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ABSTRACT

Merging other branches into the current working branch is com-

mon in collaborative software development. However, developers

still heavily rely on the textual merge tools to handle the compli-

cated merge tasks. The latent semantic merge conflicts may fail to

be detected and degrade the software quality. Regression testing

is able to prevent regression faults and has been widely used in

real-world software development. However, the merged software

may fail to be well examined by rerunning the existing whole test

suite. Intuitively, if the test suite fails to cover the changes of dif-

ferent branches at the same time, the merge conflicts would fail

to be detected. Recently, it has been proposed to conduct verifica-

tion on 3-way merges, but this approach does not support even

some common cases such as different changes made to different

parts of the program. In this paper, we propose an approach of

regression unit test generation specifically for checking program

merges according to our proposed test oracles. And our general

test oracles support us to examine not only 3-way merges, but also

2-way and octopus merges. Considering the conflicts may arise in

other locations besides changed methods of the project, we design

an algorithm to select UUTs based on the dependency analysis of

the whole project. On this basis, we implement a tool called TOM

to generate unit tests for Java program merges. We also design

the benchmark MCon4J consisting of 389 conflict 3-way merges

and 389 conflict octopusmerges to facilitate further studies on this

topic. The experimental results show that TOM finds 45 conflict 3-

waymerges and 87 conflicts octopusmerges, while the verification

based tool fails to work on MCon4J.
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• Software and its engineering → Software testing and de-

bugging; Software evolution.
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1 INTRODUCTION

Developers utilize the version control systems to make their own

changes and accept contributions from other developers. During

the process, conflictsmay arise once developersmerge other branches

into the current working branch. Conflicts annoy the developers

and developers have to take much efforts and be careful to deal

with these conflicts [19]. After decades of hard working on detect-

ing merge conflicts, various tools have been proposed [3, 7, 14, 21]

to assist developers in detecting conflicts, reviewing changes and

resolving conflicts. However, considering the generality and usabil-

ity of these tools, developers still rely on textual merge tools (e.g.,

those integrated in version control systems) to deal with their daily

merge work [19]. In addition, a recent study conducted by Ahmed

et al. [1] shows that merges contain more code smells once con-

flicts arise. This reality motivates us to figure out some general

and effective method that has the potential to be widely used in

real-world development.

Regression testing has been widely used to prevent regression

faults and ensure the software quality after changes are made to

the software. Obviously, regression testing also can be used to de-

tect conflicts after merging branches. Once one test fails on the

merge version but passes on all of the parent versions, this test

reveals the merge conflicts. Along this direction, Brun et al. [3]

classify merge conflicts into textual and higher-order conflicts (i.e.,

build and test conflicts), and tell whether test conflicts arise ac-

cording to the results of rerunning the existing test suite. As is

well known, maintaining a high-quality test suite requires much

efforts. Hence, automatically generating unit test cases has been

studied extensively. And, to evolve the test suite with the software,

regression unit test generation is proposed to ensure that the soft-

ware does not have other unexpected behaviors brought by new

changes.

It seems that ideally rerunning the test suite is enough for detect-

ing merge conflicts if we have a pretty high-quality test suite be-

foremerging branches. However, in practice, the test suitemay still

have a high probability to miss the merge conflicts due to the work

http://arxiv.org/abs/2003.00154v1
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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flow of the collaborative development. Imagine that two branches

are developed by different developers, the newly added or changed

test casesmay not well cover the changes made by the other branch

since the developers are not aware of others’ work. In other words,

if there exists one execution path that includes both changes of

two branches, this path would not be covered by the existing test

suite. As a result, the conflicts between these changes fail to be

detected by running the existing test suite. If developers carefully

examine the relationships between changes of different branches

with the help of change impact analysis tools, the conflicts can be

reduced. However, a recent survey [9] shows that developers do

not use any change impact analysis tool in their daily debugging

work, although they think these tools are much helpful.

Recently, Sousa et al. [29] have made progress on guarantee-

ing the quality of 3-way merges, by proposing the contract of se-

mantic conflict freedom and developing the tool SafeMerge to ver-

ify whether one 3-way merge meets this contract. However, the

state-of-the-art verification approach still has a set of limitations

and challenges in verifying program merges. First, besides 3-way

merges, Git also supports to merge two branches without the com-

mon ancestor (i.e., 2-waymerge) ormore than 2 branches (i.e., octo-

pus merge).1 SafeMerge only supports 3-way merge ant thus fails

to deal with other common merge scenarios. Second, SafeMerge

only works on those cases that two branches make changes to the

same Java method. Intuitively, changes made to different methods

alsomay bring conflicts if these twomethods are invoked along the

same execution path. Third, as described in [29], SafeMerge has a

set of limitations on changes made to method signatures, the anal-

ysis scope and exceptions. In addition, considering the challenges

for static analysis of Java reflection, verification on Java program

merges involving Java dynamic features is not sound [16].

In this paper, we propose general test oracles for merges in-

spired from the contract of semantic conflict freedom andmake the

oracles applicable for all real-world merge scenarios (i.e., 2-way, 3-

way and octopus merges). After that, based on our proposed test

oracles, we address the problems that how to find the UUTs (Unit

Under Testing) from thewhole project and which variant involved

in the merge scenario should be used to generate test cases. We

implement a tool named TOM (Testing on Merges) to automati-

cally find the impacted methods due to changes and then generate

test cases to reveal conflicts. Moreover, we construct a benchmark

named MCon4J (Merge Conflicts for Java). MCon4J contains a to-

tal of 389 three-way merges and 389 octopus merges respectively,

in each of which merge conflicts exist. Then, we conduct experi-

ments to examine the effectiveness of TOM.

