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Abstract

Computer vision researchers prefer to estimate age from
face images because facial features provide useful informa-
tion. However, estimating age from face images becomes
challenging when people are distant from the camera or
occluded. A persons gait is a unique biometric feature
that can be perceived efficiently even at a distance. Thus,
gait can be used to predict age when face images are not
available. However, existing gait-based classification or
regression methods ignore the ordinal relationship of dif-
ferent ages, which is an important clue for age estima-
tion. This paper proposes an ordinal distribution regres-
sion with a global and local convolutional neural network
for gait-based age estimation. Specifically, we decompose
gait-based age regression into a series of binary classifica-
tions to incorporate the ordinal age information. Then, an
ordinal distribution loss is proposed to consider the inner
relationships among these classifications by penalizing the
distribution discrepancy between the estimated value and
the ground truth. In addition, our neural network comprises
a global and three local sub-networks, and thus, is capable
of learning the global structure and local details from the
head, body, and feet. Experimental results indicate that the
proposed approach outperforms state-of-the-art gait-based
age estimation methods on the OULP-Age dataset.

1. Introduction
Human age estimation is an active research topic because

age estimation plays an important role in many applications,
such as video surveillance, social networking, and human-
computer interaction. Existing age estimation methods are
primarily based on facial images [2, 3, 22, 23, 31], which
are very informative and easy to be estimated. However,
the performance of face-based age estimation approaches
will be compromised when the face is occluded, for exam-
ple, by sunglasses or makeup. In addition, face-based age
estimation becomes challenging if a person is far away from
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Figure 1. GEIs of subjects of different age and gender in the
OULP-Age dataset. The number above each GEI indicates the
corresponding age of the subject.

the camcorders, which often occurs in many video surveil-
lance systems located at crossroads, airports, and railway
stations. As a unique biometric feature that can be per-
ceived efficiently at a distance, using a persons gait can be
an alternative way to predict age when a facial image is not
sufficiently informative or not available. Gait-based estima-
tion has a psychological foundation that cannot be easily
faked [7]. For example, an old person might walk slowly
and hobble, whereas a young person might walk briskly.

In the field of gait-based age estimation, gait energy im-
age (GEI) [15, 21], which compresses one or more gait
sequences into a single image (as shown in Fig. 1), is
one of the most widely used gait templates due to its
simplicity and effectiveness. Some studies have applied
age manifold learning techniques on GEIs to learn a low-
dimensional representation that captures the intrinsic data
distribution and geometric structure [16, 17]. Existing gait-
based age estimation approaches can be roughly categorized
as classification-based [15] and regression-based meth-
ods [17, 21]. However, neither of them considers the ordinal
relationship between age labels, which is an important clue
for age estimation. Therefore, to address this issue, ranking-
based methods [3, 5, 13, 22] have been proposed. Typically,
these methods decompose the ordinal regression into a se-
ries of binary classifications and utilize the cross-entropy
loss to optimize binary classifications. However, the cross-
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Figure 2. Predictive probability of the k-th classifier should not be
greater than that of the (k − 1)-th classifier on an ordinal distribu-
tion. Both A and B have the same cross-entropy loss; however, B
is preferable to A on an ordinal distribution.

entropy loss treats these classifications independently, ig-
noring the inner relationships among them. For these or-
dered binary classifications, the expected inner relationship
is that the predictive probability of the k-th classifier should
not be greater than the probability of the (k−1)-th classifier,
as explained in Fig. 2.

