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Abstract The exponential stability of trivial solution and the numerical solution for neutral stochastic func-

tional differential equations (NSFDEs) with jumps is considered. The stability includes the almost sure expo-

nential stability and the mean-square exponential stability. New conditions for jumps are proposed by means

of the Borel measurable function to ensure stability. It is shown that if the drift coefficient satisfies the linear

growth condition, the Euler-Maruyama method can reproduce the corresponding exponential stability of the

trivial solution. A numerical example is constructed to illustrate our theory.
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1 Introduction

Neutral stochastic functional differential equations (NSFDEs) have received increasing attention, due to

their wide applications in chemical engineering systems, aeroelasticity and automatic control, etc [1,2,4–6].

There are extensive literatures focusing on the stability and numerical analysis of NSFDEs, including

their special cases such as neutral stochastic delay differential equations (NSDDEs) and stochastic delay

differential equations (SDDEs) [3, 7–10,12,13].

With respect to the aforementioned stochastic systems, the white Gaussian noise is used as the only

interference source to depict a random continuous and stable phenomena. In real world applications,

however, the system may be affected by some sudden interference; for example, the sharp oscillation of

the stock market triggered by the global financial crisis or the extinction of a species caused by factors

such as climate warming, tsunami, earthquake, etc. From these phenomena, we can see that the system

described by only one smooth interferential noise cannot meet the needs of reality. In order to build more

realistic models, Poisson jumps, which describe the phenomena of discontinuous random pulse excitation,

have been incorporated into stochastic systems.
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NSFDEs with Poisson jumps are an important type of stochastic system model, and their stability

analysis has attracted considerable attention in recent years. Since most stochastic systems cannot be

solved explicitly, the research on stochastic analysis can be based on numerical solutions. Recently, Wu,

Mao, and Szpruch [14], for the first time, obtained the almost sure exponential stability of the Euler-

Maruyama (EM) method and the backward Euler-Maruyama (BEM) method using the semi-martingale

convergence theorem for SDDEs. In addition, they investigated the stability of the EM method for

SFDEs [16]. Zhou, Xie, and Fang [26] and Zhou [27] proposed new conditions for the almost sure

exponential stability of numerical solutions for nonlinear (neutral) SFDEs. Later, Li and Gan [15] and

Yu [11] generalized these equations to SDDEs with jumps and NSFDEs, respectively, by using this semi-

martingale technique. With the local Lipschitz and linear growth conditions, the existence and uniqueness

of the solutions was studied by Tan, Wang, and Guo [17] for NSFDEs with Poisson jumps. For NSDDEs

with jumps, the asymptotic mean-square stability of the trivial solutions was proved by Liu, Yang, and

Zhang [18] using the fixed points theory. Further, using the stochastic technique, Tan, Wang, Guo, and

Zhu [19] considered the convergence of the EM method under the local Lipschitz condition. Mo, Zhao,

and Deng [21] proved the exponential mean-square stability of the numerical solution of the θ-method.

Researches on the asymptotic stability of systems with other jumps can be found in [22,23].

So far, to the best of our knowledge, there are few results on the stability of trivial and numerical

solutions for NSFDEs with jumps, although various special cases of such equations have been analyzed.

In fact, when a system is driven not only by Brownian motion but also by Poisson jumps, it is not easy

to deal with its stability. One obvious characteristic is that the Brownian increment has a zero mean,

while for Poisson jump, its increment has a nonzero mean. Therefore, more research needs to be done to

achieve stronger stability, such as exponential stability, for a functional system with a neutral term and

Poisson jumps.

This paper investigates the almost sure and mean-square exponential stability of the trivial solution of

NSFDEs with jumps, and examines the conditions under which the explicit EM method can reproduce

the corresponding stability of the underlying equation. As for the almost sure exponential stability, the

continuous and discrete semi-martingale convergence theorems play important roles due to the fact that

they produce the almost sure exponential stability directly rather than resorting to the Borel-Cantelli

lemma and Chebyshev inequality. Therefore, we will use the semi-martingale convergence technique to

deal with the almost sure stability of the trivial and numerical solutions. In addition, the mean-square

exponential stability of the solutions is obtained.

The outline of the paper is as follows. In Section 2, we introduce some notations and the EM-method.

Section 3 and Section 4 are devoted to the exponential stability of the trivial solution and the numerical

solution, respectively. The final section provides a numerical example.

2 Preliminaries

Throughout this paper, we let (Ω,F ,P) be a complete probability space with a filtration {Ft}t>0 satisfying

the normal conditions, i.e., it is increasing and right continuous, with F0 containing all P−null sets. W (t)

is a scalar Brownian motion, and N(t) is a scalar Poisson process with intensity λ > 0, which are all

on this probability space. They are independent of each other. C([−τ, 0];Rn) denotes the family of all

continuous Rn-valued functions on [−τ, 0]. Let Cb
F0

(Ω;Rn) be the family of all F0-measurable bounded

C([−τ, 0];Rn) valued random variables ξ = {ξ(θ) : −τ 6 θ 6 0} with the norm∥ξ∥ = sup−τ6t60 |ξ(t)|. |·|
is the Euclidean norm in Rn. We denote the inner product of x, y in Rn as ⟨x, y⟩ or xT y. The abbreviation

a.s. means almost sure. Let B([−τ, 0];Rn) be the family of all nonnegative Borel measurable functions

η(θ), which are defined on [−τ, 0] and satisfy
∫ 0

−τ
η(θ)dθ = 1.

