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Abstract This paper investigates the existence and uniqueness of solution of the neutral stochastic functional

differential equations with pure jumps (NSFDEwPJs) as well as the boundedness and almost sure exponential

stability. Generally, the classical existence and uniqueness theorem of solution can be obtained under the local

Lipschitz condition and the linear growth condition. But there are many equations which do not obey the

linear growth condition. Therefore, our first aim is to establish new theorems where the linear growth condition

is no longer needed while the up-bound for the diffusion operator will play a leading role. Moreover, we can

also obtain the boundedness of pth moment of the solution and almost sure exponential stability of the trivial

solution under some loose conditions. Finally, we will give two examples to illustrate the effectiveness of our

results.
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1 Introduction

As we know, many real systems will be affected by stochastic factors. So it is necessary for us to consider
the stochastic systems. Of course, there is an extensive literature in this area such as [1–3]. Delayed
systems are suited for describing such systems which do not only depend on the present states but also
the past ones. In this paper we study a class of time delay systems depending on past and present values
but that involves derivatives with delays as well as the function itself. Such systems historically have
been referred to as neutral systems. Moreover, with the development of the stochastic analysis and the
requirements of applications, Poisson jumps are considered by many researchers, see [4,6]. Moreover, there
are practical applications for Poisson jump, such that financial market [5]. In this paper, we consider the
neutral stochastic functional differential equations containing Poisson jumps which are complex equations.
So we have to employ various stochastic analysis tools since we discuss this type of complicated equation
under relatively loose conditions.
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Our paper is motivated by the reference [7], they studied the existence and uniqueness of the solutions
to NSFDEwPJs whose coefficients satisfy the local Lipschitz condition and the linear growth condition.
However, the coefficients of many important equations such as stochastic delay Lotka-Volterra equations
[8] do not satisfy the linear growth condition. So if we could find a wider condition to replace the linear
growth condition, then many problems would be solved. Fortunately, we finally find a more general
test for NSFDEwPJs that covers a wide class of highly nonlinear NSFDEwPJs. Here, we refer to the
literatures [9–12] which also allow that there are high-order terms consisting in their parameters. But
the above papers only focus on the stochastic models containing the continuous Brown motion. So far as
we know, the stochastic models containing Poisson jump have not been investigated.

Based on the above discussion, our first result mainly utilizes the up-bounds for the diffusion operator
to replace the linear growth condition, hence we can also obtain a unique global solution even if the
coefficients of the equation are of highly order. In addition to this, in Section 4, we also utilize the
modified conditions to deal with the asymptotic moment estimation which is also one of our main results.
And moreover, if there exists a trivial solution for an equation, then the trivial solution will be almost
surely exponentially stable. At last, we give two examples to illustrate the effectiveness of our theory.

2 Preliminaries

Throughout this paper, unless otherwise specified, we use the following notations. Let (Ω,F , {Ft}t!0,P)
be a complete probability space with a filtration {Ft}t!0 satisfying the usual conditions (i.e, it is right
continuous and F0 contains all P−null sets). If A is a vector or matrix, AT denotes its transpose and
its trace norm is denoted by |A| =

√
trace(ATA). Let τ > 0, and denote by D([−τ, 0];Rn) the family

of all right-continuous functions with left limits φ from [−τ, 0] to Rn equipped with the norm ∥φ∥ =
sup−τ"s"0 |φ(s)|. Db

F0
denotes the family of all almost surely bounded, F0-measurable, D([−τ, 0];Rn)-

valued random variable ξ = {ξ(θ) : −τ ! θ ! 0}. E(x) denotes the mathematical expectation of random
variable x. Let p " 2, denoted by Lp

F0
([−τ, 0];Rn) the family of all F0-measurable, D([−τ, 0];Rn)-

valued random variables φ = {φ(θ) : −τ ! θ ! 0} such that E sup−τ"θ"0 |φ(θ)|p < ∞. For a, b ∈
R, a ∨ b(respectively,a ∧ b) means the maximum(respectively, minimum) of a and b.

Let (U,B(U)) be a measurable space and p̄(t)(t " 0) be the jump at time t. Then, for each Borel set
A ∈ B(U − {0}), the Poisson counting measure Np̄ is defined by

Np̄(t, A) :=
∑

0<s"t

IA(p̄(s)) = #{0 < s ! t, p̄(s) ∈ A},

where I(·) denotes the indicative function and # records the number of the jumps from 0 to t. According
to [13], if we fix t and A, then Np̄(t, A) is a random variable. However, if we fix ω ∈ Ω and t " 0, then
Np̄(t, ·)(ω) is a measure. Therefore, if we fix A with a Lévy measure π(A), then {Np̄(t, A)}t!0 is a Poisson
process with intensity π(A). Moreover, we have

P (Np̄(t, A) = n) =
exp(−π(A)t)(π(A)t)n

n!
,

and the measure Ñp̄ satisfying Ñp̄(t, A) = Np̄(t, A)− π(A)t is a martingale measure.
Let x(t) be an Rn-valued stochastic process on t ∈ [−τ,∞) and xt = {x(t+ θ) : −τ ! θ ! 0} for t " 0

be regarded as a D([−τ, 0];Rn)-valued stochastic process. Consider the following NSFDEwPJs

d[x(t)−D(xt)] = f(t, xt)dt+

∫

U
h(u, xt)Np̄(dt, du), (1)

where f : R+ × D([−τ, 0];Rn) → Rn and h : U × D([−τ, 0];Rn) → Rn are both Borel-measurable
functions. In order to solve the equation we need to know the initial data, where we assume that the
initial data is given by

x0 = ξ = {ξ(t) : −τ ! t ! 0} ∈ Lp
F0

([−τ, 0];Rn).

