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Abstract

The optimal tradeoff between node storage and repair bandwidth is an important issue for distributed storage

systems (DSSs). As for realistic DSSs with clusters, when repairing a failed node, it is more efficient to download

more data from intra-cluster nodes than from cross-cluster nodes. Therefore, it is meaningful to differentiate the repair

bandwidth from intra-cluster and cross-cluster. For cluster DSSs the tradeoff has been considered with special repair

assumptions where all the alive nodes are utilized to repair a failed node. In this paper, we investigate the optimal

tradeoff for cluster DSSs under more general storage/repair parameters. Furthermore, a regenerating code construction

strategy achieving the points in the optimal tradeoff curve is proposed for cluster DSSs with specific parameters as

a numerical example. Moreover, the influence of separate nodes for the tradeoff is also considered for DSSs with

clusters and separated nodes.

I. INTRODUCTION

As data center storage expands at scale, storage node failures are more prevalent [1], where distributed storage

systems (DSSs) with erasure coding are widely utilized to ensure data reliability [2], [3], [4]. When a storage node

in DSSs has failed, to recover the failed node, a new node will download data from others which are called helper

nodes. The amount of data to download is called the repair bandwidth. In [5], the tradeoff between node storage

and bandwidth to repair one node is investigated for homogeneous DSSs [6] where all the nodes (hard disks or

other storage devices) have the same parameters (storage per node, repair bandwidth, etc.). Meanwhile, regenerating

codes are proposed based on the tradeoff to reduce the repair bandwidth of DSSs.

Contrast to homogeneous DSSs, in heterogeneous DSSs [6], [7], nodes can have different storage and repair

bandwidths. In [8], the communication cost among nodes is taken into consideration, where the storage of each

node is equal, but the repair bandwidth varies based on the location of failed nodes. In realistic storage systems,

nodes in the same cluster (rack) may be connected to each other with cheaper and faster networks (i.e. local

area networks) [9], where downloading data from each other may be faster and cheaper. For the sake of reducing
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Fig. 2: The IFGs of one cluster and separate nodes distributed storage system

communication cost, it is more efficient to download more data from intra-cluster nodes and less from cross-cluster

nodes, rather than downloading the same amount of data from others.

This paper investigates a type of heterogenous DSSs with clusters and separate nodes, where the tradeoff between

node storage and repair bandwidth is characterized on more flexible parameter settings. The tradeoff for DSSs with

only two clusters (racks) is analysed in [10]. In [11], the authors consider cluster DSSs with one relay node in each

cluster. The relay node collects data in its cluster and transmits to nodes in other clusters. In [12], the properties of

DSS with multiple clusters are considered under a specific assumption that the new node will download data from

all the other nodes when one node has failed. In current paper, the optimal tradeoff for cluster DSSs is investigated

under more general settings that the new node does not need to download data from all the other nodes. The

traditional homogeneous DSS and model in [10] and [12] can be obtained by specializing parameters of our general

model. On the other hand, the tradeoff for DSSs with clusters and separate nodes is also analysed. Moreover, a

regenerating code construction strategy is investigated for cluster DSSs with specific parameters.

The rest of this paper is organized as follows. The model of DSS with clusters and separate node (CSN-DSS) is

introduced and the problem is formulated in Section II. In Section III, the properties of cluster DSSs are analysed in

two parts, which are proved in Theorem 1 and Theorem 2, respectively. As a general case, the DSS with clusters and

one separate node is analysed in Theorem 3. Afterward, the tradeoff between node storage and repair bandwidth is

characterized. Some numerical results are illustrated in Section IV, where a regenerating code construction strategy

is investigated for cluster DSSs. Finally, Section V presents the conclusion and future work.

II. PRELIMINARIES AND PROBLEM FORMULATION

Subsection II-A defines main parameters of CSN-DSSs. As an efficient tool to analyse DSSs, the information

flow graph is introduced in Subsection II-B. The problem investigated in this paper is formulated in Subsection II-C.

A. Distributed Storage System with Cluster and Separate Nodes (CSN-DSS)

CSN-DSS Model: The cluster and separate nodes distributed storage system, illustrated in Figure 1, consists of

S separate nodes and L clusters each with R nodes. The total number of the storage nodes is n = LR+S. A data
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file of size M symbols is divided into k fragments, each of size α =M/k symbols. The k fragments are encoded

into n fragments of size α and stored at n nodes. Any k encoded fragments out of n suffice to recover the original

data file, which is called the (n, k) MDS1 property.

When repairing a failed node, a newcomer locating in the same cluster will download data from other alive nodes

and repair the failed one. If the failed node is a separate node, the newcomer is still a separate node.

If a node in cluster has failed, the newcomer downloads βI symbols each from dI intra-cluster nodes and βC

symbols each from dC cross-cluster nodes (including nodes from other clusters and separate nodes). Let

d , dI + dC

and d ≥ k based on the (n, k) MDS property [13].

In realistic distributed storage systems, the storage servers may connect to each other with local area networks

or external networks. The communication between servers in the same local area network is cheaper than servers

in different local area networks and connected with external networks. The servers connected in the same local

area network can be seen as being in the same cluster. The separate nodes connect to cluster nodes by external

networks. In order to reduce the bandwidth cost, it is better to download more data from nodes in the same cluster

and less data from outer nodes, namely, βI ≥ βC . On the other hand, the intra-cluster nodes are used preferentially

in general case, when repairing failed nodes. Therefore, it is reasonable to assume that all the intra-cluster alive

nodes are used for repair, namely dI = R− 1 in current paper.

If a separate node has failed, the newcomer downloads βS symbols each from d other nodes including nodes

in clusters and separate nodes, which means that the newcomer needs only d helper nodes to repair a failed node,

no matter where the failed node is located.
In a CSN-DSS, we dub (n, k, L,R, S) the node parameters and (α, dI , βI , dC , βC , βS) the storage/repair

parameters for simplicity. The intra-cluster and cross-cluster bandwidth of repairing a cluster node is defined as

γI , dIβI and γC , dCβC ,

respectively. The bandwidth of repairing a separate node is γS , dβS . When βI = βC = βS , the traditional

homogeneous DSS in [5] is obtained.

B. Information Flow Graph (IFG)

To analyse the performance of distributed storage systems, the information flow graph is proposed in [5], which

consists of three kinds of nodes: a single data source S, storage nodes xiin, xiout, and a data collector DC as shown

in Figure 2 (a). A physical storage node (hard disk or other storage device) is represented by a storage input node

xiin and an output node xiout, where pre-computing is permitted when transmitting data. xiin and xiout are connected

by a directed edge with capacity identical to the storage size α of the node. Throughout this paper, xi is used to

present xiin and xiout as a storage node.