This paper proposes an ordinal distribution regression
with a global and local convolutional neural network, which
we refer to as ODR-GLCNN, for gait-based age estimation.
Similar to ranking-based methods for facial-based age esti-
mation, we consider gait-based age estimation as an ordinal
regression and decompose the ordinal regression problem
into a series of binary classification sub-problems. Note
that the primary issue with existing ranking-based methods
is that they solve these binary sub-problems independently.
Consequently, such methods neglect the inner relationship
to some extent and do not make good use of the correla-
tion between these sub-binary tasks. To address this lim-
itation, we propose an ordinal distribution loss (ODL) to
penalize the distribution difference between the estimated
and ground-truth age. Similar to Hou et al.’s work [10], this
proposed loss also utilizes the squared Earth mover’s dis-
tance (EMD) to penalize the distribution discrepancy. Un-
like Hou et al. [10], which utilizes the squared EMD loss
on the classification task, we use the loss in an ordinal re-
gression task, e.g., gait-based age estimation. To the best of
our knowledge, this is the first time that the distribution dis-
crepancy on ordinal regression through squared EMD loss
has been considered. In addition, we propose a unique net-
work, consisting of a global and three local sub-networks,
to obtain a global structure and local structures from the
head, body, and feet. Experimental results on the OULP-
Age dataset [40] and the MORPH Album II dataset [26]
demonstrate that the proposed approach outperforms state-
of-the-art methods on both gait-based and face-based age
estimation.

The contributions of this paper are: 1) A deep ordi-
nal distribution regression for gait-based age estimation is
proposed, which achieves state-of-the-art predictive per-
formance on the OULP-Age dataset; 2) A novel network,
named as GL-CNN, comprising a global network and three
local sub-networks is proposed to learn more representative
features from the gait globally and locally; 3) An ordinal
distribution loss (ODL) is proposed to consider the inner
relationships among a series of binary sub-problems.

2. Related work
In this section, we provide a brief survey of face- and

gait-based age estimation studies as well as ordinal regres-
sion studies.

Face-based age estimation: Existing face-based age es-
timation approaches can be categorized as classification-
, regression-, and ranking-based methods. Classification-
based methods are often used to roughly estimate the age
group of a subject in a face image [12, 41]. Different ages
or age groups are treated as independent classes. How-
ever, these methods do not adequately consider the cost
difference of subjects belonging to different age groups.
Regression-based methods provide a more accurate age as-
sessment from a facial image [6, 39]. Typically, regression-
based methods employ Euclidean loss (`2 loss) to penalize
the difference between the estimated age and the ground-
truth age. Recently, ranking-based or ordinal methods have
been proposed for facial age estimation [1, 2, 22, 3]. These
approaches consider age as an ordered label and use multi-
ple binary classifiers to determine the rank of a specific age.
Unlike the `2 loss, which ignores the ordinal information,
ranking-based methods can explicitly model the ordinal re-
lationships among face images sampled from different ages.

Gait-based age estimation: The earliest gait-based age
estimation study was that of [21], where a Gaussian pro-
cess regression (GPR) [25] was introduced to predict age
from human gait. Then, GPR was refined with an active set
method [37] to reduce the computational time required for
online age estimation [20]. Lu and Tan proposed a multi-
label guided (MLG) subspace to better characterize the fea-
ture space by correlating the age and gender information of
subjects [15]. They further proposed an ordinary preserving
manifold learning approach to seek a low-dimensional dis-
criminative subspace for age estimation [17]. Considering
the age variations within different groups, such as children,
adults, and the elderly, Li et al. proposed an age group-
dependent manifold method [14]. In that method, after an
age group classifier was trained, a kernel support vector ma-
chine (SVM) regression was added to provide accurate as-
sessment in each age group. This method achieved state-of-
the-art gait-based age estimation performance.

Ordinal regression: Most ordinal algorithms can be
considered as refined versions of classification algorithms
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Figure 3. Structure of the proposed ODR-GLCNN. The output layer contains K − 1 binary classifications incorporating the ordinal
information into the current end-to-end learning process.