Why do not include a term $g(t,x_t)dB(t)$
to make it a generalisation of the classical SDEs?  I note in [7] there is no such a term so it will look more different from [7].

The functional $D$ has not been defined. It is better not to use $D$ as it confuses with the space $D$.
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And Ñp̄(dt, du) = Np̄(dt, du)− π(du)dt is the compensated Poisson random measure.

The classical existence and uniqueness theorem requires the coefficients f, h to satisfy the local Lipschitz
condition and the linear growth condition and the neutral-term D satisfies the contractility condition
(see [7]). In this paper, we retain the contractility condition and the local Lipschitz condition but replace
the linear growth condition by a more general condition. In order to state our condition, we need to
introduce the well-known Lyapunov function and Itô formula.

Let C1,2(R+ × Rn;R+) denote the family of all nonnegative functions V (t, x) on R+ × Rn which are
continuously twice differentiable in x and once in t, moreover, define

Vx(t, x) = (
∂V (t, x)

∂x1
, ...,

∂V (t, x)

∂xn
),

Vxx(t, x) = (
∂2V (t, x)

∂xk∂xl
)n×n.

Vt(t, x) =
∂V (t, x)

∂t
,

Then, we can define an operator LV : R+ ×D([−τ, 0];Rn) → R for the function V (t, x) ∈ C1,2(R+ ×
Rn;R+) by

LV (t,φ) =Vt(t,φ(0)−D(φ)) + Vx(t,φ(0)−D(φ))f(t,φ)

+

∫

U
[V (t,φ(0)−D(φ) + h(u,φ))− V (t,φ(0)−D(φ))

− Vx(t,φ(0)−D(φ))h(u,φ)]π(du),

where t ∈ R+,φ ∈ D([−τ, 0], Rn).

Based on this, we can cite the Itô formula

dV (t, x(t)−D(xt)) =LV (t, xt)dt+

∫

U
[V (t, x(t)−D(xt) + h(u, xt))

− V (t, x(t)−D(xt))]Ñp̄(dt, du).

(2)

We will need to make the following hypotheses.

Assumption 1. (Local Lipschitz condition) For arbitrary ϕ,ψ ∈ D([−τ, 0];Rn) and ∥ϕ∥ ∨ ∥ψ∥ ! n,
there is a positive constant kn such that

|f(ϕ, t)− f(ψ, t)|2 ∨
∫

U
|h(ϕ, u)− h(ψ, u)|2π(du) ! kn∥ϕ− ψ∥2,

where n ∈ N+, t ∈ R+, u ∈ U . Moreover,

L = sup{|f(t, 0)| ∨ |h(u, 0)| : t " 0, u ∈ U} < ∞.

Assumption 2. There are three functions V ∈ C2,1(Rn × [−τ,∞);R+), H ∈ C(Rn × [−τ,∞);R+)
and non-decreasing function K(t) ∈ C(R+;R+), two probability measure µ(·) and ν(·) as well as three
positive constants p(" 2), c1, c2 such that

c1|x|p ! V (x, t) ! c2|x|p,

for any x ∈ Rn and

LV (t,φ) !K(t)[1 + V (t,φ(0)) +

∫ 0

−τ
V (t+ θ,φ(θ))dµ(θ)]

−H(t,φ(0)) +

∫ 0

−τ
H(t+ θ,φ(θ))dν(θ).

(3)



It is better to make some comment on why keeping this contractility condition?

on which space?
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Assumption 3. (Contractility condition) D(0) = 0 and there is a constant k0 ∈ [0, 1) such that

E|D(φ)|p ! kp0 sup
−τ"θ"0

E|φ(θ)|p,

for all φ ∈ Lp
F0

([−τ, 0];Rn).

In section 3, the proof of our new existence and uniqueness theorem needs that there exists a maximal
local solution for the equation (1) at first. So we should introduce the definition for maximal local solution
and give a lemma about the existence of the maximal local solution.

Definition 1. (Maximal local solution) Let 0 ! σ∞ ! T a.s. be a stopping time. An Ft-adapted,
Rn−valued, cadlag process {x(t) : −τ ! t ! σ∞} (a cadlag process refers to a stochastic process which
is right continuous and has left limit) is called a local solution to the equation (1) with initial data
x(t) = ξ(t) on t ∈ [−τ, 0] if for any stopping time σk ! σ∞ and any t ∈ [0, T ]

x(t ∧ σk)−D(xt∧σk) = ξ(0)−D(ξ) +

∫ t∧σk

0
f(xs, s)ds+

∫ t∧σk

0

∫

U
h(xs, u)Np̄(ds, du),

holds with probability 1. And, moreover if

lim
t→σ∞

sup |x(t)| = ∞, whenever σ∞ < T,

then {x(t)} is called a maximal local solution of (1) and σ∞ is called the explosion time.