1An (n, k) maximum distance separate (MDS) code encodes k information symbols to n symbols such that any k symbols of n suffice to

recover the original information symbols
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As is mentioned before, the original data file is divided into k fragments and encoded into n fragments stored

at n nodes, which is represented by n edges from node S to {xiin}ni=1 with infinite capacity.

At the initial time, the source node S stores data to the n storage nodes. Then S becomes inactive and the n

storage nodes become active. When a node xj fails, it becomes inactive. The repair procedure creates an active

newcomer xn+1 to the graph as a substitute by connecting edges each with capacity β from d(≥ k) surviving

active nodes, which means the newcomer downloads β symbols from each of d alive nodes. Note that he values of

β vary in heterogenous DSSs. The total number of active nodes remains n after each repair. Based on the (n, k)

MDS, a data collector DC connects to arbitrary k active nodes with direct edges of infinite capacity, which means

any k nodes suffice to reconstruct the original data file. There may be many DCs connecting different sets of k

active nodes, but only one DC is drawn visually.

An example of information flow graph for CSN-DSSs is illustrated in Figure 2 (a), where n = 6(L = 1, R =

3, S = 1), k = 4, d = 5. Two node x1 and x6 have failed successively. When node x1 (a node in cluster 1) has

failed, a newcomer x7 downloads βI symbols each from x2 and x3 (two intra-cluster nodes) and βC symbols each

from x4, x5 and x6 (three cross-cluster nodes). When node x6 has failed, a second newcomer x8 is added by

downloading βS symbols from five alive nodes (nodes in clusters or separate nodes). This model only handles one

node failure at a time, downloading data from d helper nodes, a subset of the n− 1 alive nodes.

An important notion associated with the information flow graph is that of minimum cuts: In an IFG, a (direct)

cut between S and DC is defined as a subset C of edges such that every directed path from S to DC contains at

least one edge in C. The min-cut is the cut between S and DC in which the total sum of the edge capacities is

smallest.

C. Problem Formulation

As is proved in [5], the reconstruction problem for every DC reduces exactly to multicasting the original data

from a single source S to every DC. With relative works on network coding [14], [15], a tradeoff between node

storage and repair bandwidth can be maintained by analysing the min-cuts between S and all possible DCs.
Let G be the set of all possible information flow graphs of a CSN-DSS with node parameters (n, k, L,R, S) and

storage/repair parameters (α, dI , βI , dC , βC , βS). Consider any given finite IFG G ∈ G, with a finite set of data
collectors. If the minimum of the min-cuts separating the source with each data collector is larger than or equal to
the data object size M, then there exists a linear network code such that all data collectors can recover the data
object (see Proposition 1 in [5]). Denote the graph with minimum min-cut by G∗. The capacity of a CSN-DSS is
defined as

C(G) , min-cut of G∗.

In order to send data of size M from the source to any data collectors,

C(G) ≥M (1)

should be satisfied. As C(G) depends on node parameters and storage/repair parameters, when node parameters

(n, k, L,R, S) are fixed, a tradeoff between node storage α and repair bandwidth parameters (dI , βI , dC , βC , βS)
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will be characterized. The set of points (α, dI , βI , dC , βC , βS) which satisfies C(G) ≥M is feasible in the sense

of reliably storing the original file of size M.

Therefore, to analyse the capacity or tradeoff properties of CSN-DSSs is to analyse the min-cuts of IFGs for

given node parameters, which is illuminated in the following sections.

III. ANALYSIS OF CSN-DSSS

In this section, we investigate the min-cuts of IFGs for CSN-DSSs and prove the algorithms to generate the

IFG achieving the capacity of given CSN-DSS. Some useful terms and notations are defined in Subsection III-A.

Subsection III-B considers the min-cuts of IFGs with no separate selected nodes. With similar methods, the influence

of one separate selected node is investigated in Subsection III-C.

A. Terminologies and Min-cut Calculation

For a given IFG G ∈ G, the main problem is to find the min-cuts between source S and each DC. Because

there are no paths among different DCs, the min-cuts between S and each different DC can be analysed in the

same way. For simplicity, assume the IFGs in the following parts only contain one single DC and the min-cut

only indicates the min-cut separating S and DC. This subsection introduces some important terminologies such as

repair sequence, selected node distribution, cluster order and relative location, with which the method for calculating

min-cuts of IFGs is illuminated.

Topological order: Note that every directed acyclic graph has a topological order (see [16], Chapter 3), which

is an ordering of its vertices such that the existence of a path from vi to vj implies i < j. The k output nodes

connected by every DC can be topologically sorted.

Min-cut between S and DC: Let {xtiout}ki=1 be the set of output nodes connected by the data collector, which

are topologically ordered. The min-cut between S and DC can be calculated out by cutting {xtiout}ki=1 one by

one in the topological order, which is proved in [5] Lemma 2. Each time cutting a node, a part of the min-cut is

determined, called a part-cut value. So the min-cut between S and DC is the summation of the k part-cut values.

For example, in Figure 2 (a), The DC connects to four output nodes x6out, x
5
out, x

7
out, x

8
out, which are topologically

ordered. Cut the five nodes one by one, as is shown by the red dashed line, we then get the four part-cut values

α, α, (βC + 2βI)(≤ α), (2βC)(≤ α) respectively. Note that if βC + 2βI ≥ α, the cut line will be between x7in and

x7out. As a result, the third part-cut value will change to α.

Repair sequence and selected nodes: It is obvious that when a DC connects to a newcomer instead of connecting

to an original node, the part-cut value may be smaller than α. So smaller min-cuts can be derived as the DC connects

to more newcomers. Based on the MDS property mentioned in Subsection II-A, a DC connects to k(≤ n) nodes,

it is possible to find an IFG with a DC only connecting to k newcomers. Note that each newcomer corresponds

to an original node failure and completes the repair procedure. Clearly, the topological order of k output nodes

{xtiout}ki=1 corresponds to a repair sequence of original nodes. These original nodes contained in a repair sequence

are called selected nodes.
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In homogeneous distributed storage systems, all the storage/repair parameters (α, β, d) are the same for different

nodes. The repair sequence won’t affect the minimum min-cut. As is proved in [5], when the DC connects to k

newcomers and the newcomer xti downloads data from all the former newcomers {xtj}i−1j=1, the minimum min-cut

is reached.

However, in a CSN-DSS, the storage/repair parameters are different for nodes in cluster and separate nodes.

