trn1 (va) 6= 0 due to

λ ∈ F2k . Let g(a) = λa+ a2
k

+ λa2
2k

+ v2
k

Trn1 (a) + Trn1 (va). According to Lemma 5, λa+ a2
k

+ λa2
2k

is a permutation of F2n since gcd(λ + x + λx2, xr − 1) = 1. Let h(a) be the compositional inverse of

λa+ a2
k

+ λa2
2k

. Similar as in the proof of Theorem 5, we have

1) (Trn1 (a),Tr
n
1 (va)) = (0, 0): For this case, g(a) = 0 has the only solution a = 0.

2) (Trn1 (a),Tr
n
1 (va)) = (0, 1): In this case, g(a) = 0 means that λa+a2

k

+λa2
2k

= 1, i.e., a = h(1) = 1

since λ · 1+ 12
k

+λ · 122k = 1. However, Trn1 (va) = Trn1 (v) = 0, which shows that g(a) = 0 has no

solution in this case.

3) (Trn1 (a),Tr
n
1 (va)) = (1, 0): In this case, g(a) = 0 means that λa + a2

k

+ λa2
2k

= v2
k

, i.e.,

a = h(v2
k

). From Lemma 5, Trn1 (a) = Trn1 (h(v
2k )) = Trn1 (v

2k) = Trn1 (v) = 0, which shows that

g(a) = 0 has no solution in this case.

4) (Trn1 (a),Tr
n
1 (va)) = (1, 1): Similar as above, g(a) = 0 implies that λa + a2

k

+ λa2
2k

= 1 + v2
k

,

i.e., a = h(1 + v2
k

). Note that Trn1 (1) = 0 due to n is even. Again by Lemma 5, Trn1 (a) =

Trn1 (h(1 + v2
k

)) = Trn1 (1 + v2
k

) = Trn1 (v) = 0. This implies that g(a) = 0 has no solution in this

case.

From the above Cases 1)-4), we can see that if Trn1 (v) = 0, then λa+a2
k

+λa2
2k

+v2
k

Trn1 (a)+Trn1 (va) 6= 0

for all nonzero a ∈ F2n . This completes the proof. �

Remark 3 Notice that if one takes n = rk in Theorem 5 then Theorem 5 is a special case of Theorem

6 due to the fact that gcd(1 + x+ x2, xr − 1) = 1 if and only if gcd(rk, 3k) = gcd(rk, k). For the values

of n, k with gcd(n, k) 6= k, the results in Theorem 5 are not covered by Theorem 6.

By Theorem 6 we can obtain the following results if we take r = 3, 4, 5 respectively.

Corollary 3 Let k be an even integer and n = 3k. Let λ ∈ F2k \ {0, 1}. Then f(x) = Trn1 (λx
2k+1) +

Trn1 (x)Tr
n
1 (vx) is negabent on F2n if Trn1 (v) = 0.

Proof: According to Theorem 6, it is sufficient to show that gcd(λ + x + λx2, x3 − 1) = 1 if λ 6= 1.

Then result follows from the fact that gcd(λ + x + λx2, x3 − 1) = gcd(λ + x + λx2, x2 + x + 1) =

gcd(λ(x2 + x+ 1) + (λ+ 1)x, x2 + x+ 1) = gcd((λ + 1)x, x2 + x+ 1). �

If r = 4, then gcd(λ+x+λx2, x4− 1) = gcd(λ+x+λx2, x− 1) = 1 for any λ ∈ F
∗

2k . Thus, we have

Corollary 4 Let n = 4k and λ ∈ F
∗

2k . Then f(x) = Trn1 (λx
2k+1) + Trn1 (x)Tr

n
1 (vx) is negabent on F2n

if Trn1 (v) = 0.
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Corollary 5 Let k be an even integer and n = 5k. Let λ ∈ F2k \ {0, ω, ω2}, where ω is a primitive

element of F22 . Then f(x) = Trn1 (λx
2k+1) + Trn1 (x)Tr

n
1 (vx) is negabent on F2n if Trn1 (v) = 0.