We consider the following Itô NSFDEs with jumps

d[x(t)−D(xt)] = f(t, xt)dt+ g(t, xt)dW (t) + h(t, xt)dN(t), t > 0, (1)
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with the initial data x0 = ξ ∈ Cb
F0

([−τ, 0];Rn). Here, τ is a positive constant. For t > 0,

xt =: xt(θ) = {x(t+ θ) : −τ 6 θ 6 0} ∈ C([−τ, 0];Rn).

f, g, h : R+ × C([−τ, 0];Rn) → Rn, D : C([−τ, 0];Rn) → Rn. For the purpose of stability analysis, we

assume that f(t, 0) = g(t, 0) = h(t, 0) = 0. D(xt) represents the neutral part with D(0) = 0. We

introduce the following notation

Ñ(t) = N(t)− λt.

Note that Ñ(t) is actually a compensated Poisson process, which is a martingale.

We now apply the EM-method to NSFDEs with jumps (1), and obtain the scheme

Xk+1 −D(Y(k+1)∆) = Xk −D(Yk∆) + f(k∆, Yk∆)∆ + g(k∆, Yk∆)∆Wk + h(k∆, Yk∆)∆Nk,

Xk = ξ(k∆), k = −m,−m+ 1, · · · 0. (2)

Yk∆ ∈ C([−τ, 0];Rn) is a stochastic process and is defined as follows:

Yk∆ := Yk∆(θ) = (1− θ − i∆

∆
)Xk−1+i +

θ − i∆

∆
Xk+i, i∆ 6 θ 6 (i+ 1)∆, (3)

i = −m,−m + 1, · · · ,−1, where ∆ > 0 is the stepsize with τ = m∆ for an integer m. We let

X−m−1 = ξ(−m∆). In fact, Yk∆(·) is the linear interpolation of Xk−m−1, Xk−m, · · · , Xk−1. The nu-

merical solution Xk approximates to the trivial solution x(tk) for tk = k∆. The independent Gaussian

random variable ∆Wk := W (tk+1) − W (tk), and the independent Poisson distributed random variable

∆Nk := N(tk+1)−N(tk).

Compared with some general NSFDEs, equation (1) and its EM scheme (2) become more complicated

when the jumps’ term is introduced. Moreover, the characteristics of Poisson random variable is different

from those of the Gaussian random variable, which makes it difficult to deal with it. For example, the

expectation of ∆Wk is zero, whereas the expectation of the Poisson random variable ∆Nk is λ∆, which

means that it is not so easy to deal with it like ∆Wk. Therefore, we introduce the compensated Poisson

process and use the property of martingale to deal with it. In addition, based on the Borel measurable

functions, we propose some conditions for the jumps and functional term, which make the stability can

also be proved by the semi-martingale convergence theorem for NSFDEs with jumps.

To ensure the existence and uniqueness of the solution processes, the equation is assumed to satisfy

the basic conditions, such as the local Lipschitz condition on f, g, h and the following condition.

Assumption 1. (Contractive mapping) There exists a positive constant δ ∈ (0, 1) such that

|D(φ)−D(ϕ)| 6 δ ∥φ− ϕ∥ , ∀φ, ϕ ∈ C([−τ, 0];Rn). (4)

In this paper, we will use the continuous semi-martingale convergence theorem and its discrete version

to obtain the main results. For a detailed understanding of these theorems, please see [14, 16]. The

definitions of the almost sure exponential stability and the mean-square exponential stability are the

same as those in [12,15]; therefore, we omit them here.

3 Exponential stability of the trivial solution

In this section, we will show the almost sure exponential stability and the mean-square exponential

stability of the trivial solution for equation (1).

Theorem 1. Under Assumption 1, suppose that there are positive constants µ1, µ2, α,K, constants

β1, β2 and η, µ, v, ζ ∈ B([−τ, 0];Rn) such that for any t > 0, φ ∈ C([−τ, 0];Rn),

2(φ(0)−D(φ))
T
f(t, φ) + |g(t, φ)|2 6 −µ1|φ(0)|2 + µ2

∫ 0

−τ

|φ(θ)|2η(θ)dθ, (5)



4 Mo H Y, et al. Sci China Inf Sci

2(φ(0)−D(φ))
T
h(t, φ) 6 β1|φ(0)|2 + β2

∫ 0

−τ

|φ(θ)|2µ(θ)dθ, (6)

|D(φ)|2 6 α

∫ 0

−τ

|φ(θ)|2v(θ)dθ, (7)

|h(t, φ)|2 6 K

∫ 0

−τ

|φ(θ)|2ζ(θ)dθ. (8)

If µ1 > µ2 + λ(β1 + β2 +K) and µ2 + λ(β2 +K) > 0 for any initial data ξ ∈ Cb
F0

([−τ, 0];Rn), then the

trivial solution to equation (1) is almost surely and mean-square exponentially stable.

Proof. Part I. Denote x̃(t) = x(t)−D(xt). For any γ > 0, applying Itô’s formula to eγt |x̃|2 gives

eγt|x̃(t)|2 = |x̃(0)|2 +
∫ t

0

γeγs|x̃(s)|2ds+
∫ t

0

eγs[2 ⟨x̃(s), f(s, xs)⟩+ |g(s, xs)|2]ds

+2

∫ t

0

eγs ⟨x̃(s), g(s, xs)⟩dW (s) +

∫ t

0

eγs(|x̃(s) + h(s, xs)|2 − |x̃(s)|2)dN(s).