In summary, our contributions are as follows:

• We propose to apply the regression unit test generation for

detecting merge conflicts as the supplement of existing re-

gression testing that does not consider merges specifically;

• We propose the notion of general test oracles for checking

semantic conflicts in merges, which supports 2-way, 3-way

and octopus merges;

• Wedesign an algorithm to efficiently find the UUTs from the

whole project based on dependency analysis such that we

1https://git-scm.com/docs/git-merge/2.22.0
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Figure 1: Then−parentmergehasn parentsmergedand these

parents may have the common ancestor.

can concentrate on generating test cases to detect semantic

conflicts over these UUTs;

• We design the benchmarkMCon4j consisting of 389 conflict

3-way merges and 389 conflict octopus merges, to facilitate

further studies on detecting semantic conflicts;

• Experimental results show that our tool TOM finds 45 con-

flict 3-way merges and 87 octopus merges.

The rest of the paper is structured as follows. First we give our

motivation (Section II). Thenwe detail our proposed approach (Sec-

tion III) and evaluation (Section IV). After that, we present the dis-

cussion (Section V) and related work (Section VI). Finally, we con-

clude (Section VII).

2 MOTIVATION

In this section, we discuss the shortcomings of existing methods

that can be used to detect merge conflicts, which motivates and

inspires our work.

2.1 Verification on Three-way Merges

First, we recall the notion of semantic conflict freedom, proposed

recently by Sousa et al. [29] for verifying 3-way merges.

Definition 2.1 (Semantic Conflict Freedom) Suppose that we are

given four program versions O,A,B,M representing the base pro-

gram, its two variants, and the merge respectively. We say thatM

is semantically conflict-free, if for all valuations σ such that:

σ ⊢ O ⇓ σO , σ ⊢ A ⇓ σA, σ ⊢ B ⇓ σB , σ ⊢ M ⇓ σM
the following conditions hold for all i (where i ∈ [0, len(out)],out

represents the outputs):

(1) If σO [(out ,i)],σA[(out ,i)], then σM [(out ,i)]=σA[(out ,i)]

(2) If σO [(out ,i)],σB [(out ,i)], then σM [(out ,i)]=σB[(out ,i)]

(3) Otherwise, σO [(out ,i)] = σA[(out ,i)] = σB [(out ,i)] = σM [(out ,i)]

Specifically, if one variable’s value returned by variant A (resp.

B) differs from the same variable’s value returned by the base O,

then this variable’s return value of the mergeM should agree with

A (resp. B).

Real-world Merge Scenarios. In real-world software develop-

ment, Git is the most popular distributed version control system.

Different from the 3-way merge, 2-way merge has two branches

merged without the common ancestor. Git supports merging the

other unrelated branch2 into the working branch, which is one typ-

ical case of the 2-way merge. Imagine that two branches both add

methods with the same name compared to their ancestor. With-

out any common ancestors, we also consider this merge as 2-way

merge. Moreover, Git supports merging multi-branches into the

working branch, which is called the octopus merge. However, we

cannot use the notion of semantic conflict freedom in Definition

2https://git-scm.com/docs/git-merge#Documentation/git-merge.txt---allow-unrelated-histories

https://git-scm.com/docs/git-merge/2.22.0
https://git-scm.com/docs/git-merge#Documentation/git-merge.txt---allow-unrelated-histories
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1.   public class A{
2.     private int x, y;
3.     public void setX(int x){
4.       this.x=x;  //v1: this.x=x+1;
5.     }
6.     public void setY(int y){
7.       this.y=y;  //v2: this.y =y+1;
8.     }
9.     public int getSum(){
10.     setX(0);
11.     setY(0);
12.     return this.x+this.y;
13.   }
14. }

Figure 2: Semantic conflicts arise in this merge.

2.1 for verifying 2-way and octopus merges. The meaning of n-

way merge has some ambiguity, for example, Leßenich et al [17]

denote the octopus merge as n-way merge. Hence, in our paper,

we use the n-parent merge to describe the real-world merge sce-

narios, as shown in Fig. 1.

False Positives. In real-world merge scenarios, we cannot get

the merge version successfully when two variants conflicts. To

have the final merge, developers may make a concession or try

to figure out other ways. However, the semantic conflict freedom

is defined based on the idea that the merge should reserve all the

changes of different branches. Since other determination on the

merge’s behavior has been introduced when developers resolve

conflicts, the notion of semantic conflict freedom does not fit.

According to the definition of semantic conflict freedom, once

two variants change the same variable’s value to different values,

we can say the semantic conflict arises without analyzing themerge

result. Consider one example calculating one person’s total income.

The base version gets the income by “income = salary”, the first

variant changes it to “income = salary + stock” and the second

changes it to “income = salary + rent”. Actually, two assignments

do not conflict with each other considered developers’ intention,

and we shall use “income = salary + stock + rent” as the merge

result. In this case, this merge is not semantic conflict free while it

may be the best merge candidate. Moreover, the verification tool

SafeMerge3 reports conflicts without providing any counterexam-

ples, whichwill increase developers’ burden on checking themerge

result. Hence, we consider proposing the test generation approach

to generate tests that cover the conflict parts. Then, it will be much

easier for developers to examine the merges.

False Negatives. SafeMerge works at themethod level and only

works when both branches make changes to the same method.

Hence, wewonder whether semantic conflicts arisewhen two branches

modify the different methods. As shown in the Fig. 2, this Java

class has two setter methods. The first variant changes the body of

setX to “this.x=x+1;”, while the second variant changes the body

of setY to “this.y=y+1;”. Obviously, we can merge them success-

fully by those textual merge tools, while SafeMerge will not report

the semantic conflict for the method getSum. However, given the

3Its latest commit is b2bac46ada till the date that we submit this paper, andwe conduct
experiments on this version.

same input for four versions of getSum, the returned results actu-

ally violate the semantic conflict freedom defined in Definition 2.1.

Imagine some more complicated cases that one method invokes

changed methods indirectly. If we want to improve SafeMerge to

reduce the false negatives of above cases, we should analyze the

invoked changed methods, which would increase the complexity

of verification and may bring false positives due to the limitation

of current verification techniques.