Lemma 1. If Assumptions 1,3 hold, then for any given initial data ξ(t) on [−τ, 0], there exists a unique
maximal local solution to equation (1). Proof. From Assumption 3, we have D(φ) ! k0∥φ∥. Let
k0 ∈ R+ is sufficiently large for ∥ξ∥ ! k0. For any positive integer k " k0, define

z[k] =
|z| ∧ k

|z| z, 0[k] = 0,

for any z ∈ Rd. Then we can define the truncation functions

fk(t, y) = f(t, y[k]), hk(u, y) = h(u, y[k]),

for y ∈ Rd.Next, we consider the following equation:

d[xk(t)−D(xk
t )] = fk(t, x

k
t )dt+

∫

U
hk(u, x

k
t )Np̄(dt, du), (4)

on t ∈ [0, T ] with initial data xk(t) = ξ(t) on t ∈ [−τ, 0]. Then, we have

|fk(t,φ)|2 ! 2|fk(t,φ)− f(0, t)|2 + 2L ! L1(1 + ∥φ∥2),

where L1 = max{2kk, 2L}. Similarly,
∫

U
|hk(u,φ)|2 ! L1(1 + ∥φ∥2).

By Assumption 1, the equation (4) satisfies the global Lipschitz condition and the linear growth
condition. Therefore, according to the literature [7], there is a unique global solution xk(t) to (4). Then,
we define the stopping time

σk = inf{t ∈ [0, T ] : |xk(t)| " k},

for k " k0 and where we set inf ∅ = ∞ (as usual ∅ denotes the empty set) throughout our paper.
Moreover, we can see that

xk(t) = xk+1(t), − τ ! t ! σk, (5)

which means that {σk} is a nondecreasing sequence and then let limk→σk = σ∞ a.s. Consequently, we
define {x(t) : −τ ! t < σ∞} with x(t) = ξ(t) on t ∈ [−τ, 0] and

x(t) = xk(t), t ∈ [σk−1,σk), k " 1,









There is a problem if this works only for $\fei\in {\cal L}^p_{{cal F}_0…$

Why T and what is the T?

Begin with a new line.

This $z^{[k]}$ is only defined for $z\in R^d$ but not for $D$-valued functions, while both $f$ and $h$ are functionals on $R^+\time D([-\tau,0],R^d)$.
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where σ0 = 0. From (4) and (5), we can obtain

x(t ∧ σk)−D(xt∧σk) = ξ(0)−D(ξ) +

∫ t∧σk

0
f(xs, s)ds+

∫ t∧σk

0

∫

U
h(xs, u)Np̄(ds, du),

for any t ∈ [0, T ]. Moreover, if σ∞ < T , then

lim
t→σ∞

sup |x(t)| " lim
k→∞

sup |x(σk)| = lim
k→∞

sup |xk(σk)| = ∞

Hence {x(t) : −τ ! t < σ∞} is a maximal local solution to (1).

3 The existence and uniqueness theorem

In this section, we prove that there is a unique global solution to the equation (1) if the coefficients of
the equation (1) satisfy the contractility condition, local Lipschitz condition and the Assumption 3.

Theorem 1. Let Assumptions 1,2,3 hold, then for given initial value x0 = ξ ∈ C([−τ, 0];Rn) , there
exists a unique global solution x(t; t0, ξ) to equation (1). Moreover, the solution has the property that

EV (t, x(t)) ! (0.5 + c3)e
2c2

c1(1−k0)p
∫ t
0 K(ρ+τ)dρ,

where

c3 =
c2k0
1− k0

E∥ξ∥p + c2M

c1(1− k0)p
,

M = E(V (0, x(0)−D(x0)) +K(τ)

∫ 0

−τ
V (ρ, x(ρ))dρ+

∫ 0

−τ
H(ρ, x(ρ))dρ).

Proof. By Lemma 2.1, there is a unique maximal local solution x(t) on [−τ,σ∞), where σ∞ is called
the explosion time. Let k0 ∈ R+ be sufficiently large for ∥ξ∥ ! k0. For any integer k " k0, define

τk = inf{t ∈ [0,σ∞) : |x(t)| " k, }

where inf ∅ = ∞. Obviously, the sequence {τk} is increasing. So we have a limit τ∞ = limk→∞ τk, whence
τ∞ ! σ∞. If we can show that τ∞ = ∞, then we have σ∞ = ∞. Therefore, we only need to devote to
prove τ∞ = ∞.

For any s > 0, by Itô formula and Assumption 2, we have

V (s, x(s)−D(xs)) =V (0, x(0)−D(x0)) +

∫ s

0
LV (ρ, xρ)dρ

+

∫ s

0

∫

U
[V (ρ, x(ρ)−D(xρ) + h(xρ, u))− V (ρ, x(ρ)−D(xρ))]Ñp̄(dρ, du)

! V (0, x(0)−D(x0)) +

∫ s

0
K(ρ)[1 + V (ρ, x(ρ))]dρ

+

∫ s

0

∫ 0

−τ
K(ρ)V (ρ+ θ, x(ρ+ θ))dµ(θ)dρ

−
∫ s

0
H(ρ, x(ρ))dρ+

∫ s

0

∫ 0

−τ
H(ρ+ θ, x(ρ+ θ))dν(θ)dρ

+

∫ s

0

∫

U
[V (ρ, x(ρ)−D(xρ) + h(xρ, u))− V (ρ, x(ρ)−D(xρ))]Ñp(dρ, du)