Since Ñ(t) = N(t)− λt, we rewrite the above equality in the form

eγt|x̃(t)|2 = |x̃(0)|2 +
∫ t

0

γeγs|x̃(s)|2ds+
∫ t

0

eγs[2 ⟨x̃(s), f(s, xs)⟩+ |g(s, xs)|2]ds

+2

∫ t

0

eγs ⟨x̃(s), g(s, xs)⟩dW (s) + λ

∫ t

0

eγs(|x̃(s) + h(s, xs)|2 − |x̃(s)|2)ds

+

∫ t

0

eγs(|x̃(s) + h(s, xs)|2 − |x̃(s)|2)dÑ(s). (9)

Using conditions (5), (6), and (8), we obtain

eγt|x̃(t)|2 6 |x̃(0)|2 +
∫ t

0

γeγs|x̃(s)|2ds+
∫ t

0

eγs[−µ1|x(s)|2 + µ2

∫ 0

−τ

|x(s+ θ)|2η(θ)dθ]ds

+λ

∫ t

0

eγs
[
β1|x(s)|2 + β2

∫ 0

−τ

|x(s+ θ)|2µ(θ)dθ +K

∫ 0

−τ

|x(s+ θ)|2ζ(θ)dθ
]
ds

+M(t, γ), (10)

where M(t, γ) = 2
∫ t

0
eγs ⟨x̃(s), g(s, xs)⟩dW (s) +

∫ t

0
eγs(|x̃(s) + h(s, xs)|2 − |x̃(s)|2)dÑ(s). Note that∫ t

0

∫ 0

−τ

eγs|x(s+ θ)|2η(θ)dθds

=

∫ t

0

∫ s

s−τ

eγs|x(l)|2η(l − s)dlds

=

∫ t

−τ

∫ (l+τ)∧t

l∨0

eγsη(l − s)ds|x(l)|2dl

6
∫ t

−τ

∫ l+τ

l

eγsη(l − s)ds|x(l)|2dl

6
∫ t

−τ

∫ −τ

0

eγ(l−k)η(k)(−dk)|x(l)|2dl

6
∫ t

−τ

eγ(l+τ)

∫ 0

−τ

η(k)dk|x(l)|2dl

6
∫ 0

−τ

eγ(l+τ)|x(l)|2dl +
∫ t

0

eγ(l+τ)|x(l)|2dl. (11)

Similarly, ∫ t

0

∫ 0

−τ

eγs|x(s+ θ)|2µ(θ)dθds 6
∫ 0

−τ

eγ(l+τ)|x(l)|2dl +
∫ t

0

eγ(l+τ)|x(l)|2dl, (12)
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∫ t

0

∫ 0

−τ

eγs|x(s+ θ)|2ζ(θ)dθds 6
∫ 0

−τ

eγ(l+τ)|x(l)|2dl +
∫ t

0

eγ(l+τ)|x(l)|2dl, (13)∫ t

0

∫ 0

−τ

eγs|x(s+ θ)|2v(θ)dθds 6
∫ 0

−τ

eγ(l+τ)|x(l)|2dl +
∫ t

0

eγ(l+τ)|x(l)|2dl. (14)

Substituting (11)-(13) into (10) yields

eγt|x̃(t)|2 6 |x̃(0)|2 +
∫ t

0

γeγs|x̃(s)|2ds+
∫ t

0

eγs(−µ1|x(s)|2)ds

+µ2[

∫ 0

−τ

eγ(l+τ)|x(l)|2dl +
∫ t

0

eγ(l+τ)|x(l)|2dl]

+λ(β2 +K)[

∫ 0

−τ

eγ(l+τ)|x(l)|2dl +
∫ t

0

eγ(l+τ)|x(l)|2dl]

+λ

∫ t

0

eγsβ1|x(s)|2ds+M(t, γ). (15)

Since ∫ t

0

γeγs|x̃(s)|2ds =

∫ t

0

γeγs|x(s)−D(xs)|2ds

6
∫ t

0

γeγs(2|x(s)|2 + 2|D(xs)|2)ds

6 2

∫ t

0

γeγs|x(s)|2ds+ 2

∫ t

0

γeγs
∫ 0

−τ

α|x(s+ θ)|2v(θ)dθds, (16)

by (14), (15) becomes

eγt|x̃(t)|2 6 |x̃(0)|2 + 2αγ

∫ 0

−τ

eγ(l+τ)|x(l)|2dl + µ2

∫ 0

−τ

eγ(l+τ)|x(l)|2dl

+λ(β2 +K)

∫ 0

−τ

eγ(l+τ)|x(l)|2dl +M(t, γ)

+[2γ + 2αγeγτ − µ1 + λβ1 + µ2e
γτ + λ(β2 +K)eγτ ]

∫ t

0

eγs|x(s)|2ds. (17)

We introduce the function

J(γ) = 2γ + 2αγeγτ − µ1 + λβ1 + µ2e
γτ + λ(β2 +K)eγτ ,

then

J ′(γ) = 2 + 2α(eγτ + γτeγτ ) + µ2τe
γτ + λ(β2 +K)τeγτ .

If µ1 > µ2+λ(β1+β2+K) and µ2+λ(β2+K) > 0, we have J(0) < 0 and J ′(γ) > 0 for γ > 0. Then, for

the function J(γ), there must exist a unique γ0 > 0 that satisfies J(γ0) = 0. Therefore for any γ < γ0,

(17) may be rewritten as

eγt|x̃(t)|2 6 |x̃(0)|2 + 2αγ

∫ 0

−τ

eγ(l+τ)|x(l)|2dl + µ2

∫ 0

−τ

eγ(l+τ)|x(l)|2dl

+λ(β2 +K)

∫ 0

−τ

eγ(l+τ)|x(l)|2dl +M(t, γ). (18)

Applying the continuous semi-martingale convergence theorem [14], we have

σ = lim sup
t→∞

eγt|x̃(t)|2 < ∞ a.s.
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Then for any ε > 0, there exists a T1(ε, σ) > 0 such that for t > T1, γ < γ0,

eγt|x̃(t)|2 6 σ + ε.