with ordinal constraints [4, 9, 30]. For example, Herbrich
et al. utilized an SVM for ordinal regression [9]. Then,
Shashua and Levin refined the SVM to handle multiple
thresholds [30]. Crammer and Singer proposed the per-
ceptron ranking algorithm to generalize an online percep-
tron algorithm with multiple thresholds for ordinal regres-
sion [4]. Another way to utilize classification algorithms
directly is to transfer ordinal regression into a series of sim-
pler binary classifications [5, 13]. Specifically, Frank and
Hall utilized a decision tree for binary classifications for
ordinal regression [5]. Li and Lin learned ordinal regres-
sion using a set of classifiers, and then employed an SVM
for the final classification [13]. Recently, Niu et al. in-
troduced a CNN with multiple binary outputs to solve the
ordinal regression for age estimation [22]. Ordinal regres-
sion was also used in [3] by learning multiple binary CNNs
and aggregating the final outputs. However, these ordinal
regression methods solve each binary sub-problem inde-
pendently and do not consider the underlying relationships
among these binary sub-problems. Thus, this paper pro-
poses a distribution loss to utilize such a relationship to im-
prove the accuracy of age estimation.

3. Proposed method

In this section, we describe the proposed ordinal regres-
sion for gait-based age estimation, the network comprising
a single global and three local sub-networks, and a unique
distribution loss in more detail.

3.1. Ordinal regression

We treat gait-based age estimation as an ordinal regres-
sion in order to utilize the ordinal relationship of age labels.
Let xi ∈ X denote the i-th input GEI sample. The corre-
sponding age is yi ∈ Y = {r1, r2, . . . , rK} with ordered
ranks rK � rK−1 � · · · � r2 � r1. The symbol � de-
notes the order among different ranks. Given a training set
D = {(xi, yi)}Ni=1, the ordinal regression is to learn a map-
ping from images to ranks, i.e., h(·) : X → Y .

Inspired by two ranking-based methods [3, 22], we de-
compose ordinal regression into a series of binary classifi-
cations. Specifically, the ordinal regression with K ranks
is decomposed into K − 1 binary classifiers {fk}K−1

k=1 . For
each rk ∈ {r1, r2, . . . , rK−1}, a binary classifier is con-
structed to predict whether the rank of a sample yi is greater
than that of rk. The final rank of an unknown test sample is
determined by summarizing all results of the K − 1 binary
classifiers.

To train the k-th binary classifier fk, the given dataset D
is divided into two subsets (one positive class and one neg-
ative class) determined by whether the age is greater than k,
i.e.,

D+
k =

{
(xi, 1)

∣∣∣yi > rk

}
, D−

k =
{

(xi, 0)
∣∣∣yi ≤ rk}. (1)

All K − 1 binary classifiers are well-trained with their re-
spective training datasets. The age of the test sample xi is



predicted as follows:

h(xi) = r1 + η

K−1∑
k=1

1
(
fk(xi) > 0.5

)
, (2)

where fk(xi) ∈ [0, 1] is the output probability of the k-
th classifier for the sample xi (i.e., the k-th output of GL-
CNN); η is the partitioning interval; and 1(·) denotes the
truth-test operator, which is 1 if the inner condition holds
and 0 otherwise.

3.2. GL-CNN

Fig. 3 presents an overview of the proposed GL-CNN
for gait-based age estimation. The proposed network com-
prises a single global and three local CNNs, followed by
three fully connected layers with K − 1 outputs. Next, we
describe the network in detail.

Grayscale GEIs of size 128 × 88 are input to the global
network. Considering that different parts of a gait take
on different local behaviors, we crop the GEI template
into three parts: head, body, and feet. In the OULP-Age
dataset [40], the gait images of various people are detected,
cropped, aligned, and resized to a uniform silhouette tem-
plate of same height. In this study, the three parts are
cropped using the following three boxes without overlap:
22× 88, 48× 88, and 58× 88. Then, three local networks
are designed to learn finer details from these three parts sep-
arately. More specifically, there are three convolutional lay-
ers in both global and local sub-networks. At the first con-
volutional layer, 32 filters of size 7 × 7 with a stride of 1
are applied to the input images, followed by a Leaky Rec-
tified Linear Unit (LeakyReLU) [18]. Then, a max-pooling
operation with filters of size 2× 2 applied with a stride of 2
is used to emphasize the strongest responsive points in the
feature maps. Similar operations are performed at the sec-
ond and third convolutional layers with different filter sizes
(Fig. 3). Note that we concatenate the three local feature
maps from the second convolution layers along the height
dimension to form new local feature maps in a local net-
work. The local network is further concatenated with the
feature maps from the global network along the channel di-
mension.