(6)

At the same time, by the Fubini theorem and the fact that K(t) is a non-decreasing function, thus we
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obtain
∫ s

0
K(ρ)

∫ 0

−τ
V (ρ+ θ, x(ρ+ θ))dµ(θ)dρ =

∫ 0

−τ
dµ(θ)

∫ s

0
K(ρ)V (ρ+ θ, x(ρ+ θ))dρ

!
∫ s

−τ
K(ρ+ τ)V (ρ, x(ρ))dρ

! K(τ)

∫ 0

−τ
V (ρ, x(ρ))dρ

+

∫ s

0
K(ρ+ τ)V (ρ, x(ρ))dρ.

(7)

Similarly, we have

∫ s

0

∫ 0

−τ
H(ρ+ θ, x(ρ+ θ))dν(θ)dρ !

∫ s

−τ
H(ρ, x(ρ))dρ. (8)

Substituting (7) and (8) into (6) yields

EV (s ∧ τk, x(s ∧ τk)−D(xs∧τk)) ! M + E

∫ s∧τk

0
K(ρ+ τ)[1 + 2V (ρ, x(ρ))]dρ, (9)

where M = E(V (0, x(0)−D(x0)) +K(τ)
∫ 0
−τ V (ρ, x(ρ))dρ+

∫ 0
−τ H(ρ, x(ρ))dρ). Since c1|x|p ! V (x, t) !

c2|x|p, by inequality (9), we have

c1E|x(s ∧ τk)−D(xs∧τk)|p ! M + E

∫ s∧τk

0
K(ρ+ τ)[1 + 2V (ρ, x(ρ))]dρ. (10)

Applying elementary inequality |a+ b|p ! (1− ε)1−p|a|p + ε1−p|b|p for any a, b ∈ R and set ε = k0, we
have

|x(s)|p ! (1− k0)
1−p|x(s)−D(xs)|p + k1−p

0 |D(xs)|p,

which implies

E|x(s ∧ τk)|p ! (1− k0)
1−pE|x(s ∧ τk)−D(xs∧τk)|p + k1−p

0 E|D(xs∧τk)|p

! (1− k0)
1−pE|x(s ∧ τk)−D(xs∧τk)|p + k0 sup

−τ"θ"0
E|x(s ∧ τk + θ)|p

! (1− k0)
1−pE|x(s ∧ τk)−D(xs∧τk)|p + k0E∥ξ∥p + k0 sup

0"u"s∧τk

E|x(u)|p

! (1− k0)
1−pE|x(s ∧ τk)−D(xs∧τk)|p + k0E∥ξ∥p + k0 sup

0"u"s
E|x(u ∧ τk)|p.

(11)

Then for any t " s, we have

sup
0"s"t

E|x(s ∧ τk)|p !(1− k0)
1−p sup

0"s"t
E|x(s ∧ τk)−D(xs∧τk)|p

+ k0E∥ξ∥p + k0 sup
0"s"t

E|x(s ∧ τk)|p,

which implies

sup
0"s"t

E|x(s ∧ τk)|p ! k0
1− k0

E∥ξ∥p + 1

(1− k0)p
sup

0"s"t
E|x(s ∧ τk)−D(xs∧τk)|p. (12)

By (10) and (12), we have

sup
0"s"t

E|x(s ∧ τk)|p ! k0
1− k0

E∥ξ∥p + M

c1(1− k0)p

+
1

c1(1− k0)p
sup

0"s"t
E

∫ s∧τk

0
K(ρ+ τ)[1 + 2V (ρ, x(ρ))]dρ.

(13)
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Applying c1|x|p ! V (x, t) ! c2|x|p once again and by inequality (13), we can obtain

sup
0"s"t

EV (s ∧ τk, x(s ∧ τk)) !c3 +
c2

c1(1− k0)p
sup

0"s"t
E

∫ s∧τk

0
K(ρ+ τ)[1 + 2V (ρ, x(ρ))]dρ

! c3 +
c2

c1(1− k0)p
sup

0"s"t
E

∫ s

0
K(ρ+ τ)[1 + 2V (ρ ∧ τk, x(ρ ∧ τk))]dρ

(14)

where c3 = c2k0
1−k0

E∥ξ∥p + c2M
c1(1−k0)p

.

And inequality (14) implies that

sup
0"s"t

EV (x(s ∧ τk), s ∧ τk) ! c3 +
2c2

c1(1− k0)p

∫ t

0
K(ρ+ τ)[0.5 + sup

0"β"ρ
EV (β ∧ τk, x(β ∧ τk))]dρ

By the Gronwall inequality [14], we therefore obtain

0.5 + EV (x(t ∧ τk), t ∧ τk) ! (0.5 + c3)e
2c2

c1(1−k0)p
∫ t
0 K(ρ+τ)dρ.

Consequently,

c1k
pP (τk ! t) ! c1E(|x(τk)|pI{τk ! t}) ! c1E|x(t ∧ τk)|p

! EV (x(t ∧ τk), t ∧ τk) ! (0.5 + c3)e
2c2

c1(1−k0)p
∫ t
0 K(ρ+τ)dρ.