Recalling the inequality |a+ b|p 6 (1 + ε)p−1(|a|p + ε1−p|b|p)(ε > 0, p > 1) with ε = δ/(1− δ) gives

|x(t)|p = |x(t)−D(xt) +D(xt)|p 6 (1− δ)1−p|x(t)−D(xt)|p + δ1−p|D(xt)|p. (19)

Note that x̃(t) = x(t)−D(xt). Letting p = 2 yields

eγt|x(t)|2 6 (1− δ)−1eγt|x(t)−D(xt)|2 + δ−1eγt|D(xt)|2

6 (1− δ)−1(σ + ε) + δeγt sup
−τ6θ60

|x(t+ θ)|2

6 (1− δ)−1(σ + ε) + δeγτ sup
t−τ6s6t

eγs|x(s)|2. (20)

For any T2 > T1, we have

sup
T16t6T2

eγt|x(t)|2 6 (1− δ)−1(σ + ε) + δeγτ sup
T1−τ6s6T1

eγs|x(s)|2 + δeγτ sup
T16s6T2

eγs|x(s)|2. (21)

For γ ∈ (0, ( 1τ log 1
δ ) ∧ γ0) and T2 > T1, we get

sup
T16t6T2

eγt|x(t)|2 6 (1− δeγτ )−1[(1− δ)−1(σ + ε) + δeγτ sup
T1−τ6s6T1

eγs|x(s)|2]. (22)

Letting T2 → ∞ in the above inequality yields

lim sup
t→∞

eγt|x(t)|2 < ∞ a.s.

Therefore,

lim sup
t→∞

log |x(t)|
t

6 −γ

2
< 0, a.s.

The trivial solution is almost surely exponentially stable.

Part II. To deal with the local martingale M(t, γ) in (18), for each positive number n, we define the

stopping time νn = inf{t > 0 : |x(t)| > n}. Throughout this paper, we set inf ∅ = ∞ (∅ is the empty set).

Using the stopping time and taking expectation on both the sides of equation (18), we get

Eeγ(t∧νn)|x̃((t ∧ νn))|2 6 E|x̃(0)|2 + 2αγ

∫ 0

−τ

eγ(l+τ)E|x(l)|2dl + µ2

∫ 0

−τ

eγ(l+τ)E|x(l)|2dl

+λ(β2 +K)

∫ 0

−τ

eγ(l+τ)E|x(l)|2dl + EM(t ∧ νn, γ). (23)

where M(t ∧ νn, γ) = 2
∫ t∧νn

0
eγs ⟨x̃(s), g(s, xs)⟩dW (s) +

∫ t∧νn

0
eγs(|x̃(s) + h(s, xs)|2 − |x̃(s)|2)dÑ(s).

Recalling the inequality |a+ b|p 6 (1 + ε)p−1(|a|p + ε1−p|b|p)(ε > 0, p > 1) with ε = δ, p = 2, we get

E|x̃(0)|2 = E|x(0)−D(x0)|2

6 (1 + δ)(E|x(0)|2 + δ−1E|D(x0)|2)
6 (1 + δ)(E|x(0)|2 + δE∥ξ∥2)
6 (1 + δ)2E∥ξ∥2. (24)

Letting n → ∞ in (23) and applying the Fatou’s lemma, we obtain

Eeγt|x̃(t)|2 6 E|x̃(0)|2 + 2αγ

∫ 0

−τ

eγ(l+τ)E|x(l)|2dl + µ2

∫ 0

−τ

eγ(l+τ)E|x(l)|2dl

+λ(β2 +K)

∫ 0

−τ

eγ(l+τ)E|x(l)|2dl. (25)
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That is

eγtE|x̃(t)|2 6 C1E∥ξ∥2, (26)

where C1 = (1 + δ)2 + [2α+ 1
γ (µ2 + λ(β2 +K))](eγτ − 1). Since x̃(t) = x(t)−D(xt), similar to (20), we

use the stopping time and take expectation, thus yielding

E(eγ(t∧νn)|x(t ∧ νn)|2)
6 (1− δ)−1eγ(t∧νn)E|x(t ∧ νn)−D(xt∧νn)|

2
+ δ−1eγ(t∧νn)E|D(xt∧νn)|

2
. (27)

Letting n → ∞ in (27) and applying the Fatou’s lemma, we have

E(eγt|x(t)|2) 6 (1− δ)−1eγtE|x(t)−D(xt)|2 + δ−1eγtE|D(xt)|2

6 (1− δ)−1C1E∥ξ∥2 + δeγτ sup
t−τ6s6t

eγ(t−τ)E|x(s)|2

6 (1− δ)−1C1E∥ξ∥2 + δeγτ sup
t−τ6s6t

E(eγs|x(s)|2). (28)

For any t > 0,

sup
06s6t

E(eγs|x(s)|2) 6 (1− δ)−1C1E∥ξ∥2 + δeγτ sup
−τ6s6t

E(eγs|x(s)|2), (29)

which implies that

sup
−τ6s6t

E(eγs|x(s)|2) 6 sup
−τ6s60

E(eγs|x(s)|2) + sup
06s6t

E(eγs|x(s)|2)

6 sup
−τ6s60

E(eγs|x(s)|2) + (1− δ)−1C1E∥ξ∥2 + δeγτ sup
−τ6s6t

E(eγs|x(s)|2).