Different repair sequences result in different min-cuts of the IFGs. As is illustrated in Figure 2, there two different

repair sequences (x1, x4) in (a) and (x1, x3) in (b). The corresponding min-cuts are differently 2α + 2βI + βC

and 2α+ 2βI + βI respectively, as are shown by the red dash cut lines. Here we only consider two newcomer for

the simplicity of the figures and assume 2βI , βC are less than α. Consequently, the repair sequence determines the

minimum min-cut directly.
Selected node distribution: For any given k selected nodes, without loss of generality, assume the clusters

are relabeled by the number of selected nodes in descending order. In the other words, cluster 1 contains the
most selected nodes, and cluster L contains the least selected nodes. Define the selected node distribution as
s = (s0, s1, s2, ..., sL), where si(1 ≤ i ≤ L) is the number of selected nodes in cluster i, and the first component
s0 is the number of selected separate nodes. Meanwhile, the set of all possible selected node distributions is defined
as follows.

S =

{
s = (s0, s1, s2, ..., sL) : si+1 ≤ si, 0 ≤ si ≤ R, for 1 ≤ i ≤ L; 0 ≤ s0 ≤ S;

L∑
i=0

si = k

}
Note that the selected node distribution describes the total number of selected nodes in each cluster and separate

nodes. Moreover, we need to represent the topological order of k selected output nodes {xtiout}ki=1 corresponding

to k selected original nodes, called cluster order.

Cluster order: Let the cluster order π = (π1, π2, ..., πk) denote the repair sequence, where πi(1 ≤ i ≤ k)

is the index of the cluster which contains the newcomer xti corresponding to the failed node. If the ith node is

a separate node, πi equals to 0. Note that the cluster index is enough to define the repair sequence, because the

storage/repair parameters for each node in the same cluster are the same.
For a certain selected node distribution s = (s0, s1, s2, ..., sL), there are different cluster orders. The set of

possible cluster orders is defined as

Π(s) =
{
π = (π1, ..., πk) :

k∑
j=1

I(πj = i) = si, i ∈ {0, 1, ..., L}
}
,

where I(πj = i) is an indicator function which equals 1 if πj = i, and 0 otherwise.

The relationship between selected node distribution and cluster order is illustrated in Figure 3, where the selected

nodes are numbered. The selected node distribution s = (1, 4, 3, 1) means that, in the IFG of this CSN-DSS, the

DC connects 1 separate node, 4 nodes from cluster 1, 3 nodes from cluster 2 and 1 node from cluster 3. The

cluster order π(s) = (1, 2, 3, 1, 2, 1, 2, 1, 0) is a possible repair sequence for s.

The selected nodes are labeled from 1 to k as Figure 3 shows, although it’s enough to record the cluster number

in the cluster order as the nodes in one cluster are undifferentiated. For the nodes in a cluster order π, it’s also
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needed to identify the precedence of selected nodes in each cluster. Assume the i-th node in cluster order π is the

hπ(i)-th node in its cluster. We called hπ(i) the relative location of the i-th node and

hπ(i) =

i∑
j=1

I(πj = πi), (2)

where 1 ≤ i ≤ k. For an example, in Figure 3, the cluster order is π = (1, 2, 3, 1, 2, 1, 2, 1, 0) and hπ(4) = I(π1 =

π4) + I(π2 = π4) + I(π3 = π4) + I(π4 = π4) = 1 + 0 + 0 + 1 = 2 where π4 = 1. The corresponding sequence of

hπ(i) is then (1, 1, 1, 2, 2, 3, 3, 4, 1).

Calculating the min-cut between S and DC of an IFG:

When calculating the min-cut of IFG G, it is to cut the output nodes contacted by the DC k times in topological

order. Consider two disjoint sets U and U of the nodes in G. Assume S and the original nodes xi(1 ≤ i ≤ n) are

contained in U and DC is contained in U at the beginning. Every time we cut G, some nodes are added into U

and U respectively. When G∗ is cut k times, all the nodes of G∗ are contained in U or U and the set of edges

emanating from U to U is a cut between S and DC. Let C denote the edges in the cut set, i.e., the set of edges

going from U to U .

As is illustrated in Figure 4, the k selected nodes {xti}ki=1 are in topological order. When cutting node xt1 , there

are two possible cases.

• If xt1in is in U , the edge (xt1in, x
t1
out) is contained in C. The part-cut value equals α.

• In case of xt1in is in U , since xt1in has an in-degree of d = dI + dC and it is the topologically first newcomer

in U , all the incoming edges of xt1in must be in C, which consists of dI edges from intra-cluster nodes and dC

edges from cross-cluster nodes. The part-cut value equals dIβI + dCβC .

When cutting node xt2 , the first case is similar to xt1 and the part-cut value is also α. For the second case, if xt2

is in the same cluster with xt1 , the incoming edges of xt2in consist of dI − 1 edges from intra-cluster nodes and dC

edges from cross-cluster nodes, then the part-cut value equals to (dI − 1)βI + dCβC . On the other hand, if xt2 is

in different clusters with xt1 , the incoming edges of xt2in still contain dI edges from intra-cluster nodes but dC − 1

edges from cross-cluster nodes, and the part-cut value equals dIβI + (dC − 1)βC .
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Now consider node xti(1 ≤ i ≤ k), the ith newcomer:

• If xtiin ∈ U , the edge (xtiin, x
ti
out) must be in C.

• If xtiin ∈ U , node xtiin has d = dI + dC incoming edges consisting of two parts: edges from nodes in U and

edges from nodes in U . Cut set C only includes the first part of incoming edges among which let ai denote the

number of edges from intra-cluster nodes and bi denote edges from cross-cluster nodes. It’s obvious that

0 ≤ ai ≤ dI and 0 ≤ bi ≤ dC . Note that when i increases by 1, either ai or bi will decrease by 1 and will not

decrease when ai or bi equals 0. Since at most i− 1 incoming edges of xtiin can be from x
tj
out(1 ≤ j ≤ i− 1)

already contained in U ,

ai + bi ≥ d− (i− 1), (3)

for 1 ≤ i ≤ k. Equality holds if ai and bi will not decrease to 0 as i increases.

If the ith selected node is a separate node, let ci denote the number of incoming edges of xtiin from U and

ci = d− (i− 1).