2.2 Regression Testing

Regression testing is used to make sure that the changes made to

software are intended and do not introduce any unexpected behav-

ior. In the ideal case, developers of different branches add new tests

to represent their intention on changes in both two branches, and

after merging these two branches, developers can simply rerun the

whole test suite to make sure the software works well without any

failure. However, in practice, since developers may be not aware

of the other changes introduced by different branches in advance,

the added test cases may not cover those changes. As a result, re-

running the test suite may not expose the conflict introduced by

the merged branch.

Existing works on automated regression unit test generation fo-

cus on the different parts between two versions. And, to the best

of our knowledge, there is no prior work aiming to automatically

generate regression unit tests for themerge scenarios. Obviously, it

is relatively easy for developers to investigate the program behav-

ior by examining test cases. We wonder whether we can make use

of the recent advance of verification on 3-way merges and regres-

sion testing to generate test cases to reveal conflicts for n-parent

merges.

3 PROPOSED APPROACH

Similarly, as for the general problem of test generation, we need to

figure out what to test and where to test. In this section, we first

propose our notion of test oracles to reveal merge conflicts. Then,

we present our algorithm for selecting the UUTs that may contain

merge conflicts from the the whole program. Finally, we detail the

implementation of our tool TOM.

3.1 Test Oracles

3.1.1 Test Oracles for 3-wayMerges. In our testing based approach,

we need to find the inputs that make the contract of semantic con-

flict freedom fail. Before introducing our proposed test oracles, we

first recall the algorithm [29] used in SafeMerge for verifying the

semantic conflict freedom on 3-way merges. As shown in Algo-

rithm 1, after computing the post relation on output variables of

four versions in a 3-way merge (Line 2), the algorithm validates

whether the logic formula is satisfiable (Line 6).

By examining this algorithm, we find that it is inconsistent with

the definition of semantic conflict freedom (Definition 2.1). For ex-

ample, as shown in the Fig. 3, the method getX returns x based on

the input flag. If theflag is set to true, themerge version returns the

different value compared to all of its three ancestors (i.e., the orig-

inal version and two variants). There is no doubt that this merge

is not semantic conflict free according to the definition. However,
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1.   public class A{
2.     private int x;
3.     public int getX(boolean flag){
4.         if ( flag ) flag=false;  // added in v1

5.         if ( ! flag ) x=x+1;     // added in v2

6.         return x;
7.     }
8.   }

Figure 3: Semantic conflicts that fail to be detected by Safe-

Merge.

Algorithm 1 Algorithm used in SafeMerge [29] for verifying se-

mantic conflict freedom on 3-way merges

1: function verify(O ,A,B,M)

2: φ := RelationalPost(O,A,B,M)

3: χ1 := ∀i .(outO [i] , outA[i] ⇒ outA[i] = outM [i])

4: χ2 := ∀i .(outO [i] , outB [i] ⇒ outB [i] = outM [i])

5: χ3 := ∀i .(outO [i] = outA[i] = outB[i] = outM [i])

6: returnValid(φ ⇒ (χ1 ∧ χ2) ∨ χ3)

7: end function

this case would not be reported if we adopt Algorithm 1 to verify

the property.4 We revise the algorithm into the following one:

Algorithm 2 Revised algorithm for verifying conflict freedom

1: function verify(O ,A,B,M)

2: φ := RelationalPost(O,A,B,M)

3: χ1 := ∀i .(outO [i] , outA[i] ⇒ outA[i] = outM [i])

4: χ2 := ∀i .(outO [i] , outB [i] ⇒ outB [i] = outM [i])

5: χ3 := ∀i .(outO [i]=outA[i]=outB[i] ⇒ outO [i] = outM [i])

6: returnValid(φ ⇒ (χ1 ∧ χ2 ∧ χ3))

7: end function

As shown in Algorithm 2, if there exists one input that makes

the logic formula false (Line 6), we would say the conflict exists.

To find the inputs revealing conflicts, we negate the χ1 ∧ χ2 ∧ χ3,

then we have ¬χ1 ∨ ¬χ2 ∨ ¬χ3, where

¬χ1 , ∃i .(outO [i] , outA[i] ∧ outA[i] , outM [i])

¬χ2 , ∃i .(outO [i] , outB[i] ∧ outB [i] , outM [i])

¬χ3 , ∃i .(outO [i] = outA[i] = outB[i] ∧ outO [i] , outM [i]).

Hence, to reveal merge conflicts, we should find the inputs I that

make the formula

E(O, I ) ∧ E(A, I ) ∧ E(B, I ) ∧ E(M, I ) ⇒ ¬χ1 ∨ ¬χ2 ∨ ¬χ3
satisfiable, where E(V , I ) represents the execution result on the pro-

gram V by inputs I . In other words, after execution on four differ-

ent versions with the same inputs I , if¬χ1∨¬χ2∨¬χ3 is satisfiable,

we say the inputs I reveal the merge conflict. To simplify the prob-

lem of finding the inputs revealing conflicts, we give the following

theorem to reformulate ¬χ1 ∨ ¬χ2 ∨ ¬χ3.

Theorem 1. ¬χ1 ∨ ¬χ2 ∨ ¬χ3 ⇔ ¬χ1 ∨ ¬χ2 ∨ ¬χ ′3, where

¬χ ′3 , ∃i .(outA[i] , outM [i] ∧ outM [i] , outB[i]).

Proof. LetO , outO [i],A , outA[i],B , outB[i],M , outM [i].

4We have examined the implementation of SafeMerge, and the same problem exists.