For γ ∈ (0, ( 1τ log 1
δ ) ∧ γ0), we have

sup
−τ6s6t

E(eγs|x(s)|2) 6 (1− δeγτ )−1[ sup
−τ6s60

eγsE|x(s)|2 + (1− δ)−1C1E∥ξ∥2]

6 (1− δeγτ )−1[1 + (1− δ)−1C1]E∥ξ∥2

6 C2E∥ξ∥2, (30)

where C2 = (1− δeγτ )−1[1 + (1− δ)−1C1]. Therefore,

E(eγt|x(t)|2) 6 C2E∥ξ∥2.

That is,

E|x(t)|2 6 C2E∥ξ∥2e−γt.

The trivial solution is mean-square exponentially stable.

Remark 1. In general, some literatures focus on both the almost sure exponential stability and the

mean-square exponential stability of the solution. However, actually there is no necessary contact be-

tween them. The mean-square exponential stability belongs to moment stability, while the almost sure

exponential stability is a kind of orbital stability; therefore, they may be deduced separately. If the

function satisfies a certain condition, such as the linear growth condition, the almost sure exponential

stability can be deduced by the mean-square exponential stability, see [20]. Usually, there are three

ways available to obtain the almost sure exponential stability. One is the semi-martingale convergence

theorem, which is a direct way, like Theorem 1. The second is by the exponential martingale inequality

and the Borel-Cantelli lemma. The third way is to base it on the moment exponential stability, and then

use the Chebyshev inequality.



8 Mo H Y, et al. Sci China Inf Sci

4 Exponential stability of the EM numerical solution

This section shows that the almost sure and mean-square exponential stability of the trivial solution can

be reproduced by the EM-method under a strengthened condition.

Theorem 2. Suppose all the conditions in Theorem 1 hold. If there exist a positive constant L and

φ ∈ B([−τ, 0];Rn) such that

|f(t, ϕ)| 6 L

∫ 0

−τ

|ϕ(θ)|φ(θ)dθ (31)

for all t > 0 and ϕ ∈ C([−τ, 0];Rn), then the numerical solution produced by the EM method (2) is almost

surely and mean-square exponentially stable for every stepsize ∆ < ∆∗, where ∆∗ = µ1−µ2−λ(β1+β2+K)
(1+λ)(L2+λK) ∧

1+δ
µ1−λβ1

.

Proof. Part I. We denote Zk = Xk −D(Yk∆) for simplicity, then

Zk+1 = Zk +∆f(k∆, Yk∆) + g(k∆, Yk∆)∆Wk + h(k∆, Yk∆)∆Nk. (32)

We can compute

|Zk+1|2 = |Zk|2 + |∆f(k∆, Yk∆)|2 + |g(k∆, Yk∆)∆Wk|2 + |h(k∆, Yk∆)∆Nk|2

+2 ⟨Zk,∆f(k∆, Yk∆)⟩+ 2 ⟨Zk +∆f(k∆, Yk∆), g(k∆, Yk∆)∆Wk⟩
+2 ⟨Zk +∆f(k∆, Yk∆), h(k∆, Yk∆)∆Nk⟩
+2 ⟨g(k∆, Yk∆)∆Wk, h(k∆, Yk∆)∆Nk⟩ . (33)

This equality can be rewritten as

|Zk+1|2 = |Zk|2 + |∆f(k∆, Yk∆)|2 + |g(k∆, Yk∆)|2∆+ |h(k∆, Yk∆)|2λ∆(1 + λ∆)

+2 ⟨Zk,∆f(k∆, Yk∆)⟩+ 2 ⟨Zk +∆f(k∆, Yk∆), h(k∆, Yk∆)⟩λ∆+mk, (34)

where

mk = |g(k∆, Yk∆)|2(∆W 2
k −∆) + |h(k∆, Yk∆)|2[∆N2

k − λ∆(1 + λ∆)]

+2 ⟨Zk +∆f(k∆, Yk∆), g(k∆, Yk∆)⟩∆Wk + 2 ⟨Zk +∆f(k∆, Yk∆), h(k∆, Yk∆)⟩ (∆Nk − λ∆)

+2 ⟨g(k∆, Yk∆)∆Wk, h(k∆, Yk∆)∆Nk⟩ . (35)

Applying conditions (5), (6), (8), and (31) to (34) gives

|Zk+1|2 6 |Zk|2 + L2∆2

∫ 0

−τ

|Yk∆(θ)|2φ(θ)dθ − µ1∆|Xk|2 + µ2∆

∫ 0

−τ

|Yk∆(θ)|2η(θ)dθ

+λ∆(1 + λ∆)K

∫ 0

−τ

|Yk∆(θ)|2ζ(θ)dθ + λ∆[β1|Xk|2 + β2

∫ 0

−τ

|Yk∆(θ)|2µ(θ)dθ]

+2λ∆2 ⟨f(k∆, Yk∆), h(k∆, Yk∆)⟩+mk. (36)

That is

|Zk+1|2 6 |Zk|2 + (−µ1 + λβ1)∆|Xk|2 + L2∆2(1 + λ)

∫ 0

−τ

|Yk∆(θ)|2φ(θ)dθ

+µ2∆

∫ 0

−τ

|Yk∆(θ)|2η(θ)dθ + λK∆(1 + λ∆+∆)