Proof: According to Theorem 6, we need to determine the condition on λ such that gcd(λ + x +

λx2, x5−1) = 1. Notice that gcd(λ+x+λx2, x5−1) = gcd(λ+x+λx2, x4+x3+x2+x+1). By a simple

calculation, we have x4+x3+x2+x+1 = (1+µx+x2)(µ2+µ+(µ+1)x+x2)+(µ2+µ+1)(µx+1), where

µ = λ−1. This leads to gcd(λ+x+λx2, x4 +x3+x2+x+1) = gcd(1+µx+x2, x4 +x3+x2+x+1) =

gcd(1 + µx+ x2, (µ2 + µ+ 1)(µx+ 1)) = 1 if and only of µ2 + µ+ 1 6= 0. This completes the proof. �

4 On a class of monomial negabent functions

In [19], Zhou and Qu showed that Tr2k1 (λxd) is negabent on F22k if λ ∈ F2, where d = 2k +3 and k ≥ 3

is odd. In this section, we will show that λ ∈ F2 is also necessary for Tr2k1 (λxd) to be negabent.

Theorem 7 Let n = 2k, q = 2k and d = q+3, where k ≥ 3 is odd. Then Trn1 (λx
d) is negabent on F2n

if and only if λ ∈ F2.

Proof: Since k is odd, then f(x) = x2 + x+1 is irreducible over F2k as it is irreducible over F2. Let

ω be a root of f(x). Then F2n = F2k [ω], i.e., each x ∈ F2n can be uniquely represented as x0 + x1ω,

where xi ∈ F2k . Then

xd = (x0 + x1ω)
d = x4

0 + x4
1 + x1x

3
0 + x0x

3
1 + (x2

0x
2
1 + x0x

3
1 + x4

1)ω (3)

and

(x + a)d = (x0 + a0)
4 + (x1 + a1)

4 + (x1 + a1)(x0 + a0)
3 + (x0 + a0)(x1 + a1)

3

+((x0 + a0)
2(x1 + a1)

2 + (x0 + a0)(x1 + a1)
3 + (x1 + a1)

4)ω, (4)

where a = a0 + a1ω.

Note that Tr2kk (1) = 0 and Tr2kk (ω) = ω + ω2k = 1 since k is odd and ω is a root of x2 + x+ 1. Let

λ = λ0 + λ1ω. Then from (3), (4) and Tr2kk (ax) = a0x1 + a1x0 + a1x1, we have

Tr2kk (λxd + λ(x + a)d + ax)

= λ1x
2
0a

2
1 + λ0x0a

3
1 + λ0x

2
0a

2
1 + λ1a1x

3
0 + λ0a0x

3
1 + a1x0 + λ1x1x0a

2
0 + λ1x1x

2
0a0 + λ1a1x0a

2
0

+λ1a1x
2
0a0 + x1a1 + λ0a0x

2
1a1 + λ0x0x

2
1a1 + λ0x0x1a

2
1 + λ0a0x1a

2
1 + λ0a0a

3
1 + λ0a

4
1

+λ1a
4
0 + λ1x1a

3
0 + λ1a1a

3
0 + λ1a

2
0x

2
1 + λ1a

2
0a

2
1 + λ0a

2
0x

2
1 + λ0a

2
0a

2
1 + a0x1 = G(x0, x1). (5)
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Suppose that λ1 6= 0. We will show that for each λ = λ0+λ1ω with λ1 6= 0, there exists at least one

nonzero a = a0 + a1ω ∈ F2n such that Trn1 (λx
d +λ(x+ a)d + ax) = Trk1(G(x0, x1)) is not balanced. We

consider this in three cases.

Case (i) λ1 6= 0, λ2
0 + λ2

1 + λ0λ1 + 1 6= 0.