∃i .(M , A ∧ A , O)∨ ∃i .(M , B ∧ B , O)∨ ∃i .(O = A = B ∧M ,

O ∧M , A ∧M , B)

⇔ ∃i .((M , A∧A , O)∨ (M , B∧B , O)∨ (O = A∧O = B∧M ,

A ∧M , B))

// ∃i .P(i) ∨ ∃i .Q(i) ⇔ ∃i .(P(i) ∨Q(i))

⇔ ∃i .((M,A ∧ A,O)∨ (M,A ∧ A , O ∧M , B ∧ B = O)∨ (M ,

B ∧ B , O)∨ (O = A ∧O = B ∧M , A ∧M , B))

// P ⇔ P ∨ (P ∧Q)

⇔ ∃i .((M,A∧A,O)∨ (M,B∧B,O)∨ (O=B∧M , A ∧M , B))

// (P ∧Q) ∨ (P ∧ ¬Q) ⇔ P

⇔ ∃i .((M , A ∧ A , O)∨ (M , B ∧ B , O)∨

(M , B ∧ B , O ∧M , A)∨ (O = B ∧M , A ∧M , B))

// P ⇔ P ∨ (P ∧Q)

⇔ ∃i .((M , A ∧ A , O)∨ (M , B ∧ B , O)∨ (M , A ∧M , B))

// (P ∧Q) ∨ (P ∧ ¬Q) ⇔ P

⇔ ∃i .(M , A∧A , O)∨ ∃i .(M , B∧B , O)∨ ∃i .(M , A∧M , B)

// ∃i .P(i) ∨ ∃i .Q(i) ⇔ ∃i .(P(i) ∨Q(i))

Hence, we have ¬χ1 ∨ ¬χ2 ∨ ¬χ3 ⇔ ¬χ ∨ ¬χ2 ∨ ¬χ ′3, based on

the above equation. �

The transformation guarantees that these three cases cover all

cases that violate the contract of semantic conflict freedom. Specif-

ically, if (1) one variable’s value returned by the merge is different

from the values returned by two variants (i.e., ¬χ ′3), or (2) one vari-

able’s value returned by one variant is different from that of the

original and that of the merge (i.e., ¬χ1 or ¬χ2), the merge is not

semantic conflict free.

3.1.2 Generalized Test Oracles for n-parent Merges. By exploring

further ¬χ1, ¬χ2 and ¬χ ′3, we can find the similarities between

them. In general, for any ¬χi ∈ [¬χ1,¬χ2,¬χ
′
3], given one version

vt , if we find that its output is different from those of two other

variants v1 and v2, we say ¬χi is true. To find the conflicts in one

3-way merge, we just need to repeatedly find one output of one

version is different from those of the other versions. And according

to Theorem 1, the repeatable processes of finding outputs meet

¬χ1,¬χ2 and ¬χ
′
3 respectively on different versions guarantee the

quality of the final program merge.

Hence, based on the above observation, the framework of Al-

gorithm 2 (i.e., the repeatable process) works for general n-parent

merges. In a 2-way merge scenario consisting of two variants v1
andv2 that do not have the common original, we can not tell what

behavior is newly introduced by any of them. However, we are

able to investigate whether the merge has some new behavior that

is not introduced by any of its two parents, just by examining the

¬χ ′3. As for the multiple variants merged in the octopusmerge sce-

nario, we just need to investigate each of the variants repeatedly,

like for those two variants of 3-way merge by examining the ¬χ1
and ¬χ2. Similarly, for the merge version in the octopusmerge sce-

nario, as shown in Fig. 4, we just need to compare those outputs

returned by variants {v1,v2, ...,vn } with that of the merge version

vm . Now, we are able to tell whether semantic conflicts arise for

all real-world merge scenarios.

Test case is a piece of code fragment including inputs and invok-

ing UUTs. Generally, assertions are often used to guard the values

of those variables declared in the test case. If we have one test case

generated for the version vm with the assertions on the values of
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v1 v2 vn

vm

…

Figure 4: vm is the merge version (i.e., the target program

for generating tests) and [v1, v2, ..., vn] are the variants (that

need to fail the tests).

output variables, then we can run this test case on all variants to

check the failure of assertions. If all variants fail on the same asser-

tion, we tell that the behavior described by this assertion is miss-

ing in all variants. Overall, the problem of finding inputs revealing

conflicts can be transformed into the test generation problem.

Definition 3.1 (Test Oracle on Program Merges) Given an n-

parent merge, to find the merge conflicts, we generate tests that

achieve the following goals:

(1)UnexpectedBehavior: Suppose that one test case t is generated

for the merged program Pm . We say that Pm has some unexpected

behavior, if for any parent version Pi , the same assertion φ is vio-

lated;

(2) Lost Behavior: Suppose that parent versions have the common

original Po . For one parent version Pi , we say its newly introduced

behavior is missing after merging, if one test case t for Pi fails on

Po and Pm over the same assertion φ.

As we can see, our proposed test oracles make it in an easier

way to detect conflicts, since we just need to repeatedly find one

test case generated for one program version that can kill all of the

variants by the same assertion.

3.2 UUTs Selection

As changes of different branches may be made to different loca-

tions across the whole program, we need to identity those meth-

ods whose behaviors have been affected by all branches. For the

general case shown in Fig. 4, we extract all sets of entities (i.e.,

fields and methods) that have different behavior between versions

{∆(v1,vm ), ∆(v2,vm ), ..., ∆(vn ,vm )}. Once changes are made to

one method, two versions of this method may have different be-

haviors. And as shown in Fig. 2, the effects of changes also can be

propagated into other unchanged locations. Hence, if this changed

method is called in the body of another method, the caller method

may behave differently.

In our paper, we extract those added and changed entities (i.e.,

fields and methods) and we do not consider the deleted class, field

and method. If one deleted method is not called by any methods, it

seems meaningless to analyze this method. If this deleted method

was called by other methods and the developer has not deleted all

of the invocations in other methods, the compiler would report er-

rors. As a result, to analyze the impact of deleted methods, we just

need to analyze the modified methods. The added entities should

be included since these entities may be modified in other version

pairs. Imagine that in one 3-waymerge, one method appears in the

second parent versionsv2 and themerge versionvm , and these ver-

sions of this method are different. This method in themerge should

be analyzed since its behavior may be changed by developers after

merging successfully.