∫ 0

−τ

|Yk∆(θ)|2ζ(θ)dθ

+λ∆β2

∫ 0

−τ

|Yk∆(θ)|2µ(θ)dθ +mk. (37)

We denote q(λ, µ2, β2,∆, L,K) = (1 + λ)L2∆+ µ2 + λK(1 + λ∆+∆) + λβ2, and use q for the sake of

simplicity in the following process. We define Φ ∈ B([−τ, 0];Rn) as follows:

Φ(θ) =
(1 + λ)L2∆φ(θ) + µ2η(θ) + λK(1 + λ∆+∆)ζ(θ) + λβ2µ(θ)

(1 + λ)L2∆+ µ2 + λK(1 + λ∆+∆) + λβ2
. (38)
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Then, inequality (37) becomes

|Zk+1|2 6 |Zk|2 + (−µ1 + λβ1)∆|Xk|2 + q∆

∫ 0

−τ

|Yk∆(θ)|2Φ(θ)dθ +mk. (39)

For any C > 1, we have

C(k+1)∆|Zk+1|2 − Ck∆|Zk|2 6 C(k+1)∆(1− C−∆)|Zk|2 + (−µ1 + λβ1)∆C(k+1)∆|Xk|2

+q∆C(k+1)∆

∫ 0

−τ

|Yk∆(θ)|2Φ(θ)dθ + C(k+1)∆mk, (40)

which implies

Ck∆|Zk|2 6 |Z0|2 + (1− C−∆)
k−1∑
i=0

C(i+1)∆|Zi|2 + (−µ1 + λβ1)∆
k−1∑
i=0

C(i+1)∆|Xi|2

+q∆
k−1∑
i=0

C(i+1)∆

∫ 0

−τ

|Yk∆(θ)|2Φ(θ)dθ +
k−1∑
i=0

C(i+1)∆mi. (41)

Note that Ñ(t) = N(t)− λt; therefore, we can see that
k−1∑
i=0

C(i+1)∆mi is a martingale from [15]. On the

other hand, recalling the inequality |εx+ (1− ε)y|2 6 ε|x|2 + (1− ε)|y|2, ε ∈ [0, 1], we have∫ 0

−τ

|Yi∆(θ)|2Φ(θ)dθ =

−1∑
j=−m

∫ (j+1)h

jh

∣∣∣∣θ − j∆

∆
Xi+j +

(j + 1)∆− θ

∆
)Xi+j−1

∣∣∣∣2Φ(θ)dθ
6

−1∑
j=−m

∫ (j+1)h

jh

[
θ − j∆

∆
|Xi+j |2 +

(j + 1)∆− θ

∆
|Xi+j−1|2

]
Φ(θ)dθ. (42)

Thus, we have

k−1∑
i=0

C(i+1)∆

∫ 0

−τ

|Yi∆(θ)|2Φ(θ)dθ

6
−1∑

j=−m

∫ (j+1)∆

j∆

[
θ − j∆

∆

k−1∑
i=0

C(i+1)∆|Xi+j |2 +
(j + 1)∆− θ

∆

k−1∑
i=0

C(i+1)∆|Xi+j−1|2
]
Φ(θ)dθ.

Noting that j +m > 0, j = −m,−m+ 1, · · · ,−1, we obtain

k−1∑
i=0

C(i+1)∆

∫ 0

−τ

|Yi∆(θ)|2Φ(θ)dθ

6
−1∑

j=−m

∫ (j+1)∆

j∆

[
θ − j∆

∆

k−1∑
i=0

C(i+1+m+j+1)∆|Xi+j |2

+
(j + 1)∆− θ

∆

k−1∑
i=0

C(i+1+m+j)∆|Xi+j−1|2
]
Φ(θ)dθ

6
−1∑

j=−m

∫ (j+1)∆

j∆

[
θ − j∆

∆
C(m+2)∆

k−2∑
i=−m

Ci∆|Xi|2

+
(j + 1)∆− θ

∆
C(m+2)∆

k−3∑
i=−m−1

Ci∆|Xi|2
]
Φ(θ)dθ

6 C(m+2)∆
k−2∑

i=−m−1

Ci∆|Xi|2
−1∑

j=−m

∫ (j+1)∆

j∆

Φ(θ)dθ
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= C(m+2)∆
k−2∑

i=−m−1

Ci∆|Xi|2
∫ 0

−τ

Φ(θ)dθ

= C(m+2)∆
k−2∑

i=−m−1

Ci∆|Xi|2

= C(m+2)∆
−1∑

i=−m−1

Ci∆|Xi|2 + C(m+2)∆
k−2∑
i=0

Ci∆|Xi|2. (43)

Since

|Zi|2 = |Xi −D(Yi∆)|2 6 (1 + δ)|Xi|2 + (1 + δ−1)|D(Yi∆)|2

6 (1 + δ)|Xi|2 + (1 + δ−1)α

∫ 0

−τ

|Yi∆(θ)|2v(θ)dθ, (44)

similar to (43), we have

k−1∑
i=0

C(i+1)∆

∫ 0

−τ

|Yi∆(θ)|2v(θ)dθ 6 C(m+2)∆
−1∑

i=−m−1

Ci∆|Xi|2 + C(m+2)∆
k−2∑
i=0

Ci∆|Xi|2. (45)

Then

k−1∑
i=0

C(i+1)∆|Zi|2 6 (1 + δ)
k−1∑
i=0

C(i+1)∆|Xi|2 + (1 + δ−1)αC(m+2)∆
−1∑

i=−m−1

Ci∆|Xi|2

+(1 + δ−1)αC(m+2)∆
k−2∑
i=0

Ci∆|Xi|2. (46)