The respective values of ai and bi depend on the repair sequence of original nodes, namely, the selected node

distribution s and cluster order π. The sum of the capacity of these edges is called the ith part incoming weight

wi(s,π) =

aiβI + biβC if the ith selected node is a cluster node,

ciβS if the ith selected node is a separate node
. (4)

If the selected node distribution s or cluster order π is fixed beforehand, wi(s,π) can be written as wi(π) or wi

for simplicity. On the other hand, ai, bi, ci can be written as ai(π), bi(π), ci(π) for specific π, respectively.

For a fixed selected node distribution s, the min-cut varies for different cluster orders π ∈ Π(s). The min-cut for

π = (π1, π2, ..., πk) is defined as

MC(s,π) ,
k∑

i=1

min{wi(π), α}. (5)

With the above definitions, for an IFG G with specified selected node distribution and cluster order, the min-cut can

be figured out. In the following subsection, the min-cuts of cluster DSSs without separate nodes will be analysed.

B. The min-cuts of IFGs with no separate selected nodes

In this subsection, we assume the selected nodes are all cluster nodes, namely, s = (s0 = 0, s1, ..., sL), in which

case, our CSN-DSS model can be seen as cluster DSS model. For given node parameters (n, k, L,R, S), to find

the IFG G∗ with the minimum min-cut among all possible IFGs is equivalent to find the corresponding selected

node distribution s and cluster order π. As s and π both influence the min-cuts, the analysis comprises two steps:

1. Fix the selected node distribution s and analyse the min-cuts for different cluster orders π (see the proof of

vertical order algorithm in Theorem 1).

2. Fix the cluster order generating algorithm and analyse the min-cuts for different s (see the proof of horizontal

selection algorithm in Therorm 2).
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Fig. 6: The numbered nodes are selected nodes. There are

two selected node distributions s∗ and s for the CSN-DSS

(n = 12, k = 8, L = 3, R = 4, S = 0).

Vertical order algorithm for dI = R− 1

When the selected node distribution s = (s0 = 0, s1, ..., sL) is fixed, the cluster order π∗ = (π∗1 , π
∗
2 , ..., π

∗
k)

generated by the vertical order algorithm achieves the minimum min-cut among all the possible IFGs, which is

proved in Theorem 1. In [12], the above conclusion is considered based on the special assumption that all the alive

nodes are used to repair the failed node, namely, dI = R− 1 and dC = n−R. We will investigate and prove this

problem in more general settings. The number of helper nodes from cross-cluster, dC , varies from k − R + 1 to

n−R and does not need to be n−R of [12], following from the condition that dI + dC ≥ k.

Algorithm 1 Vertical order algorithm
Input: s = (s0 = 0, s1, ..., sL). Initial cluster label j ← 1;

Output: π∗ = (π∗1 , ..., π
∗
k).

1: for i = 1 to k do

2: if the i-th selected node is a separate node then π∗i ← 0; continue;

3: end if

4: if sj = 0 then j = 1;

5: else π∗i ← j; sj ← si − 1; j ← (j mod L) + 1;

6: end if

7: end for

An example of Algorithm 1 is illustrated in Figure 5 (a), where s = (0, 4, 3, 1). After three iterations, s3 equals

to 0 and π∗4 = 1 in the next iteration. The final output of the algorithm is π∗ = (1, 2, 3, 1, 2, 1, 2, 1). If the selected

node distribution s is fixed, a cluster order determines an IFG and the min-cut MC(s,π) can be calculated. Note

that MC(s,π) depends on the i-th part incoming weight wi(π) = ai(π)βI + bi(π)βC (1 ≤ i ≤ k) and a useful

property for ai(π) (the coefficient of βI ) is proved in Lemma 1.

Lemma 1. For a given selected node distribution s = (0, s1, s2, ..., sL) of the system model in Figure 1, the

multi-set2 [ai(π)]ki=1 = [a1(π), a2(π), ..., ak(π)] consists of the same elements for all the different cluster orders

π ∈ Π(s) and ai(π) = dI + 1− hπ(i) for 1 ≤ i ≤ k.

2A multi-set is a generalization of the concept of a set that, unlike a set, allows multiple instances of the multi-set’s elements.
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Proof. Assume π∗ = (π∗1 , ..., π
∗
k) and π = (π1, ..., πk) are two different cluster orders for the same selected

node distribution s = (s1, ..., sL). For example, in Figure 5, the selected node distribution is s = (4, 3, 1) and the

corresponding two different cluster orders are π∗ = (1, 2, 3, 1, 2, 1, 2, 1) and π = (1, 2, 1, 2, 1, 2, 1, 3). Note that the

coloured node 6 in Figure 5 (a) is the third selected node in Cluster 1. When cutting node 6, two intra-cluster nodes

are contained in U (node 1 and node 3), which won’t be counted in the part-cut value. Then a6(π∗) = dI − 2 =

R− 1− 2 = 1. Now consider cluster order π in Figure 5 (b). Although the coloured node 5 is the 5th node in π,

it is the third selected node in Cluster 1 and a5(π) = dI − 2 = R − 1 − 2 = 1. It’s easy to see that the value of

ai(π
∗) only depends on the number of selected nodes in the same cluster before repairing the current node, which

is defined by the relative location hπ∗(i), namely, ai(π∗) = dI + 1− hπ∗(i) for 1 ≤ i ≤ k.

If s = (0, s1, s2, ..., sL) is fixed, the set of hπ(i) for nodes in Cluster l is {1, 2, ..., sl} for 1 ≤ l ≤ L, no matter

where the nodes locate in the cluster orders. For all the cluster orders π ∈ Π(s), the multi-set [ai(π)]ki=1 consists

of L sets {dI + 1− 1, dI + 1− 2, ..., dI + 1− sl} for 1 ≤ l ≤ L.

When the selected node distribution s is fixed, a property of the min-cuts of IFGs for different cluster orders is

proved in Theorem 1.

Theorem 1. For the given node parameters (n, k, L,R, S) and any given selected node distribution s ∈ S with

s0 = 0, the vertical cluster order π∗ obtained by the vertical order algorithm achieves the minimum min-cut among

all the possible IFGs with s. In other words,

MC(s,π∗) ≤MC(s,π),

holds for arbitrary π ∈ Π(s). MC(s,π) is defined by (5).

Proof. Assume (wu1
(π), ..., wuk

(π)) is a non-increasing order of elements in multi-set [wi(π)]ki=1, namely, wu1
(π) ≥

... ≥ wuk
(π). This proof consists of two parts. In Part 1, we will prove that

k∑
i=k−t+1

wui(π
∗) ≤

k∑
i=k−t+1

wui(π), (6)

for any 1 ≤ t ≤ k. Note that (6) means the sum of the minimum t elements in multi-set [wi(π
∗)]ki=1 is no more

than the sum of the minimum t elements in [wi(π)]ki=1 for any 1 ≤ t ≤ k. With the help of (6), Part 2 completes

the proof by considering the relationship between α and wi(π
∗) in formula (5).