Given one version vt together with a set of variants V, after

identifying added and changed entities from version pairs {∆(v1,vt ),

∆(v2,vt ), ..., ∆(vn,vt )}, we propose an algorithm for selecting UUTs

from vm that behave differently in all variants, as shown in Algo-

rithm 3. In some cases, the number of candidate methods may be

large. For example, if changes on the assignments of the fields are

made to the constructor, the other methods which use the changed

fields should be analyzed since we have to instantiate these meth-

ods before calling them. Hence, one parameter n is used to limit

the size of all UUTs and one other parameter d is used to limit the

dependency depth explored. The method-level dependency analy-

sis is conducted on the target version to extract the dependency

relationships between entities of the whole program (Line 2). We

then extract added and changed fields as well as methods (Lines 3-

8) by comparing each variant with the target version. During the

exploration, we get more directly impacted entities by the already

collected entities (Lines 11-19). Then, we compute the intersection

between the sets of impacted entities from each version pair as the

UUTs (Line 20). If we have a set of UUTs more than the number

specified, we return the first n UUTs to generate tests (Line 21).

If not, we find more impacted entities by exploring more deeply

(Line 10). If we fail to find the common impacted entities during

the search (Lines 10-24), we generate test cases for those added

and changed methods to ensure the program quality (Lines 25-26).

Algorithm 3 UUTs Selection

1: function select_UUTs(vt , V, d , n)

2: entity_relations = extract_dependencies(vt)

3: ce = {} // ce is a list of sets of changed entities

4: ie = {} // ie is a list of sets of impacted entities

5: for vi ∈ V do

6: ce[i] = di f f (vi ,vt )

7: ie[i] = ie[i] ∪ ce[i]

8: end for

9: uuts = ∅

10: for i ∈ [1,d] do

11: for j ∈ [0, ie .size()) do

12: de = ∅

13: for entity ∈ ie[index] do

14: if entity.depth == i − 1 then

15: de = de ∪ дet_impacted(entity)

16: end if

17: end for

18: ie[j] = ie[j] ∪ de

19: end for

20: uuts = intersect_sets(ie)

21: if uuts .size() > n then

22: return uuts[0 : n − 1]

23: end if

24: end for

25: if uuts == ∅ then

26: uuts = дet_all_methods(ce)

27: end if

28: end function
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Figure 5: The workflow of TOM.

3.3 Implementation

As shown in Fig. 5, we present the work flow of our tool TOM.

Given one n-parent merge, we generate tests for {vm ,v1,...,vn } in

order, as shown in the left part of Fig. 5. Then, for each case, we

select the UUTs and then generate tests to reveal the conflicts. We

employ the dependency analysis tool depends5 to parse the whole

program and generate the dependencies between different entities.

We employ the advanced test generation tool EvoSuite [5] to

implement the the test generation for program merges. EvoSuite

utilizes meta-heuristic search techniques to generate and optimize

test suites with respect to different code coverage criteria without

reporting any false alarms [6]. EvoSuite generates test cases by

different advanced techniques such as alternating variable method,

random testing and dynamic symbolic execution.

During the search process of generating tests, coverage criteria

are used to generate the high-quality test suit. As for the UUTs

in our case, it may have the same code in all variants and the tar-

get version, while the different parts are located in other methods,

classes or packages. Existing implemented coverage criteria in Evo-

Suite instruments the code of the UUT, and then generate coverage

goals for the UUT. High coverage on the UUT still cannot guaran-

tee that the different parts are covered. Hence, we implement the

diff-line coverage criterion to guide the search to achieve coverage

goals on different lines between two versions.

Considering that the execution is expensive, based on the ex-

tracted different lines, we determine whether to execute the gen-

erated test case on all different variants to detect conflicts. Given

two program versions with the test case t , if their execution results

are different, we can tell that the different parts between those two

versions must be covered. Hence, as shown in Fig. 5, if one gener-

ated test can not cover any different part between two versions,

we do not need to re-execute the test on the other version. If the

generated test can cover the different parts, we then execute it on

all of the variants.

For each execution of the test case on different variants, Evo-

Suite is able to collect the values of those variables in the test case.

Given any two executions, we are able to generate assertions on

the variables that have different values to capture the behavior dif-

ference between two versions. After running all the variants, we

5https://github.com/multilang-depends/depends

extract all the assertions that appear in each execution compari-

son. These assertions are what we need to reveal the conflicts. If

one test case triggers some exception for the target version, we

leave it to developers since the exception may be not desired. For

each statement that has exceptions thrown in the execution on the

variant, we generate all assertions for this statement based on the

execution on the target version to describe the different values and

states.

If we have the same assertion generated by executions on all

variants, we then check the stability of this test by rerunning the

tests five times. If we find one stable test, we add it to the test list

that will be provided to developers to examine the merge conflicts.

As shown in Fig. 5, we can configure TOM to stop the unit test

generation once one test case revealing conflicts is generated or

the given resource has been consumed (e.g., time out).

4 EXPERIMENTAL EVALUATION

In this section, we describe the details of constructing the bench-

mark MCon4J, and conduct experiments to evaluate the effective-

ness of TOM.

4.1 Benchmark

Sousa et al. [29] collect a total of 52 merges from nine real-world

open-source Java applications. In our evaluation, we do not reuse

these merges to conduct the experiments, because (1) changes of

different branches are made to the same method in these 3-way

merges; (2) the false positives and the false negatives may exist

in their results, we are not able to ensure the conflict exists with-

out knowing the counterexamples revealing the conflict; and (3)

our tool’s effectiveness on detecting semantic conflicts heavily de-

pends on the unit test generation tool. Although unit test gener-

ation techniques have been extensively improved, the advanced

tools still fail to generate the tests that achieve high coverage for

real-world programs consisting of complex objects, structures and

logics. Honestly, the static verification techniques can outperform

the dynamic unit test generation techniques in some aspects such

as the time costs. Given the above considerations, we do not con-

duct experiments on these 52 merges collected by Sousa et al [29].