In this case, let a1 = 0 and a0 6= 0. Then

∑

x0,x1∈Fq

(−1)Tr
k
1(G(x0,x1))

=
∑

x0,x1∈Fq

(−1)Tr
k
1(λ1x1x

2
0a0+λ1x1x0a

2
0+λ1a

2
0x

2
1+λ0a0x

3
1+λ0a

2
0x

2
1+λ1a

4
0+λ1x1a

3
0+a0x1)

=
∑

x1∈Fq

(−1)Tr
k
1(λ1a

2
0x

2
1+λ0a0x

3
1+λ0a

2
0x

2
1+λ1a

4
0+λ1x1a

3
0+a0x1)

∑

x0∈Fq

(−1)Tr
k
1((λ1x1a0+λ2

1x
2
1a

4
0)x

2
0)

= 2k
∑

x1=0 orx1=(λ1a3
0)

−1

(−1)Tr
k
1(λ1a

2
0x

2
1+λ0a0x

3
1+λ0a

2
0x

2
1+λ1a

4
0+λ1x1a

3
0+a0x1)

= 2k
(

(−1)Tr
k
1 (λ1a

4
0) + (−1)Tr

k
1(λ1a

2
0t

2+λ0a0t
3+λ0a

2
0t

2+λ1a
4
0+λ1ta

3
0+a0t)

)

, (6)

where t = (λ1a
3
0)

−1. By (6), if there exists a0 ∈ F
∗
q such that Trk1(λ1a

2
0t

2+λ0a0t
3+λ0a

2
0t

2+λ1ta
3
0+a0t) =

0, then
∑

x0,x1∈Fq
(−1)Tr

k
1(G(x0,x1)) = (−1)Tr

k
1 (λ1a

4
0) · 2k+1 6= 0, i.e., Trk1(G(x0, x1)) is not balanced

for such a0 ∈ F
∗
q . Since t = (λ1a

3
0)

−1, we have Trk1(λ1a
2
0t

2 + λ0a0t
3 + λ0a

2
0t

2 + λ1ta
3
0 + a0t) =

Trk1(
λ2
1+λ2

0+1+λ0λ1

λ4
1

(a80)
−1+1), which implies that there exists a0 6= 0 such that Trk1(

λ2
1+λ2

0+1+λ0λ1

λ4
1

(a80)
−1)+

1 = 0 if λ ∈ F2n satisfying λ2
0 + λ2

1 + λ0λ1 + 1 6= 0 and λ1 6= 0.

Case (ii) λ1 6= 0, λ2
0 + λ2

1 + λ0λ1 + 1 = 0 and λ0 6= 0.

In this case, let a0 = 0 and a1 6= 0. Then

∑

x0,x1∈Fq

(−1)Tr
k
1 (G(x0,x1))

=
∑

x0,x1∈Fq

(−1)Tr
k
1 (λ0x0x

2
1a1+(λ0a

2
1x0+a1)x1+λ1a1x

3
0+(λ1a

2
1+λ0a

2
1)x

2
0+(λ0a

3
1+a1)x0+λ0a

4
1)

=
∑

x0∈Fq

(−1)Tr
k
1(λ1a1x

3
0+(λ1a

2
1+λ0a

2
1)x

2
0+(λ0a

3
1+a1)x0+λ0a

4
1)

∑

x1∈Fq

(−1)Tr
k
1((λ0x0a1+λ2

0a
4
1x

2
0+a2

1)x
2
1)

= 2k
∑

x0=y1 orx0=y2

(−1)Tr
k
1(λ1a1x

3
0+(λ1a

2
1+λ0a

2
1)x

2
0+(λ0a

3
1+a1)x0+λ0a

4
1), (7)

where y1 and y2 are the two roots of λ0x0a1+λ2
0a

4
1x

2
0+a21 = 0 (x0 as the indeterminate variable) under

the condition Trk1(a1) = 0. Thus, y1 + y2 = 1
λ0a3

1
and y1y2 = 1

λ2
0a

2
1
. By (7), if there exists a1 ∈ F

∗
q
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such that Trk1(a1) = 0 and Trk1(λ1a1(y
3
1 + y32) + (λ1a

2
1 + λ0a

2
1)(y1 + y2)

2 + (λ0a
3
1 + a1)(y1 + y2)) = 0,

then
∑

x0,x1∈Fq
(−1)Tr

k
1 (G(x0,x1)) = ±2k+1 6= 0, i.e., Trk1(G(x0, x1)) is not balanced for such a1 ∈ F

∗
q . By

y31 + y32 = (y1 + y2)
3 + y1y2(y1 + y2) =

1
λ3
0
( 1
a9
1
+ 1

a5
1
), one obtains that

Trk1(λ1a1(y
3
1 + y32) + (λ1a

2
1 + λ0a

2
1)(y1 + y2)

2 + (λ0a
3
1 + a1)(y1 + y2))

= Trk1((
λ2
1

λ6
0

+
λ2
0 + λ2

1 + λ0λ1 + 1

λ4
0

)
1

a81
+ 1) = Trk1(

λ2
1

λ6
0

· 1

a81
+ 1).