(15)

Letting k → ∞ in the above inequality, then we can obtain limk→∞ P (τk ! t) = 0. Since t is arbitrary,
we have P (τk < ∞) = 0. Hence, τ∞ = ∞ a.s. And by inequality (15), we have

EV (t, x(t)) ! (0.5 + c3)e
2c2

c1(1−k0)p
∫ t
0 K(ρ+τ)dρ.

The proof is completed.

4 Boundedness and almost sure exponential stability for solution

In this section, with the notations introduced in the previous section, we discuss the boundedness of the
pth moment of the solution. Moreover, if x(t) = 0 is the trivial solution, we can also obtain that the
trivial solution is almost surly exponentially stable under certain conditions.

Definition 2. (Almost sure exponential stability) If f(t, 0) = h(u, 0) = D(0) ≡ 0 for t " 0, u ∈ U .
Then the trivial solution of equation (1) is said to be almost surely exponentially stable if

lim sup
t→∞

1

t
log |x(t; 0, ξ)| ! 0 a.s.

for all ξ ∈ Rn.

Theorem 2. Let Assumptions 1,2,3 hold except (3) which is replaced by

LV (t,φ) !− α1V (t,φ(0)) + α2

∫ 0

−τ
V (t+ θ,φ(θ))dµ(θ)

−H(t,φ(0)) + α3

∫ 0

−τ
H(t+ θ,φ(θ))dν(θ),

(16)

where α1 > α2 " 0 and α3 ∈ (0, 1). Then for any given initial data ξ, there is a unique global solution
x(t) to equation (1) which has the property that

E|x(t)|p !
C(1−k0)

1−p

c1
+ k0E∥ξ∥p

1− k0
(17)
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for any t " 0. Where C = V (0, x(0) −D(x0)) + α2eετE
∫ 0
−τ V (s, x(s))ds + α3eετ

∫ 0
−τ H(s, x(s))ds while

ε = ε1 ∧ ε2. And ε1, ε2 satisfy

α1 − α2e
ε1τ = 0,

1− α3e
ε2τ = 0,

respectively. Moreover, ∫ ∞

0
H(t, x(t))dt ! M

1− α3
. (18)

where M = E(V (0, x(0)−D(x0)) + α2

∫ 0
−τ V (s, x(s))ds+ α3

∫ 0
−τ H(s, x(s))ds).

Proof. First, we can observe that (16) is stronger than (3). So, we can obtain that there is a unique
global solution x(t) to equation (1) by Theorem 3.1. By Itô formula and inequality (16), we can compute

E(eε(t∧τk)V (t ∧ τk, x(t ∧ τk)−D(xt∧τk))− V (0, x(0)−D(x0))

= E

∫ t∧τk

0
εeεsV (s, x(s)−D(xs))ds+ E

∫ t∧τk

0
eεsLV (s, xs)ds

! E

∫ t∧τk

0
εeεsV (s, x(s)−D(xs))ds− α1E

∫ t∧τk

0
eεsV (s, x(s))ds

+ α2E

∫ t∧τk

0

∫ 0

−τ
eεsV (s+ θ, x(s+ θ))dµ(θ)ds− E

∫ t∧τk

0
eεsH(s, x(s))ds

+ α3E

∫ t∧τk

0

∫ 0

−τ
eεsH(s+ θ, x(s+ θ))dν(θ)ds

! E

∫ t∧τk

0
εeεsV (s, x(s)−D(xs))ds− α1E

∫ t∧τk

0
eεsV (s, x(s))ds

+ α2E

∫ t∧τk

−τ
eε(s+τ)V (s, x(s))ds− E

∫ t∧τk

0
eεsH(s, x(s))ds

+ α3E

∫ t∧τk

−τ
eε(s+τ)H(s, x(s))ds

(19)

for any t " 0 and τk is the same defined as theorem 3.1. We take ε = ε1 ∧ ε2, and ε1, ε2 satisfy

α1 − α2e
ε1τ = 0

1− α3e
ε2τ = 0

respectively. Then the inequality (19) leads to

E(eε(t∧τk))V (t ∧ τk, x(t ∧ τk)−D(xt∧τk)) !

V (0, x(0)−D(x0)) + α2e
ετE

∫ 0

−τ
V (s, x(s))ds+ α3e

ετE

∫ 0

−τ
H(s, x(s))

+ εE

∫ t∧τk

0
eεsV (s, x(s)−D(xs))ds = C + εE

∫ t∧τk

0
eεsV (s, x(s)−D(xs))ds

(20)

where C = V (0, x(0)−D(x0)) + α2eετE
∫ 0
−τ V (s, x(s))ds+ α3eετE

∫ 0
−τ H(s, x(s)).

And by inequality (20) and Fubini theorem [15], we can obtain

E(eε(t∧τk))V (t ∧ τk, x(t ∧ τk)−D(xt∧τk))

! C + εE

∫ t

0
eε(s∧τk)V (s ∧ τk, x(s ∧ τk)−D(xs∧τk))ds

= C + ε

∫ t

0
E(eε(s∧τk)V (s ∧ τk, x(s ∧ τk)−D(xs∧τk)))ds,
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hence, using the Gronwall inequality [14], we derive that

E(eε(t∧τk))V (t ∧ τk, x(t ∧ τk)−D(xt∧τk)) ! Ceεt.