Part 1: As wi(π) = ai(π)βI +bi(π)βC(see equation (4)), the coefficient of βI and βC are considered respectively,

and let

φi(π) , ai(π) + bi(π),

for simplicity. In the following part, we will compare φi(π∗) and φi(π) one by one and prove inequality (7) which

is important to prove (6).

For any cluster order π ∈ Π(s), let sequence (φt1(π), ..., φtk(π)) denote the non-increasing order of the elements

of multi-set [φi(π)]ki=1, namely, φt1(π) ≥ ... ≥ φtk(π). Based on Algorithm 1, it’s easy to verify that the sequences
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(φ1(π∗), ..., φk(π∗)), (b1(π∗), ..., bk(π∗)) and (w1(π∗), ..., wk(π∗)) are all non-increasing. Assume p (1 ≤ p ≤ k)

is the integer that satisfies the following conditions:

bp(π∗) = 0 and bp−1(π∗) > 0,

meaning that exactly dC selected cross-cluster nodes are already cut when cutting the p-th node by the cluster order

π∗. Then φi(π∗) = ai(π
∗) + bi(π

∗) = d − i + 1 for 1 ≤ i ≤ p. For the remaining nodes in π∗, bi(π∗) = 0 and

φi(π
∗) = ai(π

∗) (i > p).

• When 1 ≤ i ≤ p, as φi(π) ≥ d− i+ 1 (see (3)), φti(π) ≥ φi(π) ≥ d− i+ 1 = φi(π
∗).

• When p + 1 ≤ i ≤ k, as ai(π∗) ≥ ai+1(π∗) ≥ ... ≥ ak(π∗), at most k − i elements of multi-set [ai(π
∗)]ki=1

are less than ai(π∗).

I If ati(π) < ai(π
∗), we first assume atj (π) < aj(π

∗) for all i+ 1 ≤ j ≤ k and will derive a contradiction.

It’s obvious that at least k − i + 1 elements of multi-set [ati(π)]ki=1 are less than ai(π
∗). As is proved in

Lemma 1, [ati(π)]ki=1 and [ai(π)∗]ki=1 contain the same elements, [ai(π)∗]ki=1 then contains at least k− i+ 1

elements of multi-set [ati(π)]ki=1 are less than ai(π
∗), which a contradiction. There then exists at least one

atj (π) (i+ 1 ≤ j ≤ k) not less than ai(π∗), and φti(π) ≥ φtj (π) ≥ atj (π) ≥ ai(π∗) = φi(π).

I If ati(π) ≥ ai(π∗), φti(π) = ati(π) + bti(π) ≥ ati(π) > ai(π
∗) = φi(π

∗).
Then it can be proved that

k∑
i=k−t+1

(
ai(π

∗) + bi(π
∗)
)

=

k∑
i=k−t+1

φi(π
∗) ≤

k∑
i=k−t+1

φti(π)
(a)

≤
k∑

i=k−t+1

(
aui(π) + bui(π)

)
(7)

Note that
∑k

i=k−t+1 aui
(π) + bui

(π) =
∑k

i=k−t+1 φui
(π) is the sum of t elements of multi-set [φi(π)]ki=1.

Inequality (a) is based on the fact that
∑k

i=k−t+1 φti(π) is the sum of the minimum t elements of [φi(π)]ki=1, not

greater than the sum of any t elements of [φi(π)]ki=1.
With the above consequence, it can be proved that

k∑
i=k−t+1

wui(π
∗) =

k∑
i=k−t+1

wi(π
∗) =

k∑
i=k−t+1

(ai(π
∗) ∗ βI + bi(π

∗) ∗ βC)

=

k∑
i=k−t+1

ai(π
∗) ∗ βI +

(
k∑

i=k−t+1

(ai(π
∗) + bi(π

∗))−
k∑

i=k−t+1

ai(π
∗)

)
∗ βC

(b)

≤
k∑

i=k−t+1

ai(π
∗) ∗ βI +

(
k∑

i=k−t+1

(aui(π) + bui(π))−
k∑

i=k−t+1

ai(π
∗)

)
∗ βC

(c)

≤
k∑

i=k−t+1

ai(π
∗) ∗ βI +

(
k∑

i=k−t+1

aui(π)−
k∑

i=k−t+1

ai(π
∗)

)
∗ βI +

k∑
i=k−t+1

bui(π) ∗ βC

=

k∑
i=k−t+1

aui(π) ∗ βI +

k∑
i=k−t+1

bui(π) ∗ βC =

k∑
i=k−t+1

wui(π),

where (b) is based on inequality (7) and (c) is because of βI ≥ βC .

Part 2: Assume there are t1 elements in [wi(π
∗)]ki=1 and t2 elements in [wi(π)]ki=1 greater than α.

• If t1 < t2, MC(s,π∗) = t1α+
∑t2

i=t1+1 wi(π
∗) +

∑k
i=t2+1 wi(π

∗) ≤ t2α+
∑k

i=t2+1 wui(π) = MC(s,π).

• If t1 = t2, it’s easy to prove MC(s,π∗) ≤MC(s,π), using (6).
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• If t1 > t2, MC(s,π∗) = t2α +
∑t1

i=t2+1 min{wi(π
∗), α} +

∑k
i=t1+1 wi(π

∗) ≤ t2α +
∑k

i=t2+1 wi(π
∗) ≤

t2α+
∑k

i=t2+1 wui
(π) = MC(s,π).

The consequence of Theorem 1 can be verified by Algorithm 1 and the numerical examples illustrated in Figure 5

(a) and (b). To analyse the influence of selected node distribution, for any input s, let

π∗(s) = (π∗(s)1, π∗(s)2, ..., π∗(s)k) (8)

denote the unique cluster order generated by the vertical order algorithm. In the following part, we investigate

the min-cuts for different selected node distributions s, where the cluster orders are π∗(s).

Horizontal selection algorithm for dI = R− 1

The vertical order algorithm generates the cluster order achieving the minimum min-cut for any given selected

node distribution s. In this part, we assume all the cluster orders are generated by the vertical order algorithm

and analyse the min-cuts for different selected node distributions. In Theorem 2, it is proved that the minimum

min-cut among possible IFGs is achieved by the selected node distribution s∗ = (s∗0, s
∗
1, s
∗
2, ..., s

∗
L) generated by

the horizontal selection algorithm and the cluster order π∗(s∗) generated by the vertical order algorithm.