According to Lemma 2, for odd k > 2, there exists a1 ∈ F
∗
q such that Trk1(

λ2
1

λ6
0
· 1
a8
1
+1) = Trk1((

λ2
1

λ6
0
)−8 · 1

a1
)+

1 = 0 and Trk1(a1) = 0. Thus, for any λ ∈ F2n such that λ2
0+λ2

1+λ0λ1+1 = 0 and λ0λ1 6= 0, there exists

a1 6= 0 such that Trk1(a1) = 0 and Trk1(λ1a1(y
3
1+y32)+(λ1a

2
1+λ0a

2
1)(y1+y2)

2+(λ0a
3
1+a1)(y1+y2)) = 0.

That is, Trk1(G(x0, x1)) is not balanced for such a1 ∈ F
∗
q .

Case (iii) λ1 6= 0, λ2
0 + λ2

1 + λ0λ1 + 1 = 0 and λ0 = 0.

For this case, λ1 = 1 and λ0 = 0. Let a0 = a1 6= 0. Then

∑

x0,x1∈Fq

(−1)Tr
k
1 (G(x0,x1))

=
∑

x0,x1∈Fq

(−1)Tr
k
1 (a

2
0x

2
1+(x2

0a0+x0a
2
0+a3

0)x1+x3
0a0+(a3

0+a0)x0+a4
0)

=
∑

x0∈Fq

(−1)Tr
k
1 (x

3
0a0+(a3

0+a0)x0+a4
0)

∑

x1∈Fq

(−1)Tr
k
1((a0+x2

0a0+x0a
2
0+a3

0)x1)

= 2k
∑

x0=y1 orx0=y2

(−1)Tr
k
1(x

3
0a0+(a3

0+a0)x0+a4
0), (8)

where y1 and y2 are the two roots of a0+x2
0a0+x0a

2
0+a30 = 0 (x0 as the indeterminate variable) under the

condition Trk1(a
−1
0 ) = 1. Thus, y1 + y2 = a0 and y1y2 = 1+ a20. By (8), if there exists a0 ∈ F

∗
q such that

Trk1(a
−1
0 ) = 1 and Trk1((y

3
1+y32)a0+(a30+a0)(y1+y2)) = 0, then

∑

x0,x1∈Fq
(−1)Tr

k
1 (G(x0,x1)) = ±2k+1 6= 0.

That is, Trk1(G(x0, x1)) is not balanced for such a0 ∈ F
∗
q . Note that y

3
1+y32 = (y1+y2)

3+y1y2(y1+y2) =

a30 +(1+ a20)a0 = a0, then Trk1((y
3
1 + y32)a0 +(a30 + a0)(y1 + y2)) = Trk1(a

2
0 +(a30 + a0)a0) = Trk1(a0) = 0.

Again by Lemma 2, for odd k > 2, there exists a0 ∈ F
∗
q such that Trk1(a0) = 0 and Trk1(a

−1
0 ) = 1. Thus,

for λ = λ0 + λ1ω = ω, there exists a0 6= 0 such that Trk1(a
−1
0 ) = 1 and Trk1((y

3
1 + y32)a0 + (a30 + a0)(y1 +

y2)) = 0, which implies that Trk1(G(x0, x1)) is not balanced.