Then, there are three fully connected layers, as shown in
Fig. 3. Among them, F4 is the first fully connected layer in
which the feature maps are flattened into a feature vector.
There are 1024 neurons in F4, followed by a LeakyReLU
and a dropout layer [35]. F5 is the second fully connected
layer with 1024 neurons. The second fully connected layer
receives the output from F4, followed by a LeakyReLU and
another dropout layer. F6 is the third fully connected layer
withK−1 neurons. This layer receives the output from F5,
followed by a LeakyReLU and a dropout layer. Through a
sigmoid layer, the K − 1 output corresponds to the predic-
tive probabilities from K − 1 binary classifiers. Typically,

the network parameters are optimized by minimizing the
objective function.

3.3. ODL
Here we cast the age label yi as ti = [t1i , t

2
i , . . . , t

K−1
i ]T

for K − 1 binary classifiers, where tki = 1(yi > rk). We
employ cross-entropy loss as the loss function for these bi-
nary classifiers. The loss can be calculated as

Lc = − 1

N

N∑
i=1

K−1∑
k=1

(
tki log(o

k
i ) + (1− tki ) log(1− oki )

)
, (3)

where oki is the output value of the k-th binary classifier for
the i-th sample. However, the cross-entropy loss optimizes
these binary classifiers separately, resulting in a discrepancy
between different binary classifications, as shown in Fig. 2.

To fully utilize the inner relationships among theseK−1
outputs, we consider these outputs as a probability distribu-
tion and then propose a distribution loss, e.g., EMD2 [10],
to penalize the discrepancy between the output distribution
and ground-truth distribution. First, the output values are
transformed into the probability value by the softmax func-
tion,

p̄ki =
exp(oki )∑K−1

j=1 exp(oji )
, pki =

exp(tki )∑K−1
j=1 exp(tji )

. (4)

Then, the EMD2 loss is defined as

LEMD =
1

N

N∑
i=1

K−1∑
k=1

{
CDFk(p̄i)− CDFk(pi)

}2

, (5)

where p̄i = [p̄1i , p̄
2
i , · · · , p̄

K−1
i ]T and pi =

[p1i , p
2
i , · · · , p

K−1
i ]T are the probability distributions

corresponding to the i-th output oi and the i-th ground truth
ti, respectively. CDF (·) is a cumulative density function
of its input, and CDFk(·) is the k-th element of the CDF
of its input.

Finally, we propose an ODL by combining the cross-
entropy loss with the EMD2 loss. This loss function is
easily embedded into the GL-CNN architecture for end-to-
end learning. The ODL is

L = Lc + λLEMD (6)

where λ is a hyper-parameter that controls the influence of
LEMD in the joint loss.

3.4. Learning ODR-GLCNN

One advantage of using Eq. (6) is that the ODL can si-
multaneously learn each binary classification and the inner
relationship between these binary classifications. For the
i-th sample xi, the gradient of our loss can be derived as

∂L
∂W

=
∂Lc

∂oi

∂oi

∂W
+ λ

∂LEMD

∂p̄i

∂p̄i

∂W
, (7)



where W represents the network parameters, and ∂oi

∂W and
∂p̄i

∂W can be derived through the standard backpropagation
method. For the k-th element of oi, the gradient can be
derived as

∂Lc

∂oki
= −

( tki
oki
− 1− tki

1− oki

)
. (8)

For the k-th element of p̄i, the gradient can be derived as

∂LEMD

∂p̄ki
=
∂
∑K−1

j=1 (CDFj(p̄i)− CDFj(pi))
2

∂p̄ki

=
∂
∑K−1

j=1 (
∑j

`=1(p̄`i − p`i))2

∂p̄ki

= 2

K−1∑
j=k

j∑
`=1

(p̄`i − p`i),

(9)

where k ∈ {1, 2, . . . ,K − 1}. Eq. (8) indicates that the
gradient of the cross-entropy loss is only related to the out-
put value of each binary classification and its correspond-
ing ground truth, ignoring the intrinsic correlation for their
binary classifiers. In contrast, the output value of each clas-
sification is considered when computing the gradient of a
specific binary classification in EMD2 loss, as shown in
Eq. (9). Therefore, the ODL considers each binary classifi-
cation and can utilize the inner relationships among them.