Algorithm 2: Horizontal selection algorithm:

The horizontal selected node distribution is s∗ = (s∗0, s
∗
1, s
∗
2, ..., s

∗
L) (

∑L
i=0 s

∗
i = k), where

s∗i =


R, i ≤ b k−s∗0

R
c

k − b k−s∗0
R
cR, i = b k−s∗0

R
c+ 1

0, i > b k−s∗0
R
c+ 1

.

In this section, the situation without separate nodes is considered, namely, s∗0 = 0. An example of this algorithm

is illustrated in Figure 6 (a), where k = 8, R = 4. Based on the horizontal algorithm, s∗1 = R = 4, s∗2 = R = 4

and s3 = k − 2R = 0. Another property of ai(π), the coefficients of βI , is proved in the following lemma, when

the horizontal selected algorithm is used.

Lemma 2. For the given node parameters (n, k, L,R, S), the coefficients of βI satisfies that

ai(π
∗(s∗)) ≤ ai(π∗(s))

for 1 ≤ i ≤ k, where s∗ is the selected node distribution generated by the horizontal selection algorithm and s ∈ S

with s0 = 0. Note that π∗(·) is defined by (8).

Proof. As is proved in Lemma 1, the coefficient of βI , ai(π∗(s)) = dI +1−hπ∗(s)(i). We will analyse the relative

location hπ∗(s)(i) with jumping points defined in (9) and prove that hπ∗(s∗)(i) ≥ hπ∗(s)(i) for 1 ≤ i ≤ k.

Based on the vertical order algorithm, it’s easy to verify the following two properties of hπ∗(s)(i):

• 1 ≤ hπ∗(s)(i) ≤ R for 1 ≤ i ≤ k,

• 0 ≤ hπ∗(s)(i+ 1)− hπ∗(s)(i) ≤ 1 for 1 ≤ i ≤ k − 1,
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meaning that hπ∗(s)(i) is non-decreasing and will increase one time at most by 1. For an example, the sequence of

relative location hπ∗(s)(i) is (1, 1, 1, 2, 2, 3, 3, 4, 4) in Figure 6 (a) and when i = 3, 5 or 7, the value of hπ∗(s)(i)

will increase by 1 for the next time. These values of i are called jumping points, denoted by

J(π∗(s)) = (j0(π∗(s)), j1(π∗(s)), ..., js1−1(π∗(s)), js1(π∗(s))), (9)

which depends on s = (s0, s1, ..., sk). We set j0(π∗(s)) = 0 and js1(π∗(s)) = k as the beginning and ending of

the jumping point vector, then

ji(π
∗(s))− ji−1(π∗(s)) = #{t|hπ∗(s)(t) = i, 1 ≤ t ≤ k}

for 1 ≤ i ≤ s1. Based on the definition of cluster order, it’s obvious that

ji(π
∗(s))− ji−1(π∗(s)) ≥ ji+1(π∗(s))− ji(π∗(s)) (10)

for 1 ≤ i ≤ s1 − 1.

We will use induction method to prove ji(π
∗(s∗)) ≤ ji(π

∗(s)) for 1 ≤ i ≤ s1 − 1. Based on the vertical

order algorithm, j1(π∗(s∗)) ≤ j1(π∗(s)). Assume jt(π∗(s∗)) ≤ jt(π
∗(s)), it’s needed to prove jt+1(π∗(s∗)) ≤

jt+1(π∗(s)).

There are k− jt+1(π∗(s∗)) nodes remaining after jumping point jt+1(π∗(s∗)). Based on the horizontal selection

algorithm,

ji+1(π∗(s∗))− ji(π∗(s∗)) = j1(π∗(s∗)) or j1(π∗(s∗))− 1

for 1 ≤ i ≤ R− 1. Then

k − jt+1(π∗(s∗)) ≥ (R− t− 1)(jt+1(π∗(s∗))− jt(π∗(s∗))− 1). (11)

Assume

jt+1(π∗(s∗)) > jt+1(π∗(s)). (12)

As jt(π∗(s∗)) ≤ jt(π∗(s)), then

jt+1(π∗(s))− jt(π∗(s)) < jt+1(π∗(s∗))− jt(π∗(s∗))

⇒ jt+1(π∗(s))− jt(π∗(s)) ≤ jt+1(π∗(s∗))− jt(π∗(s∗))− 1. (13)

Then

k − jt+1(π∗(s))
(a)

≤ (s1 − t− 1)(jt+1(π∗(s))− jt(π∗(s)))
(b)

≤ (s1 − t− 1)(jt+1(π∗(s∗))− jt(π∗(s∗))− 1)

≤ (R− t− 1)(jt+1(π∗(s∗))− jt(π∗(s∗))− 1)

(c)

≤ k − jt+1(π∗(s∗)),

where (a) is based on (10), (b) is because of (13) and (c) results from (11). Hence,

jt+1(π∗(s)∗) ≤ jt+1(π∗(s)),
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contradicting assumption (12), and it can be proved that jt+1(π∗(s∗)) ≤ jt+1(π∗(s)). Since hπ∗(s)(i) = t for

jt−1(π∗(s)) ≤ i ≤ jt(π∗(s)) (t = 1, 2, ..., s1) and ji(π∗(s∗)) ≤ ji(π∗(s)) for 1 ≤ i ≤ s1−1, it can be proved that

hπ∗(s∗)(i) ≥ hπ∗(s)(i), (14)

for 1 ≤ i ≤ k. Hence, ai(π∗(s∗)) ≤ ai(π∗(s)) for 1 ≤ i ≤ k.

Theorem 2. For the given node parameters (n, k, L,R, S), when the selected node distribution s∗ is generated by

the horizontal selection algorithm and the corresponding cluster order is generated by the vertical order algorithm,

the min-cut of this IFG isn’t greater than any IFGs. In other words,

MC(s∗,π∗(s∗)) ≤MC(s,π∗(s)),

for all s ∈ S with s0 = 0. Note that π∗(·) is defined by (8). MC(s,π) is defined by (5).