Substituting (43) and (46) into (41) yields

Ck∆|Zk|2 6 |Z0|2 + (1− C−∆)(1 + δ−1)αC(m+2)∆
−1∑

i=−m−1

Ci∆|Xi|2

+q∆C(m+2)∆
−1∑

i=−m−1

Ci∆|Xi|2 +
[
(−µ1 + λβ1)∆C∆ + (1− C−∆)(1 + δ)C∆

+(1− C−∆)(1 + δ−1)αC(m+2)∆ + q∆C(m+2)∆
] k−1∑

i=0

Ci∆|Xi|2 +Mk(C), (47)

where Mk(C) =
k−1∑
i=0

C(i+1)∆mi. We introduce the function

H(C)=(−µ1 + λβ1)∆C∆ + (1− C−∆)[(1 + δ)C∆ + (1 + δ−1)αC(m+2)∆] + q∆C(m+2)∆

=q∆C(m+2)∆ + [(1 + δ) + (−µ1 + λβ1)∆]C∆ + (1 + δ−1)αC(m+1)∆(C∆ − 1)− (1 + δ), (48)

where q = (1 + λ)L2∆+ µ2 + λK(1 + λ∆+∆) + λβ2. It is easy to see that

H(1) = q∆+ (−µ1 + λβ1)∆

= ∆[−µ1 + λβ1 + (1 + λ)L2∆+ µ2 + λK(1 + λ∆+∆) + λβ2]. (49)

If µ1 > µ2 + λ(β1 + β2 + K), when ∆ < µ1−µ2−λ(β1+β2+K)
(1+λ)(L2+λK) = ∆∗

1, H(1) < 0. On the other hand, if

µ2+λ(β2+K) > 0, we know that µ1−λβ1 > 0. Then there exists a ∆∗
2 = 1+δ

µ1−λβ1
, when ∆ < ∆∗

2,H
′(C) >

0. Therefore, when ∆ < ∆∗
1 ∧∆∗

2, there exists a unique constant C̄∆ > 1 such that H(C̄∆) = 0. Choosing

C∗
∆ ∈ (1, C̄∆), H(C∗

∆) < 0, and (47) becomes

−H(C∗
∆)

k−1∑
i=0

C∗i∆
∆ |Xi|2 6 C∗k∆

∆ |Zk|2 −H(C∗
∆)

k−1∑
i=0

C∗i∆
∆ |Xi|2 6 X̄k, (50)
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where

X̄k = |Z0|2 + [(1− C
∗(−∆)
∆ )(1 + δ−1)α+ q∆]C

∗(m+2)∆
∆

−1∑
i=−m−1

C∗i∆
∆ |Xi|2 +Mk(C

∗
∆). (51)

By the discrete semi-martingale convergence theorem [14], we have lim
k→∞

X̄k < ∞. Then

lim sup
k→∞

[−H(C∗
∆)]

k−1∑
i=0

C∗i∆
∆ |Xi|2 < ∞ a.s. (52)

Obviously,

lim sup
k→∞

[−H(C∗
∆)]C

∗k∆
∆ |Xk|2 < ∞ a.s. (53)

Denoting C∗
∆ = es yields

lim sup
k→∞

[−H(C∗
∆)]e

sk∆|Xk|2 < ∞ a.s. (54)

which implies

lim sup
k→∞

1

k∆
log |Xk| 6 −s

2
< 0 a.s.

The numerical solution is almost surely exponentially stable.

Part II. For each positive number n, let ϑn = inf{i : |Xi| > n} be the stopping time. Using the

stopping time and taking expectation in (50), we have

−H(C∗
∆)

k−1∑
i=0

C∗i∆
∆ E|Xi∧ϑn |

2

6 E|Z0∧ϑn |
2
+ [(1− C

∗(−∆)
∆ )(1 + δ−1)α+ q∆]C

∗(m+1)∆
∆

−1∑
i=−m

C∗i∆
∆ E|Xi∧ϑn |

2

+E(

k−1∑
i=0

C∗(i+1)∆mi∧ϑn). (55)

Noting that

E|Z0∧ϑn |
2 6 (1 + δ)E|X0∧ϑn |

2
+ (1 + δ−1)E|D(Y0∧ϑn)|

2

6 (1 + δ)E|X0∧ϑn |
2
+ (1 + δ−1)δ2 sup

−τ6θ60
E|Y0∧ϑn(θ)|

2
, (56)

letting n → ∞ in (55) and applying Fatou’ lemma, we get

−H(C∗
∆)

k−1∑
i=0

C∗i∆
∆ E|Xi|2 6 (1 + δ)E|X0|2 + (δ2 + δ) sup

−τ6θ60
E|Y0(θ)|2

+[(1 + δ−1)α+ q∆]C
∗(m+1)∆
∆

−1∑
i=−m

C∗i∆
∆ E|Xi|2

6 [(1 + δ)2 + ((1 + δ−1)α+ q∆)mC∗m∆
∆ ]E∥ξ∥2. (57)

It is easy to see that

C∗k∆
∆ E|Xk|2 6 ME∥ξ∥2, (58)

where M = [(1 + δ)2 + ((1 + δ−1)α+ q∆)mC∗m∆
∆ ]/(−H(C∗

∆)). We denote C∗
∆ = es, then

esk∆E|Xk|2 6 ME∥ξ∥2.

That is

E|Xk|2 6 ME∥ξ∥2e−sk∆.