To evaluate our tool’s effectiveness on detecting semantic con-

flicts, we need one benchmark consisting of 3-way merges and oc-

topus merges. And for each merge, we need to know whether the

https://github.com/multilang-depends/depends
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conflicts exist or not. Otherwise we cannot tell that the tool works

well if the testing based tool fails to find the conflict. And consid-

ering that changes made to different parts also may bring conflicts,

we need to evaluate our tool on those merges whose parents mod-

ify the different methods. However, unlike the merges with textual

conflicts, the merges that have semantic conflicts are pretty diffi-

cult to be identified by examining the evolutionary history of real-

world programs. Hence, we decide to construct conflict 3-way and

octopus merges by leveraging real-world bug-fix activities.

Brun et al. [3] classifies merge conflicts into textual and higher-

order conflicts. The higher-order conflicts arise when changes are

semantically incompatible and cause compilation errors, test fail-

ures, etc. Based on this notion of merge conflict, we construct con-

flict merges by making bug-fix tests fail. If we have one branch

created for fixing bugs, but the test case fails after merging other

branches, we consider conflict exists. The remaining problem is

how to create other branches. Just et al. [13] conduct one investiga-

tion of the coupling effect between real faults and the mutants that

are generated by commonly used mutation operators. The results

show the existence of a coupling effect for 73% of real faults. Hence,

we decide to use the generated mutants as the other branches along

with the bug-fix branch to construct 3-way and octopus merges to

conduct experiments.

Construction of 3-way merges. We first execute the bug-fix

test case on the buggy program to collect the covered lines that

may include those of unchanged classes during the bug fixes. Then,

we make use of the mutation tool major [11] to generate mutants

on those covered lines of the buggy program. For each buggy pro-

gram Pb , we have the bug-fixed version Pf and the mutant version

Pt . Using the default recursive merge strategy of Git, we construct

merges that may have semantic conflicts by merging the Pf and

Pt . For each buggy program, we have a number of merges. Then,

we execute the bug-fix test case on the merged program Pm , we

get one conflict merge if this test case fails.

Construction of octopusmerges. For each constructed 3-way

merge, we create another branch by randomly choose one mutant

of the same class mutated in the Pt . Then, we merge these three

branches by using the default merge strategy of Git. Similarly, the

bug-fix test case will fail on the merge program.

Just et al. [12] propose Defects4J which collects a total of 438 re-

producible bugs6 to facilitate other software engineering research.

For example, Defects4J is widely used in different fields such as

unit test generation [28], automated program repair [18]. For some

versions of the Mockito project, Defects4J fails to generate mu-

tants7. And for some bugs collected in Defects4J, we fail to con-

struct conflict 3-way merges by merging mutants to make the bug-

fix test cases fail. Finally, we collect a total of 389 conflict three-way

merges and 389 conflict octopus merges.

As shown in Table 1, we list the numbers of merges in each

project. The column “DC”means that themutate branch and the fix

branch modify the different classes. The column “SC” means that

two branches modify the different methods of the same class. The

column “SM” means that two branches modify the same method.

6https://github.com/rjust/defects4j, the latest commit is 17a99e1
7https://github.com/rjust/defects4j/issues/198. The issue remains open and has not
been resolved till the date that we submit this paper

Table 1: The numbers of 3-way merges and octopus merges.

Project Bugs
Merges

DC SC SM Total

JFreeChart 26 18 6 1 25

Closure 176 168 3 0 171

Commons Lang 65 16 34 11 61

Commons Math 106 61 32 6 99

Mockito 38 6 0 0 6

Joda-Time 27 23 4 0 27

Total 438 292 79 18 389

4.2 RQ1: How many conflict 3-way merges are
found by SafeMerge and Tom respectively?

SafeMerge. Once changes of branches are made to different meth-

ods, SafeMerge fails to verify whether conflicts exist. As shown in

Table I, there are 18 three-way merges in which modifications are

made to the samemethod.We run SafeMerge on these 18merges to

evaluate its effectiveness. However, SafeMerge fails to deal with 17

out of 18 merges by throwing the same error8 which stops the ver-

ification procedure. As for the remaining merge, SafeMerge fails

to return results after running for one hour, which is much greater

than the average time cost (i.e., most of them are less than one sec-

ond and the greatest one is 4.45s) as shown in [29]. Unfortunately,

we fail to utilize SafeMerge to detect conflicts on all of thosemerges

from MCon4J.

TOM.Recall that for selecting UUTswe limit the explored depth

and the total number of UUTs. In our experiments, we set the ex-

plored depth to 5 and the number of UUTs to 3 respectively. We

conduct two groups of experiments guided by different coverage

criteria. For the first experiment, we only use the proposed diff-line

coverage criterion. For the second experiment, we add more cov-

erage criteria9 used in EvoSuite by default. Because the random

operators existing in the search process, we run TOM on each 3-

way merge three times to have a comprehensive view on the tool’s

ability.

As shown in Table 2, we list the total of 45 conflict merges de-

tected by TOM. There are 42 and 40 conflict 3-waymerges detected

respectively by two groups of experiments. We fail to tell the mul-

tiple criteria work better than the diff-line criterion by examining

these experimental results.