Letting k → ∞, we obtain that
E(V (t, x(t)−D(xt))) ! C. (21)

By Assumption 2 and inequality (21), we know that

c1E|x(t)−D(xt)|p ! E(V (t, x(t)−D(xt))) ! C. (22)

Recall the fundamental inequality : |a + b|p ! (1 − k)1−p|a|p + k1−p|b|p for any a, b ∈ R, p " 1,
k ∈ (0, 1). Then,

|x(t)−D(xt)|p " |x(t)|p − k1−p
0 |D(xt)|p

(1− k0)1−p
. (23)

Substituting (23) into (22) yields

E|x(t)|p ! C(1− k0)1−p

c1
+ k1−p

0 E|D(xt)|p. (24)

By Assumption 3 and the inequality (24), we therefore obtain

sup
0"s"t

E|x(s)|p ! C(1− k0)1−p

c1
+ k1−p

0 sup
0"s"t

E|D(xs)|p

! C(1− k0)1−p

c1
+ k0 sup

0"s"t
sup

−τ"θ"0
E|x(s+ θ)|p

! C(1− k0)1−p

c1
+ k0 sup

−τ"s"t
E|x(s)|p

! C(1− k0)1−p

c1
+ k0(E∥ξ∥p + sup

0"s"t
E|x(s)|p)

for any t " 0, which yields

E|x(t)|p ! sup
0"s"t

E|x(s)|p !
C(1−k0)

1−p

c1
+ k0E∥ξ∥p

1− k0

and the assertion (17) follows.
To prove the other assertion (15), we apply Itô formula to V (t, x) directly,

EV (t ∧ τk, x(t ∧ τk)−D(xt∧τk)) = EV (0, x(0)−D(x0)) + E

∫ t∧τk

0
LV (s, xs)ds

! EV (0, x(0)−D(x0))− α1E

∫ t∧τk

0
V (s, x(s))ds

+ α2E

∫ t∧τk

0

∫ 0

−τ
V (s+ θ, x(s+ θ))dµ(θ)ds

+ α3E

∫ t∧τk

0

∫ 0

−τ
H(s+ θ, x(s+ θ))dν(θ)ds

− E

∫ t∧τk

0
H(s, x(s))ds.

(25)

By Fubini theorem [15], we can compute
∫ t∧τk

0

∫ 0

−τ
V (s+ θ, x(s+ θ))dµ(θ)ds =

∫ 0

−τ

∫ t∧τk

0
V (s+ θ, x(s+ θ))dsdµ(θ)

!
∫ 0

−τ
(

∫ t∧τk

0
V (s, x(s))ds)dµ(θ)

!
∫ t∧τk

−τ
V (s, x(s))ds.

(26)
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Similarly, ∫ t∧τk

0

∫ 0

−τ
H(s+ θ, x(s+ θ))dµ(θ)ds !

∫ t∧τk

−τ
H(s, x(s))ds. (27)

Substituting (26) and (27) into (25), we obtain

EV (t ∧ τk, x(t ∧ τk)−D(xt∧τk)) ! M + (α2 − α1)E

∫ t∧τk

0
V (s, x(s))ds

+ (α3 − 1)E

∫ t∧τk

0
H(s, x(s))ds

! M + (α3 − 1)E

∫ t∧τk

0
H(s, x(s))ds

(28)

where M = E(V (0, x(0) − D(x0)) + α2

∫ 0
−τ V (s, x(s))ds + α3

∫ 0
−τ H(s, x(s))ds). Since α3 ∈ (0, 1) and

V (t, x) " c1|x|p " 0, the inequality (28) yields the assertion (18).

Remark 1. Compared with the other known results, such that [9,11,12], the right side of the inequality
(16) is short of a positive constant. The reason is that our system is a neutral system, we cannot obtain
the same result if there is a positive constant in the right hand of the inequality (16) by our current
technique. That is, we can roughly explain that the positive constant can ”compensate” the neutral
system.

We can obtain the upper bound of the pth moment of the solution from Theorem 4.1. Next, we will
prove that if there is a trivial solution, then the boundedness of the pth moment of the solution implies
the trivial solution is almost surely exponentially stable.

Theorem 3. Let all the assumptions of Theorem 4.1 hold and f(t, 0) = h(u, 0) = D(0) ≡ 0 for
t " 0, u ∈ U . Then the trivial solution to the equation (1) is almost surely exponentially stable. That is,
the unique global solution x(t) has the property that

lim sup
t→∞

1

t
log |x(t; 0, ξ)| ! 0 a.s.

for all ξ ∈ Rn.

Proof. If f(t, 0) = h(u, 0) = D(0) ≡ 0 for t " 0, u ∈ U , then the equation admits a trivial solution
x(t; 0) ≡ 0 corresponding to the initial data x0 = 0.