The numerical solution is mean-square exponentially stable.
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Remark 2. From [14, 15, 24], we can see that the EM method reproduces the stability of the trivial

solution of the underlying equation when the drift coefficient satisfies an additional linear growth condi-

tion. In the above theorem, condition (31) is somewhat similar to the linear growth condition in ensuring

the stability of the numerical solutions for NSFDEs with jumps. Since such a system covers the (neutral)

SDDEs or the NSFDEs, the obtained results generalize the results of [11,14,25].

5 Illustrating example

Now, we construct a numerical example to illustrate the effectiveness of our theory.

Example 1. We consider the following equation,

d

[
x(t)− 1

2

∫ 0

−1

x(t+ θ)dθ

]
=

(
−8x(t) +

∫ 0

−1

x(t+ θ)dθ

)
dt+

∫ 0

−1

x(t+ θ)dθdW (t)

+

(
−x(t) +

∫ 0

−1

x(t+ θ)dθ

)
dN(t), t > 0,

x(t) = t+ 1, −1 6 t 6 0. (59)

We will test the coefficients that satisfy the conditions (5)-(8), so that the trivial solution of (1) is

almost surely and mean-square exponentially stable. It is easy to see that

2

(
x(t)− 1

2

∫ 0

−1

x(t+ θ)dθ

)(
−8x(t) +

∫ 0

−1

x(t+ θ)dθ

)
+

∣∣∣∣∫ 0

−1

x(t+ θ)dθ

∣∣∣∣2
6 −16|x(t)|2 + 5|x(t)|2 + 5

∣∣∣∣∫ 0

−1

x(t+ θ)dθ

∣∣∣∣2
6 −11|x(t)|2 + 5

∫ 0

−1

|x(t+ θ)|2dθ.

Condition (5) holds with µ1 = 11, µ2 = 5. Similarly,

2

(
x(t)− 1

2

∫ 0

−1

x(t+ θ)dθ

)(
−x(t) +

∫ 0

−1

x(t+ θ)dθ

)
6 −2|x(t)|2 + 3

2

[
|x(t)|2 +

∣∣∣∣∫ 0

−1

x(t+ θ)dθ

∣∣∣∣2
]
−
∣∣∣∣∫ 0

−1

x(t+ θ)dθ

∣∣∣∣2
6 −1

2
|x(t)|2 + 1

2

∫ 0

−1

|x(t+ θ)|2dθ,

which means β1 = −1
2 and β2 = 1

2 in condition (6).

|h(t, φ)| =
∣∣∣∣−φ(0) +

∫ 0

−1

φ(θ)dθ

∣∣∣∣ 6 ∫ 0

−1

|φ(θ)| δ(θ)dθ +
∫ 0

−1

|φ(θ)| dθ

6 2

∫ 0

−1

|φ(θ)|Ψ(θ)dθ,

where δ(θ) =

{
0, θ ̸= 0

∞, θ = 0
is a Dirac function, and Ψ(θ) = δ(θ)+1

2 ∈ B([−τ, 0];Rn). Condition (8) is

|h(t, φ)|2 =

∣∣∣∣−φ(0) +

∫ 0

−1

φ(θ)dθ

∣∣∣∣2 6 4

∫ 0

−1

|φ(θ)|2Ψ(θ)dθ.

We have K = 4. In addition, we deduce that

|f(t, φ)| =
∣∣∣∣−8φ(0) +

∫ 0

−1

φ(θ)dθ

∣∣∣∣ 6 8

∫ 0

−1

|φ(θ)| δ(θ)dθ +
∫ 0

−1

|φ(θ)| dθ
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∫ 0

−1

|φ(θ)|P (θ)dθ,

where P (θ) = 8δ(θ)+1
9 ∈ B([−τ, 0];Rn), L = 9. If we fix λ = 1, we can see that the conditions of Theorem

2 hold. The EM method can reproduce the almost sure and mean-square exponential stability of the

trivial solution.

The following figures show the trajectories and mean-square stability of the EM numerical solution of

equation (59) with different stepsizes ∆. The figures are formed by the mean-square data coming from

500 trajectories, that is,

|Xn|2 ≈ 1

500

500∑
i=1

∣∣∣X(i)
n

∣∣∣2.
Figure 1 shows the behavior of the trajectories and their mean-square curve (green color) when ∆ = 0.004.

Figure 2 shows one trajectory in this case. Figure 3 and Figure 4 illustrate that the numerical solution

is mean-square stable when ∆ = 0.01 and ∆ = 0.001, respectively. In these figures, the stepsize ∆ is

less than the constrained stepsize ∆∗ = 0.01176. However, when ∆ = 0.3 > ∆∗, Figure 5 shows that the

mean-square curve does not tend to zero, as shown in Figure 5, and the trajectory is unstable, as shown

in Figure 6. Based on the simulations, we can see that the numerical solution is mean-square stable under

the constrained stepsize proposed by Theorem 2.

Figure 1. Mean square stability of EM numerical solution Xk with ∆ = 0.004.
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Figure 2. A sample path of EM numerical solution Xk with ∆ = 0.004.
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Figure 3. Mean square stability of EM numerical solution Xk with ∆ = 0.01.

Figure 4. Mean square stability of EM numerical solution Xk with ∆ = 0.001.

6 Conclusion

We investigated the almost sure exponential stability and the mean-square exponential stability of the

trivial solution and the numerical solution for NSFDEs with jumps. By using the stochastic inequality

and the semi-martingale convergence theorem, we proved that the numerical solution of the EM method

can reproduce the corresponding stability of the trivial solution when the drift coefficient satisfies an

additional condition. We generalized the existing stability results of the numerical solution to NSFDEs

with jumps.
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