During the process of generating test cases for merges, if we

can find one execution path cover the changes, we may detect the

merge conflict. In other words, higher coverage does not always

mean the conflicts can be found. However, higher coverage still

improves the possibility of detecting conflicts. As shown in the

Fig. 6, we present the achieved maximum coverage during the test

case generation for each target P2 variant (i.e., the bug fixed ver-

sion) guided by the diff-line coverage. Aswe can see, TOMachieves

lower coverage on the projects Closure and Mockito than the four

other projects. The existing study [28] also shows that EvoSuite

8This issue has been reported to the authors while it has not been fixed till the date
that we submit this paper. We would update the results once the issue is resolved.
9The used criteria implemented in EvoSuite includes branch, cbranch, weakmutation,
output, exception, method and methodnoexception.
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Table 2: Conflict three-way merges that detected by executing three times with different coverage criteria “Diff-line” and

“Multi-criteria”. “−” means the conflict merge fails to be detected. “⊙” means the conflict merge is detected when generating

test cases for the Pf variant (i.e., the bug-fix version). “⊖” means the conflict merge is detected when generating test cases for

non-Pf variants. “⊕” means the conflict merge is detected when generating test cases for both Pf and non-Pf variants.

Id Type
Diff-line Multi-criteria

Id Type
Diff-line Multi-criteria

#1 #2 #3 #1 #2 #3 #1 #2 #3 #1 #2 #3

Chart_4 DC ⊙ ⊙ ⊙ ⊙ ⊙ ⊙ Math_16 SC − − ⊙ − ⊙ −

Chart_5 DC − ⊙ − − − − Math_27 DC ⊙ − ⊙ ⊙ ⊙ −

Chart_8 SC ⊖ ⊕ ⊖ ⊖ ⊖ ⊖ Math_29 DC ⊙ ⊙ ⊙ ⊙ ⊙ ⊙

Chart_11 SC − ⊕ ⊖ ⊖ ⊙ ⊕ Math_32 DC − ⊙ − − − ⊙

Chart_14 DC − − − − − ⊙ Math_37 DC ⊕ − − − − −

Chart_16 SC ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ Math_46 SC − ⊙ − − ⊕ ⊕

Chart_21 DC ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ Math_47 SC ⊕ ⊖ ⊖ ⊕ ⊕ ⊕

Chart_24 SC ⊕ ⊙ ⊕ ⊕ ⊕ ⊕ Math_49 DC ⊙ ⊙ ⊙ ⊙ ⊙ ⊙

Closure_19 DC ⊙ ⊙ ⊙ ⊙ ⊙ ⊙ Math_56 SC ⊙ ⊙ ⊙ ⊙ ⊙ ⊙

Closure_173 DC − ⊖ ⊖ − − − Math_60 DC ⊙ ⊙ ⊙ − − ⊕

Lang_19 DC − − − ⊙ − − Math_63 SC ⊕ ⊙ − ⊕ ⊕ ⊕

Lang_39 SC ⊙ ⊕ ⊕ ⊕ − ⊕ Math_70 SC − ⊙ ⊙ ⊙ ⊙ ⊙

Lang_41 SC ⊙ ⊙ ⊙ ⊙ ⊙ ⊙ Math_71 DC ⊙ ⊙ ⊙ ⊙ ⊙ −

Lang_45 DC ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ Math_73 SC ⊖ ⊖ ⊖ ⊖ ⊖ ⊖

Lang_47 SC ⊙ ⊙ ⊙ ⊙ ⊙ ⊙ Math_80 SC ⊙ ⊙ − − ⊙ ⊙

Lang_60 SC ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ Math_81 SC ⊕ ⊙ ⊙ ⊙ − ⊙

Lang_65 SM ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ Math_83 DC ⊙ ⊙ ⊙ ⊙ ⊙ ⊙

Math_1 DC ⊙ − ⊙ − − ⊙ Math_92 SM − ⊕ ⊕ ⊕ ⊖ ⊕

Math_2 DC − − ⊙ − − − Math_93 SC ⊙ ⊙ − ⊙ ⊙ ⊙

Math_4 DC ⊙ ⊕ ⊕ ⊕ ⊕ ⊕ Math_95 SC ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

Math_9 SC − − − ⊙ − − Math_97 DC ⊙ ⊙ − ⊙ − ⊙

Math_10 DC ⊙ ⊙ ⊙ − − − Time_9 DC ⊖ − ⊖ ⊖ ⊖ ⊖

Math_11 DC − ⊙ − − ⊙ ⊙

Chart Closure Lang Math Mockito Time
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Figure 6: The distributions of coverage information.

achieves the low coverage when generates test cases for the Clo-

sure project (the Mockito project is not included in the Defects4J

at that time). It seems that the relatively high coverage is achieved

for the project Time, while there are more flaky tests generated

according to our observations on the test generation process. And

these flaky tests affects the coverage information collected during

the unit test generation.

4.3 RQ2: How does TOM perform on those
constructed octopus merges?

We construct octopus merges based on constructed 3-way merges.

To answer this question, we adapt the same settings and use the

set of multiple criteria described in RQ1. Then, we run TOM on

each octopus merge three times.

As shown in Table 3, we show the details of experimental de-

tection results on octopus merges. There are a total of 87 conflict

octopus merges detected by TOM. Comparing those detected con-

flict 3-waymerges, we find those octopusmerges from 35 out of 45

cases whose 3-way conflict merges have been detected. A total of

52 conflict octopusmerges from newly appeared cases are detected.

We construct octopusmerges by adding one mutated branch based

on the constructed 3-way merge. With more mutated code chang-

ing program behaviors, it makes sense that TOM can find more

conflict octopus merges than conflict 3-way merges.

4.4 Threats to Validity

Themain threats to the validity of our results belong to the internal

and external validity threat categories.
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Table 3: Conflict octopus merges detected by executing three times with the multiple coverage criteria. The same symbols are

explained in the caption of Table II.