For simplify, we set M #
C(1−k0)1−p

c1
+k0E∥ξ∥p

1−k0
. Next, for each n = 1, 2, · · · , and any ϵ > 0, it follows

from Markov inequality [16] and Theorem 4.1 that

P{ω : |x(t,ω)|p > eϵn} ! E|x(t)|p

eϵn
! Me−ϵn

for any t ∈ [n− 1, n].
Since

∑∞
n=0 Me−ϵn < ∞, by the Borel-Cantelli lemma [14], there is an integer n0 such that

|x(t)|p ! eϵn a.s.

for all n " n0 and t ∈ [n− 1, n]. Then, we can obtain

1

t
log |x(t)| = 1

pt
log |x(t)|p ! ϵn

p(n− 1)
. (29)

Letting n → ∞ on both sides of inequality (25),

lim sup
t→∞

1

t
log |x(t)| ! ϵ

p
,

which is the required assertion because ϵ > 0 is arbitrary.
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Theorem 4. Let Assumption 1,2,3 hold except (3) which is replaced by

LV (t,φ) !α− α1V (t,φ(0)) + α2

∫ 0

−τ
V (t+ θ,φ(θ))dµ(θ)

−H(t,φ(0)) + α3

∫ 0

−τ
H(t+ θ,φ(θ))dν(θ)− α4V (t,φ(0)−D(φ)),

(30)

where α is a constant, and α1 > α2 " 0,α3 ∈ (0, 1),α4 > 0. Then for any given initial data ξ, there is
a unique global solution x(t) to equation (1) which has the property that

lim sup
t→∞

E|x(t)|p ! α

εc1(1− k0)p
+

k0E∥ξ∥p

1− k0
(31)

for any t " 0.

Where ξ is the initial date and ε = ε1 ∧ ε2 ∧ α4. And ε1, ε2 satisfy

α1 − α2e
ε1τ = 0,

1− α3e
ε2τ = 0,

(32)

respectively.

If f(t, 0) = h(u, 0) = D(0) ≡ 0 for t " 0, u ∈ U . Then the trivial solution to the equation (1) is almost
surely exponentially stable. That is, the unique global solution x(t) has the property that

lim sup
t→∞

1

t
log |x(t; 0, ξ)| ! 0 a.s. (33)

for all ξ ∈ Rn.

Proof. Similar to the proof of Theorem 4.1, we obtain

E(eε(t∧τk)V (t ∧ τk, x(t ∧ τk)−D(xt∧τk)))− EV (0, x(0)−D(x0))

= E

∫ t∧τk

0
εeεsV (s, x(s)−D(xs))ds+ E

∫ t∧τk

0
eεsLV (s, xs)ds

! E

∫ t∧τk

0
eεsV (s, x(s))ds+ E

∫ t∧τk

0
αeεsds

− α1E

∫ t∧τk

0
eεsV (s, x(s))ds+ α2E

∫ t∧τk

0

∫ 0

−τ
eεsV (s+ θ, x(s+ θ))dµ(θ)ds

− E

∫ t∧τk

0
eεsH(s, x(s))ds+ α3E

∫ t∧τk

0

∫ 0

−τ
eεsH(s+ θ, x(s+ θ))dν(θ)ds

− α4E

∫ t∧τk

0
eεsV (s, x(s)−D(xs))ds

! α2e
ετE

∫ 0

−τ
V (s, x(s))ds+ α3e

ετE

∫ 0

−τ
H(s, x(s))ds

+ α
eεt

ε
− (α4 − ε)E

∫ t∧τk

0
eεsV (s, x(s)−D(xs))ds

− (α1 − α2e
ετ )E

∫ t∧τk

0
eεsV (s, x(s))ds− (1− α3e

ετ )E

∫ t∧τk

0
eεsH(s, x(s))ds

! α2e
ετE

∫ 0

−τ
V (s, x(s))ds+ α3e

ετE

∫ 0

−τ
H(s, x(s))ds+ α

eεt

ε
.

Taking k → ∞ on both sides, then we get

E(eεtV (t, x(t)−D(xt)) ! R+
αeεt

ε
, (34)
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where R = EV (0, x(0) − D(x0)) + eετE
∫ 0
−τ V (s, x(s))ds + α3eετE

∫ 0
−τ H(s, x(s))ds is a constant. By

inequality (34), we can compute

EV (t, x(t)−D(xt)) ! Re−εt +
α

ε
. (35)

Using the following two inequalities, Assumption 3 and inequality (34)

c1|x(t)−D(xt)|p ! V (t, x(t)−D(xt))

|x(t)|p ! (1− k0)
1−p|x(t)−D(xt)|p + k1−p

0 |D(xt)|p,

we can derive

E|x(t)|p ! (1− k0)1−p

c1
EV (t, x(t)−D(xt)) + k1−p

0 E|D(xt)|p

! (1− k0)1−p

c1
(Re−εt +

α

ε
) + k0 sup

−τ"θ"0
E|x(t+ θ)|p

for any t " 0. Then

sup
0"s"t

E|x(s)|p ! (1− k0)1−p

c1
(Re−εt +

α

ε
) + k0 sup

0"s"t
sup

−τ"θ"0
E|x(s+ θ)|p

! (1− k0)1−p

c1
(Re−εt +

α

ε
) + k0 sup

−τ"s"t
E|x(s)|p

! (1− k0)1−p

c1
(Re−εt +

α

ε
) + k0E∥ξ∥p + k0 sup

0"s"t
E|x(s)|p,

(36)

and inequality (36) implies

E|x(t)|p ! sup
0"s"t

E|x(s)|p ! Re−εt + α
ε

c1(1− k0)p
+

k0E∥ξ∥p

1− k0
.