4. Experiments
In this section, we describe the experimental setting and

demonstrate the effectiveness of the proposed method by
comparing it with state-of-the-art methods and performing
a set of ablative studies on the OULP-Age gait dataset [40].
In addition, we evaluate the generalization ability of the pro-
posed approach to other tasks, e.g., facial age estimation on
the MORPH Album II dataset [26].

4.1. Experimental setting

4.1.1 Data preparation

OULP-Age is the largest gait dataset in the world to date,
containing 63,846 GEIs (31,093 males and 32,753 females;
age 2 to 90 years; sample size 128 × 88). Gender distri-
bution by age in five-year intervals is shown in Fig. 4. As
Xu et at. [40] suggests, the OULP-Age dataset is averagely
divided into two disjoint subsets (training set and test set).
The training set contains 15,596 males and 16,327 females,
and the test set contains 15,497 males and 16,426 females.
Note that both datasets have similar age distribution.

Note that USF [29] is another popular gait dataset for
age estimation. However, it is too small (only 122 subjects)
and rough (age labels are not very accurate) to be used for
evaluating the performance of deep-learning-based gait age
estimation. Therefore, we trained the proposed method on
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Figure 4. Age and gender distribution for the OULP-Age dataset.
There are 63,846 well-labeled GEIs (31,093 males and 32,753 fe-
males, age 2 to 90 years).

the OULP-Age dataset and used the USF dataset only for
testing.

MORPH Album II is one of the largest and most pop-
ular longitudinal face databases for age estimation in the
public domain (55,134 face images, 13,617 subjects, age 16
to 77 years) [26]. To further demonstrate the effective-
ness of the ODL, we evaluated the proposed loss on the
MORPH Album II dataset. Following the previous stud-
ies [22, 3, 23, 32], we used the five-fold random split (RS)
protocol to evaluate the facial age estimation performance.
All face images were aligned based on five facial landmarks
detected using the open-source SeetaFaceEngine face align-
ment algorithm1 and then were resized to 256× 256× 3.

4.1.2 Evaluation metrics

The age estimation performance was evaluated using the
mean absolute error (MAE) and the cumulative score (CS).
MAE represents the average of the absolute errors between
the predicted age and the ground truth over all test sam-
ples. MAE is defined as 1

N

∑N
i=1

∣∣∣h(xi) − yi

∣∣∣, where N
is the total number of test samples. CS is calculated as
CS(k) = Nk

N ×100%, where Nk is the number of test sam-
ples whose absolute error between the estimated age and
the ground truth is not greater than k years. CS reveals a
consistent performance by computing the accuracy of the
evaluated model at different k-levels.

4.2. Gait-based age estimation results

4.2.1 Implementation details

In our experiments, we utilized our GL-CNN, a CNN
(comprising a global part, as shown in Fig. 3), and a
VGG16 [24, 33] as three backbone networks. We used
Adam [11] with a learning rate of 0.0001, beta1 0.5, beta2

1https://github.com/seetaface/SeetaFaceEngine



0.999, weight decay of 0.00001, batch size of 300, and max-
imal epochs of 300 for CNN and GL-CNN. Following a pre-
vious study [23], we used stochastic gradient descent with
a learning rate of 0.0001, weight decay of 0.0001, batch
size of 300, and maximal epochs of 100 for VGG16. The
learning rate was reduced by multiplying the effective rate
by 0.1 every 15 epochs. To make the grayscale GEIs suit-
able for VGG16, we copied the GEIs three times as RGB
channels to feed into the VGG16, which was pre-trained
on ImageNet [28]. In addition, the weight coefficient of
the EMD2 loss term in Eq. (6) was set to λ = 10, which
was tuned according to the model performance. All exper-
iments were implemented on PyTorch with four GeForce
GTX 1080 Ti GPUs.