Proof. Based on the vertical order algorithm, sequence (w1(π∗(s)), ..., wk(π∗(s))) is non-increasing for all s ∈ S

and s0 = 0. Similarly to the proof of Theorem 1, it is only needed to prove that

wi(π
∗(s∗)) ≤ wi(π

∗(s))

for 1 ≤ i ≤ k. From the definition of ai(π∗(s)), bi(π∗(s)) and hπ(i)(see (2)), it is known that

ai(π
∗(s)) = dI + 1− hπ∗(s)(i) (15)

for 1 ≤ i ≤ k. When dC − (i− hπ∗(s)(i)) ≥ 0,

bi(π
∗(s)) = dC − (i− hπ∗(s)(i)). (16)

We assume bi(π∗(s)) decreases to 0 when i = i∗(s), where i∗(s) is a function of s. It will not decrease anymore

and wi(π
∗(s)) = ai(π

∗(s))βI for i ≥ i∗(s), where

i∗(s)− hπ∗(s)(i
∗(s)) = dC . (17)

As is proved in Lemma 2 (14), hπ∗(s)(i) ≤ hπ∗(s∗)(i) for 1 ≤ i ≤ k, then i∗(s∗) ≥ i∗(s) based on (17).
• When 1 ≤ i ≤ i∗(s),

wi(π
∗(s))− wi(π

∗(s∗)) =
(
ai(π

∗(s))− ai(π∗(s∗))
)
βI +

(
bi(π

∗(s))− bi(π∗(s∗))
)
βC

(a)
=

(
hπ∗(s∗)(i)− hπ∗(s)(i)

)
βI −

(
hπ∗(s∗)(i)− hπ∗(s)(i)

)
βC

=
(
hπ∗(s∗)(i)− hπ∗(s)(i)

)
(βI − βC)

(b)

≥ 0.

Note that (a) is based on (15) and (16). (b) comes from (14) and βI ≥ βC . Then wi(π
∗(s)) ≥ wi(π

∗(s∗).

• When i∗(s) + 1 ≤ i ≤ i∗(s∗), bi(π∗(s)) equals to 0 and will not decrease with i increasing, but

dC − (i− hπ∗(s)(i)) ≤ 0. (18)
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(a) π∗ = (1, 2, 0, 1, 2, 1, 2, 1)
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(b) π = (1, 2, 0, 1, 2, 1, 2, 3)
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(c) π = (1, 2, 1, 2, 1, 2, 3, 1)

Fig. 7: The numbered nodes are selected nodes. There are three selected node distributions s∗ = (1, 4, 3, 0),

s = (1, 3, 3, 1) and s = (0, 4, 3, 1), with cluster orders π∗, π and π respectively for CSN-DSS with node parameters

(n = 12, k = 9, L = 3, R = 4, S = 2).

Hence,

wi(π
∗(s))− wi(π

∗(s∗)) =
(
ai(π

∗(s))− ai(π∗(s∗))
)
βI − bi(π∗(s∗)βC

(c)

≥
(
hπ∗(s∗)(i)− hπ∗(s)(i)

)
βI − bi(π∗(s∗)βC − (dC − (i− hπ∗(s)(i)))βC

=
(
hπ∗(s∗)(i)− hπ∗(s)(i)

)
βI −

(
hπ∗(s∗)(i)− hπ∗(s)(i)

)
βC

=
(
hπ∗(s∗)(i)− hπ∗(s)(i)

)
(βI − βC) ≥ 0,

where (c) bases on (18).

• When i∗(s∗) + 1 ≤ i ≤ k, wi(π
∗(s)) = ai(π

∗(s))βI ≥ ai(π∗(s∗))βI = wi(π
∗(s∗)).

The consequence of Theorem 2 can be verified by Algorithm 2 and the numerical examples illustrated in Figure 6

(a) and (b). As is proved by Theorem 1 and Theorem 2, the capacity of a cluster DSS with given node parameters and

storage/repair parameters is MC(s∗,π∗(s∗)). Based on (1), the tradeoff between node storage and repair bandwidth

can be characterized, which is illustrated in Section IV for specific numerical parameters.

C. The Min-cuts of IFGs with separate selected nodes

As is proved in last subsection, the horizontal selection algorithm and the vertical order algorithm will generate

the selected node distribution s∗ and the corresponding cluster order π∗(s∗), achieving the minimum min-cut of

the IFGs without separate selected nodes. In this subsection, we analyse the min-cut of IFGs with one separate

selected nodes in Theorem 3, namely s0 = 1 in s.

Note that Theorem 1 focuses on the influence of cluster order π where the selected node distribution s is fixed.

On the other hand, Theorem 2 analyses different selected node distributions while the cluster order generating

algorithm is fixed. The following theorem combines these two aspects and investigates the situation where there is

one separate selected node.

Theorem 3. For the given node parameters (n, k, L,R, S), assume the j-th selected node is a separate node,

then the selected node distribution s∗ generated by the horizontal selection algorithm with cluster order π∗(s∗)

generated by the vertical order algorithm minimizes the min-cut of all the IFGs. In other words,

MC(s∗,π∗(s∗)) ≤MC(s,π),
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for all s ∈ S with s0 = 1 and π ∈ Π(s) with πj = 0. Note that π∗(·) is defined by (8). MC(s,π) is defined by

(5).

Due to space limitation, here we just sketch the proof of Theorem 3 in the following part.
Cluster order assignment: Let π = (π1, π1, ..., πk) denote a cluster order with no separate selected nodes in its
corresponding selected node distribution s. When the j-th selected node is a separate node, let π denote the new
cluster order with

πi =


πi, if 1 ≤ i < j

0, if i = j

πi−1, if j < i ≤ k

.

As is illustrated in Figure 7 (b) (c), node 3 is a separate selected node in π, then π1 = π1, π2 = π2, π3 = 0

and πi = πi−1(i = 4, 5, 6, 7, 8). In Figure 7 (a), the optimal selected node distribution is s∗ = (1, 4, 3, 0) and the

optimal cluster order is π∗ = (1, 2, 0, 1, 2, 1, 2, 1) generated by the vertical order algorithm. Note that the 3rd node

in the cluster order is a separate node, which is fixed beforehand.

Main idea of the proof: For any cluster order π whose j-th node is a separate node, there always exists a cluster

order π with no separate selected nodes satisfying the definition of π. Through investigating the relationship between

π and π, the proof of Theorem 3 can be reduced to similar problems of Theorem 1 and Theorem 2, which is

omitted here.

To analyse the minimum min-cut of IFGs with one separate selected node, the location of the separate selected

node (the value of j in Theorem 3) is also important. Moreover, the relation among βI , βC and βS need to be taken

into consideration. The situation with multiple separate selected nodes can be investigated using similar methods,

which is not introduced here due to the space limitation.

IV. NUMERICAL RESULTS AND CODE CONSTRUCTIONS FOR CLUSTER DSSS

In this section, Figure 8 illuminates some numerical capacity bounds for cluster DSSs without separate nodes.