Consequently, we can obtain

lim sup
t→∞

E|x(t)|p ! α

εc1(1− k0)p
+

k0E∥ξ∥p

1− k0

which is the assertion (30). The proof of the assertion (33) is similar to the proof of Theorem 4.2.

Remark 2. Note that the right hand of the inequality (30) contains a constant α. That is because
the right side of the inequality also include another negative term −α4V (t,φ(0) − D(φ)), which can
”compensate” the constant. Moreover, if α ! 0, we can obtain that the pth moment of the solution is
stable.

5 Examples

Example 1. Consider the following equation

dx(t) = (−1

2
x2(t) + t

∫ 0

−1
x(t+ θ)dθ)dt+

√
t

∫ 0

−1
x(t+ θ)dθdN(t). (37)

In this example, we set τ = 1, U = {1}. Define

D(ϕ) = 0,

f(t,ϕ) = −1

2
x2(t) + t

∫ 0

−1
ϕ(θ)dθ,

h(1,ϕ) =
√
t

∫ 0

−1
ϕ(θ)dθ.



Author A, et al. Sci China Inf Sci 13

Choose V (t, x) = x2, by Itô formula and Hölder inequality [14], we can compute

LV (t,ϕ) = 2ϕ(0)(−1

2
ϕ2(0) + t

∫ 0

−1
ϕ(θ)dθ) + (ϕ(0) +

√
t

∫ 0

−1
ϕ(θ)dθ)2

− ϕ2(0)− 2
√
tϕ(0)

∫ 0

−1
ϕ(θ)dθ

= −ϕ3(0) + 2tϕ(0)

∫ 0

−1
ϕ(θ)dθ + t(

∫ 0

−1
ϕ(θ)dθ)2

! 2t[ϕ2(0) +

∫ 0

−1
ϕ2(θ)dθ]− ϕ3(0).

Taking K(t) = 2t, then we can conclude that the equation (37) has a unique global solution for any
given initial data by Theorem 3.1.

Remark 3. Example 1 have checked the conclusion of the Theorem 3.1. Next example will mainly
show the effectiveness of the Theorem 4.1.

Example 2. Let us consider the equation

d[x(t)− 2

3

∫ 0

−1
x(t+ θ)dθ] = (−x(t)− x3(t))dt+

1

2

∫ 0

−1
x(t+ θ)dθdN(t). (38)

In this example, we set U = {1} and define

D(ϕ) =
2

3

∫ 0

−1
ϕ(θ)dθ,

F (t,ϕ) = −ϕ(0)− ϕ3(0),

h(1,ϕ) =
1

2

∫ 0

−1
ϕ(θ)dθ.

for t " 0,ϕ ∈ D([−1, 0];R). Then the coefficients satisfy Assumption 1. If we choose p = 2, the hölder
inequality [14] yields

E|D(ϕ)|2 =
4

9
E|

∫ 0

−1
ϕ(θ)dθ|2 ! 4

9
sup

−1"θ"0
E|ϕ(θ)|2,

which implies Assumption 3.
Define V (x) = |x|2 and employing Itô formula, Young inequality [17] and Hölder inequality [14], we

can compute

LV (t,ϕ) = 2(ϕ(0)− 2

3

∫ 0

−1
ϕ(θ)dθ)(−ϕ(0)− ϕ3(0))

+ (ϕ(0)− 2

3

∫ 0

−1
ϕ(θ)dθ +

1

2

∫ 0

−1
ϕ(θ)dθ)2 − (ϕ(0)− 2

3

∫ 0

−1
ϕ(θ)dθ)2

− (ϕ(0)− 2

3

∫ 0

−1
ϕ(θ)dθ)

∫ 0

−1
ϕ(θ)dθ

! −4

3
|ϕ(0)|2 + 11

12
|
∫ 0

−1
ϕ(θ)dθ|2 − |ϕ(0)|4 + 1

3
|
∫ 0

−1
ϕ(θ)dθ|4

! −4

3
ϕ2(0) +

11

12

∫ 0

−1
ϕ2(θ)dθ − ϕ4(0) +

1

3

∫ 0

−1
ϕ4(θ)dθ.

Applying Theorem 3.1, if we choose H(t, x) = |x|4, then we can obtain that there is a unique global
solution for any given initial data. The conditions in Theorem 4.1 are satisfied when we choose α1 =
4
3 ,α2 = 11

12 ,α3 = 1
3 . Therefore, if we take ξ(θ) = θ + 1,−1 ! θ ! 0, then we can compute C = 0.986 and

E|x(t)|2 ! 4.194.
Particularly, the trivial solution x(t) ≡ 0 of equation (38) is almost surely exponentially stable in

theory. Moreover, it can be seen from Figure 1 that the trivial solution is stable.
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Figure 1 Trajectory of state

6 Conclusion

In this paper, the existence and uniqueness of solution of the neutral stochastic functional differential
equations with pure jumps under the local Lipschitz condition and the Khasminskii-type condition has
been solved. There was no need for the linear growth condition, so we could deal with the problems
that the coefficients of the equation are of highly order. Moreover, we obtained the boundness of pth
moment of the solution. And if there was a trivial solution for the equation, we also proved that the
trivial solution is almost surely exponentially stable.
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