4.2.2 Comparison of the proposed method to state-of-
the-art methods on the OULP-Age dataset

We compared the proposed method with state-of-the-
art methods, including classification-based methods (e.g.,
MLG [15]), regression-based methods (e.g., GPR [21],
SVR [34], and ASSOLPP [14]), and age manifold learning-
based methods (e.g., OPLDA and OPMFA [16]). In addi-
tion, we implemented a deep learning method as a baseline,
i.e., VGG16 + Mean-Variance, to validate the effective-
ness of the proposed method. This method [23] achieves
an outstanding performance in the field of face-based age
estimation.

Methods MAE CS (k = 5)
SVR [34] 7.66 41.40%
MLG [15] 10.98 43.40%
OPLDA [16] 8.45 36.50%
OPMFA [16] 9.08 34.70%
GPR [21] 7.30 43.60%
ASSOLPP [14] 6.78 53.00%
VGG16 + Mean-Variance [23] 5.59 60.46%
ODR-GLCNN (Ours) 5.12 66.95%

Table 1. Comparison of the age estimation MAEs with the pro-
posed approach and state-of-the-art methods on the OULP-Age
dataset.

Table 1 shows the result obtained by eight methods on
the OULP-Age dataset. This suggests that CNN-based
methods, such as [23], perform better than traditional meth-
ods in terms of MAE [14, 15, 16, 21, 34]. CNN-based
methods demonstrate better performance because they have
many more parameters and learn more representative fea-
tures with end-to-end training. The proposed method per-
forms the best among all approaches because it benefits
from both a more representative feature extraction network
(GL-CNN) and a unique loss function (the ODL), which can
learn each binary classification of ordinal regression and
the inner relationships among them. In addition, as shown
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Figure 5. Comparisons of age estimation CSs by the proposed ap-
proach and state-of-the-art methods on the OULP-Age dataset.

in Fig. 5, the CS results on the OULP-Age dataset further
demonstrate that the proposed approach performs consis-
tently better than the other state-of-the-art methods.

Some age estimation examples are shown in Fig. 6.
As seen, the proposed approach is quite robust for young,
middle-aged, and old subjects. However, as is noticeable
from the last row of Fig. 6, age estimation accuracy may
degenerate when a person wears heavy clothes or when a
person is extremely thin or overweight.

4.2.3 Testing with state-of-the-art methods on the USF
dataset

To further demonstrate the effectiveness of the proposed
method, we evaluated the performance of our model on the
USF dataset and compared it with state-of-the-art methods.
As described above, the USF dataset is too small to train a
deep network model. Therefore, we trained our model and
other methods on the OULP-Age dataset, and then tested
using the USF dataset.

Methods Gallery Probe A
MAE CS(k = 5) MAE CS(k = 5)

SVR [34] 8.21 37.50% 7.83 41.70%
MLG [15] 9.45 32.80% 9.06 34.40%
OPLDA [16] 7.05 43.70% 6.76 51.20%
OPMFA [16] 6.95 47.30% 6.62 52.00%
ASSOLPP [14] 6.81 50.50% 6.48 52.70%
VGG16 + Mean-Variance [23] 6.10 54.20% 5.93 56.30%
ODR-GLCNN (Ours) 5.91 56.60% 5.75 59.40%

Table 2. MAE results on the two subsets of the USF dataset using
different methods.

Table 2 shows that for the USF gallery (probe A)
subset, the proposed method outperforms SVR, MLG,
OPLDA, OPMFA, ASSOLPP, and VGG16+Mean-Variance
with MAE gains of 2.3 (2.08), 3.54 (3.31), 1.14 (1.01), 1.04
(0.87), 0.9 (0.73), and 0.19 (0.18) years old, respectively.
The results further indicate that the proposed method con-
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estimated age, respectively.

sistently outperforms other methods for gait-based age esti-
mation.