As is mentioned in [13], [17], interference alignment is an important method in regenerating code constructions,

which is also applicative in cluster DSSs. A code construction strategy with interference alignment is investigated

for a cluster DSS with specific parameters as an example(see Figure 9 and Figure 10). The code constructions for

general cases can utilize similar methods.

Model configurations: Assume the node parameters are (n = 12, k = 8, L = 3, R = 4, S = 0) as Figure 6

shows. Note that different relations between βI and βC result in different tradeoffs between storage per node α

and bandwidth to repair one node. We consider a specific situation that βI = 2βC . As is proved before, the cluster

order illustrated in Figure 6 (a) achieves the capacity of this DSS. Based on the bound constraint in (1), for specific

values of k −R+ 1 ≤ dC ≤ n− k, the tradeoff between α and βC is illuminated in Figure 8, where the file size

M is set to be 32 for simplicity.

As is illuminated in Figure 8, the tradeoff curve moves left as the cross-cluster helper nodes increase. Since α

is the storage per node and βC corresponds to the repair bandwidth, when the storage per node is fixed, the more

helper nodes are utilized, the less bandwidth will be, which is consistent with the consequences of DSS without
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Fig. 8: Optimal tradeoff curves between

storage per node α and data downloading

from each cross-cluster node βC , for

cluster DSS with n = 12, k = 8 and

βI = 2βC . There are three curves for

different number of cross-cluster helper

nodes, namely, dC = 6, 7, 8, respec-

tively. The original file size is M = 32.

Fig. 9: Optimal tradeoff curves between

storage per node α and data downloading

from each cross-cluster node βC , for

cluster DSS with n = 6, k = 4 and

βI = 2βC , dC = 3. The original file size

is M = 8.
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Fig. 10: MSR construction

for cluster DSS with param-

eters n = 6, k = 4, βI =

2βC , dC = 3 and M = 8.

clusters in [5]. When dC = 8, the point (α = 4, βC = 2) achieves the minimum storage and the corresponding

code constructions is called minimum-storage regenerating (MSR) codes, as is defined in [5]. We will investigate

an MSR construction for cluster DSS with less nodes as an example.

Consider the cluster DSS with n = 6, k = 4 in Figure 10. It can be verified in Figure 9 that the MSR point of this

system is (α = 2, βC = 1), hence the amount of data downloading from each intra-cluster node is βI = 2βC = 2.
Encoding procedure: As the original file size is M = 8, we assume xi(1 ≤ i ≤ 4) and yi(1 ≤ i ≤ 4) are the
original file symbols storing from Node 1 to Node 4 as Figure 10 illustrates. Two (6,4)-MDS codes are used to
encode symbols (x1, x2, x3, x4) and (y1, y2, y3, y4), respectively. Let

(x1, x2, x3, x4, x5, x6) = (x1, x2, x3, x4) [I4×4|g h] and (y1, y2, y3, y4, y5, y6) = (y1, y2, y3, y4)
[
I4×4|g′ h′

]
, (19)

where I4×4 is an identity matrix and g = (g1, g2, g3, g4)t, h = (h1, h2, h3, h4)t, g′ = (g′1, g
′
2, g
′
3, g
′
4)t, h =

(h′1, h
′
2, h
′
3, h
′
4)t. Then

x5 = g1x1 + g2x2 + g3x3 + g4x4, y5 = g′1y1 + g′2y2 + g′3y3 + g′4y4,

x6 = h1x1 + h2x2 + h3x3 + h4x4, y6 = h′1y1 + h′2y2 + h′3y3 + h′4y4.

Repair procedure: Assume Node 1 has failed, based on the tradeoff in Figure 9 (α = 2 and βC = 1, βI = 2βC =

2), we will download 2 symbols each from Node 2 and Node 3 respectively and download 1 symbols each from
Node 4 to Node 6. As the values of x2, y2, x3, y3 is known by downloading from Node 2 and Node 3, to calculate
x1 and y1, interference alignment can be used to eliminate x4 and y4. For example, the symbols downloading from
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Node 4, Node 5 and Node 6 are

symbol4 = l4x4 + l′4y4,

symbol5 = m5x5 +m′5y5 = m5(g1x1 + g2x2 + g3x3 + g4x4) +m′5(g′1y1 + g′2y2 + g′3y3 + g′4y4),

symbol6 = n6x6 + n′6y6 = n6(h1x1 + h2x2 + h3x3 + h4x4) + n′6(h′1y1 + h′2y2 + h′3y3 + h′4y4),

respectively. Hence,

symbol4 = l4x4 + l′4y4, (20)

symbol5 −m5(g2x2 + g3x3)−m′5(g′2y2 + g′3y3) = m5g1x1 +m′5g
′
1y1 +m5g4x4 +m′5g

′
4y4, (21)

symbol6 − n6(h2x2 + h3x3)− n′6(h′2y2 + h′3y3) = n6h1x1 + n′6h
′
1y1 + n6h4x4 + n′6h

′
4y4. (22)

Note that the left parts of Eq. 20, Eq. 21 and Eq. 22 are real values. If the coefficients of x1, y1 and x4, y4 satisfy
that

rank

m5g1 m′5g
′
1

n6h1 n′6h
′
1

 = 2 and rank




l4 l′4

m5g4 m′5g
′
4

n6h4 n′6h
′
4


 = 1, (23)

x4 and y4 can be eliminated, meanwhile, x1 and y1 can be solved, finishing the repair of Node 1.

As is proved in [13], there exists MDS codes satisfying the condition (23). When other nodes have failed, similar

methods can be utilized to generate the parameters of corresponding MDS codes. The construction of MDS codes

adaptive to all the node failures and cluster DSS with general parameters is more complicated and need more future

work.

V. CONCLUSION AND FUTURE WORK

In this paper, DSSs with clusters and separate nodes are investigated, where the tradeoff between node storage

and repair bandwidth is characterized on more flexible parameter settings. When a node in cluster DSSs has failed,

the number of helper nodes varies based on the practical storage system demands. The influence of separate nodes

is also analysed for DSSs with clusters and separated nodes. Moreover, a regenerating code construction strategy

is proposed for cluster DSSs with specific parameters as a numerical example, achieving the points in the optimal

tradeoff curve.

More general and practical regenerating codes for cluster DSSs need to be investigated further. On the other

hand, more works are needed to characterize the influence of separate selected nodes for the min-cuts of CSN-DSSs

more explicitly, when analysing the optimal tradeoff between node storage and repair bandwidth. Furthermore, the

constructions of more flexible regenerating codes for CSN-DSSs are also meaningful for practical storage systems.
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