From the above Cases (i)-(iii), for each λ = λ0 + λ1ω with λ1 6= 0, there exists at least one nonzero

a = a0 + a1ω ∈ F2n such that Trn1 (λx
d + λ(x + a)d + ax) = Trk1(G(x0, x1)) is not balanced.
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In the following we assume that λ1 = 0 and λ = λ0 + λ1ω = λ0 6= 0. Let a1 = 0. Then

∑

x0,x1∈Fq

(−1)Tr
k
1(G(x0,x1)) =

∑

x0,x1∈Fq

(−1)Tr
k
1(λ0a0x

3
1+λ0a

2
0x

2
1+a0x1)

= 2k
∑

x1∈Fq

(−1)Tr
k
1(λ0a0x

3
1+λ0a

2
0x

2
1+a0x1)

= 2k
∑

x1∈Fq

(−1)Tr
k
1(λ0a0x

3
1+(λ2k−1

0 a0+a0)x1). (9)

Since k is odd, then gcd(3, 2k − 1) = 1. Let λ0 = r3, a0 = t3, then from (9), one gets

∑

x0,x1∈Fq

(−1)Tr
k
1(G(x0,x1)) = 2k

∑

x1∈Fq

(−1)Tr
k
1(x

3
1+(r3·2

k−1
+1)r−1t2x1). (10)

Thus, if λ0 = r3 6= 1, then r3·2
k−1

+ 1 6= 0. We claim that for any r ∈ F
∗
q and r 6= 1, there must exist

some a0 ∈ F
∗
q such that

∑

x0,x1∈Fq
(−1)Tr

k
1(G(x0,x1)) = 2k

∑

x1∈Fq
(−1)Tr

k
1(x

3
1+(r3·2

k−1
+1)r−1t2x1) 6= 0, i.e.,

Trk1(G(x0, x1)) is not balanced. Otherwise, the Walsh-Hadamard transform of Trk1(x
3) at any point

t ∈ Fq is zero, which contradicts with Parseval’s theorem1.

Therefore, if Trn1 (λx
d) is negabent on F2n , then λ has to be in F2. Zhou and Qu [19, Theorem 6]

proved that if λ ∈ F2, then Trn1 (λx
d) is indeed negabent on F2n . This completes the proof. �

To end this section, we present a conjecture on negabent monomials whose exponents are of Niho

type, namely the exponents of the form d = r(2m − 1) + 1, where m = n/2 and 1 ≤ r ≤ 2m. Notice

that d1 = r1(2
m − 1)+ 1 and d2 = r2(2

m − 1)+ 1 lie in the same cyclotomic coset modulo 2n − 1 if and

only if r1 ≡ r2 (mod 2m + 1) or r1 + r2 ≡ 1 (mod 2m + 1).

Sarkar [15] gave a class of negabent monomials whose exponents are of Niho type, as follows:

Theorem 8 [15] Let n = 2m and d = (2m−1 + 1)(2m − 1) + 1. Then Trn1 (αx
d) is negabent if and only

if α+ α2m 6= 1.

Based on our computer experiments, we have the following conjecture:

Conjecture 1 Let n = 2m and d = r(2m − 1) + 1, where 2 ≤ r ≤ 2m−1 + 1. Then Trn1 (αx
d) is a

negabent function if and only if one of the following two conditions holds:

1. m is odd, r = 2m−2 + 1 ≡ 3
4 (mod 2m + 1) and α ∈ F2. (Cubic functions, Theorem 7)

1Parseval’s theorem shows that for any Boolean function f(x) from F
2k

to F2, its Walsh-Hadamard transform Wf (u)

satisfies
∑

u∈F
2k

(Wf (u))
2 = 22k.
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2. r = 2m−1 + 1 ≡ 1
2 (mod 2m + 1) and α+ α2m 6= 1. (Quadratic functions, Theorem 8)

This conjecture has been verified by Magma for n ≤ 14.

5 Conclusion

Negabent functions as a generalization of bent functions are very useful in cryptography and cod-

ing theory. In this paper, several classes of negabent functions of the form f(x) = Trn1 (λx
2k+1) +

Trn1 (ux)Tr
n
1 (vx) were given, where 0 < k < n and (u, v) ∈ F

∗
2n × F

∗
2n . In particular, we gave the

necessary and sufficient conditions for Trk1(λx
2k+1) + Tr2k1 (ux)Tr2k1 (vx) to be negabent on F22k , where

λ ∈ F2k . We also showed that the condition λ ∈ F2 for Tr2k1 (λx2k+3) to be negabent is necessary, where

k ≥ 3 is odd. Finally, based on our Magma results, we presented a conjecture on monomial negabent

functions whose exponents are of Niho type.
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