4.2.4 Analyzing the performance of GL-CNN

We evaluated the performance of the proposed GL-CNN by
comparing it with a simple CNN comprising a global part
and the VGG16 network, which is widely used for age esti-
mation based on gait. All three networks used cross-entropy
loss as the loss function. The MAE and CS (k = 5) results
for these three different networks are shown in Table 3.

Network MAE CS (k = 5) Time (ms)
CNN 5.45 64.64% 7.27 ×10−2

VGG16 5.63 63.92% 21.9 ×10−2

GL-CNN (Ours) 5.24 65.96% 8.99 ×10−2

Table 3. Comparisons among different CNN-based methods on the
OULP-Age dataset. The test time for a single sample is shown in
the last column.

Compared to a simple CNN, GL-CNN achieves better
age estimation performance. Table 3 shows that 1) com-
pared to CNN and VGG16, GL-CNN achieves the best per-

(A) CNN (B) GL-CNN

Figure 7. Feature visualization of CNN (A) and GL-CNN (B). Net-
work features are reduced from 1024 dimensions to 2 dimensions
by a t-SNE technique. Ages are divided into nine groups. Differ-
ent colors represent different age groups.

formance in two criteria; 2) although VGG16 has more pa-
rameters, GL-CNN effectively learns more detailed infor-
mation by combining a global and three local structures,
resulting in an improved performance; and 3) the computa-
tional cost of GL-CNN is only slightly higher than that of
CNN and much smaller than that of VGG16.

To better demonstrate the effectiveness of the proposed



network, we visualize CNN and GL-CNN features through
t-distributed stochastic neighbor embedding [19] (t-SNE)
technique with perplexity 30, as shown in Fig. 7. For bet-
ter visualization, the age label is divided into 9 age groups:
e.g. [0 ∼ 10], [11 ∼ 20], [21 ∼ 30], · · · , [81 ∼ 90]. As
can be seen, both GL-CNN and CNN features appear to
maintain a manifold-like structure because the order of ages
varies smoothly from left to right. However, after zoom-
ing in Fig. 7, it is evident that the inner age group samples
of GL-CNN are denser than those of CNN, particularly in
age groups [21 ∼ 30] and [31 ∼ 40], which shows that
GL-CNN can achieve fewer age estimation errors because
it learns a better feature representation from both global and
local structures.

4.2.5 Comparison of different losses

To validate the effectiveness of the proposed ODL, we com-
pared it with three widely used losses in gait-based age
estimation tasks, e.g., Euclidean, MAE, and cross-entropy
losses, by performing age estimation based on the proposed
GL-CNN. The MAE and CS (k = 5) of these losses are
reported in Table 4.

Loss MAE CS (k = 5)
Euclidean 6.73 52.95%
MAE 6.65 55.16%
Squared EMD[10] 6.39 58.34%
Cross-Entropy 5.24 65.96%
ODL (Ours) 5.12 66.95%

Table 4. Comparison of different losses with the proposed GL-
CNN on the OULP-Age dataset.

It can be seen that cross-entropy loss outperforms Eu-
clidean loss and MAE loss for the age estimation tasks.
Euclidean and MAE losses easily lead to over-fitting and
do not consider the ordinal information between age labels.
In contrast, the proposed ODL incorporates the inner rela-
tionship between the binary classifications by using a distri-
bution loss, i.e., EMD2 loss, resulting in better predictive
performance.

In addition, to demonstrate the difference between our
proposed ODL and the squared EMD loss in [10], we com-
pare them on the OULP-Age dataset. Following [10], the
squared EMD loss is utilized on a classification task in these
experiments. The comparison results, shown in Table 4, in-
dicate that the combination of squared EMD loss and ordi-
nal regression is more suitable for the gait-based age estima-
tion task. The results indicate that utilizing squared EMD
loss with ordinal regression is reasonable and effective.
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Figure 8. Multi-task structure for age and gender estimation tasks.

4.2.6 Influence of gender

We realize that gender is correlated with age because hu-
man gait varies between males and females even within the
same age group, as shown in Fig. 1. To better utilize the
relationship between age and gender, we embedded a multi-
task technique into the CNN-based framework. As shown in
Fig. 8, specifically, we investigated a gender classification
task for the proposed method and three other CNN-based
methods. As a binary classification, the gender loss is de-
fined as

Lgender = − 1

N

N∑
i=1

(
gi log(ĝi) + (1− gi) log(1− ĝi)

)
, (10)

where gi is the ground truth of gender for the i-th sample
and ĝi is the corresponding predicted value.

Method w/o gender w/ gender acc.
CNN + Euclidean 6.96 6.82 96.70%
CNN + Cross-Entropy 5.40 5.34 97.20%
VGG16 + Mean-Variance 5.59 5.52 96.70%
ODR-GLCNN (Ours) 5.12 5.06 97.80%

Table 5. Influence of human gender for gait-based age estimation
in terms of age MAE and gender accuracy.

Table 5 indicates that gender information indeed im-
proves the performance of gait-based age estimation. More-
over, the accuracy of gender classification with the proposed
method is 97.8%, implying that, as a byproduct, the pro-
posed network can accurately predict gender from the gait.

4.3. Facial age estimation

We applied the proposed ODL to facial age estimation
using the MORPH Album II dataset, and compared the re-
sults with those of state-of-the-art methods [22, 27, 3, 42,
23, 32, 43, 44]. Following previous studies, [23, 32], we
also utilized VGG16, pre-trained with ImageNet [28], as the
backbone network with the proposed ODL. The results of
individual approaches in terms of MAE and CS are reported
in Table 6. As can be seen, our approach achieves bet-
ter prediction performance than the state-of-the-art method
DRF [32], which suggests that the proposed approach can



be well-generalized to the facial age estimation task. In ad-
dition, the results obtained using ODL (λ = 0.25) are better
than those obtained using a single cross-entropy loss (λ = 0
when calculating ODL), which indicates that ODL is more
effective in learning the ordinal relationships among differ-
ent ages than a single cross-entropy loss.

Method MAE CS (k = 5) Protocol
OR-CNN [22] 3.27 73.0%* RS
DEX [27] 3.25 – RS
Ranking-CNN [3] 2.96 85.0%* RS
VGG16 + Mean-Variance [23] 2.41 90.0%* RS
AGEn [43] 2.93 – RS
dLDLF [42] 2.24 – RS
DRFs [32] 2.17 91.3% RS
BridgeNet [44] 2.38 – RS
VGG16 + ODL(λ = 0) 2.30 91.1% RS
VGG16 + ODL(λ = 0.25)(Ours) 2.16 92.9% RS

Table 6. Comparison between proposed approach and state-of-the-
art methods on the MORPH Album II dataset in terms of MAE and
CS values (*: the value is read from the reported CS curve). RS
represents the five-fold Random Split protocol.

5. Conclusion

In this paper, we proposed an ordinal distribution regres-
sion, including a novel network GL-CNN and a useful loss
function ODL, for gait-based age estimation. Specifically,
the GL-CNN consisting of one global and three local sub-
networks was constructed to extract more representative
gait features. And the proposed ODL incorporating cross-
entropy loss and EMD2 loss was found to be more effec-
tive in learning the ordinal relationships among different
ages than a single cross-entropy loss. We also found that if
the gender information is available for training, embedding
a multi-task strategy into the proposed framework can more
or less improve the age estimation performance. Experi-
ments on the OULP-Age and MORPH Album II datasets
show that the proposed approach outperforms state-of-the-
art methods on gait-based age estimation and generalize
well for facial age estimation tasks.

In the future, it is worth studying how to utilize temporal
information or cross-view information [8, 36, 38] of gait
sequences to improve the accuracy and effectiveness of gait-
based age estimation.
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