Id Type #1 #2 #3 Id Type #1 #2 #3 Id Type #1 #2 #3

Chart_2 DC ⊙ ⊙ ⊙ Closure_97 DC ⊖ ⊖ ⊖ Math_31 DC ⊙ − −

Chart_4 DC ⊙ ⊙ ⊙ Closure_108 DC ⊖ ⊖ ⊖ Math_32 DC ⊙ ⊙ −

Chart_7 DC ⊙ ⊙ − Closure_111 DC − − ⊖ Math_37 DC ⊙ ⊕ ⊙

Chart_11 SC ⊙ ⊙ ⊙ Closure_138 DC ⊙ ⊙ ⊙ Math_39 DC − − ⊖

Chart_14 DC − ⊙ − Closure_140 DC ⊖ ⊖ ⊖ Math_46 SC ⊙ ⊙ ⊙

Chart_20 DC − ⊕ ⊖ Closure_148 DC ⊙ ⊙ ⊙ Math_47 SC ⊕ ⊕ ⊙

Chart_21 DC ⊙ − − Closure_152 DC ⊕ ⊕ ⊕ Math_49 DC ⊙ ⊙ ⊙

Chart_24 SC ⊙ ⊙ ⊙ Closure_165 DC ⊙ ⊙ ⊙ Math_52 DC ⊕ ⊕ ⊖

Chart_25 DC ⊖ ⊕ ⊕ Lang_15 DC ⊕ ⊕ ⊖ Math_56 SC ⊙ ⊙ ⊙

Closure_1 DC ⊖ ⊙ − Lang_17 DC ⊖ ⊖ ⊖ Math_60 DC ⊙ ⊙ ⊙

Closure_2 DC ⊙ − ⊙ Lang_29 DC ⊕ ⊕ ⊕ Math_63 SC ⊙ ⊙ ⊙

Closure_3 DC ⊕ ⊙ ⊙ Lang_34 DC − ⊖ − Math_70 SC ⊕ ⊙ ⊙

Closure_15 DC ⊖ ⊖ ⊖ Lang_36 SC ⊙ ⊙ ⊙ Math_71 DC ⊙ − ⊙

Closure_19 DC ⊕ ⊕ ⊕ Lang_37 SC − ⊖ ⊖ Math_73 SC − ⊖ −

Closure_24 DC − ⊖ ⊖ Lang_38 SC ⊙ ⊕ ⊙ Math_80 SC − ⊙ ⊕

Closure_26 DC − ⊖ − Lang_39 SC ⊙ ⊙ ⊙ Math_81 SC ⊙ − ⊙

Closure_27 DC ⊖ ⊖ ⊖ Lang_41 SC ⊙ ⊙ ⊙ Math_83 DC ⊙ ⊙ ⊙

Closure_32 DC ⊖ ⊖ ⊖ Lang_45 DC ⊙ ⊙ ⊙ Math_85 DC ⊖ ⊖ ⊖

Closure_47 DC − − ⊙ Lang_47 SC ⊕ ⊕ ⊕ Math_87 DC − ⊙ −

Closure_55 DC − ⊖ ⊖ Lang_60 SC ⊙ ⊙ ⊙ Math_88 DC ⊖ ⊖ ⊖

Closure_67 DC ⊙ ⊙ ⊙ Lang_65 SM ⊙ ⊙ ⊙ Math_92 SM ⊙ ⊙ ⊙

Closure_72 DC ⊖ ⊖ ⊖ Math_1 DC − ⊙ − Math_93 SC ⊙ ⊙ ⊙

Closure_78 DC − ⊖ ⊖ Math_4 DC ⊙ ⊙ ⊕ Math_95 SC ⊙ ⊙ ⊙

Closure_80 DC ⊙ ⊙ ⊙ Math_9 SC ⊖ ⊕ ⊖ Math_96 SC ⊕ ⊕ ⊕

Closure_81 DC ⊖ ⊖ ⊖ Math_11 DC ⊙ ⊙ − Math_102 DC ⊙ ⊙ ⊙

Closure_84 DC − ⊖ ⊖ Math_16 SC ⊙ − − Math_103 DC ⊖ − −

Closure_89 DC ⊖ − ⊖ Math_25 SC − − ⊖ Math_104 SC ⊙ − −

Closure_95 DC ⊖ ⊖ ⊖ Math_27 DC ⊙ ⊙ ⊙ Time_9 DC ⊕ ⊙ ⊙

Closure_96 DC ⊖ − − Math_29 DC ⊙ ⊙ ⊙ Time_20 DC − − ⊖

Internal validity threats correspond to the implementation of

TOM and the relevant scripts. Although we have reviewed the im-

plementation carefully, the bugs may still exist and threat to the

validity of our results.

External validity threats correspond to the constructed bench-

mark MCon4J. We mutate the source code by a set of mutant op-

erators to simulate the real-world changes. Even though mutants

can be used as good resource for research. Our tool may fail to

achieve the similarly good results for detecting conflicts on real-

world merge scenarios. The parameters affect the UUTs selection,

and the values used also may fail to work well for other merge

scenarios. As a result, these parameters may be adjusted in other

merge scenarios.

5 DISCUSSION

In this section, we discuss merge conflict resolution, the applica-

tion scenario of TOM and the potential techniques on improving

TOM.

Merge Conflict Resolution. Besides the textual tools, other

existing syntactical and structural tools [21][36] also aim to keep

all changes introduced by different branches in the merge version.

However, the reasonableness of keeping and combining all changes

may be questionable according to the contract of semantic con-

flict freedom. When different changes are made to the same as-

signment statement, the values of the variables would be differ-

ent. In this case, whatever developers have done to resolve con-

flicts, the values of this variable in different versions would vio-

late the contract of semantic conflict freedom. Without knowing

other requirements on the merge, it is unable to resolve the con-

flicts automatically. For example, to resolve conflicts automatically,

Xing and Maruyama [32] develops one automated program repair

tool which needs one test case representing contracts provided by

developers. Existing empirical studies [20] on the resolutions of

merge conflicts also show that developers are much likely to sim-

ply choose one version as the merge result when conflict arises.

Hence, instead of replacing the textual toolswith fine-grained tools

to generate merges automatically, we think that we should pay

more attention on guaranteeing the software quality after merg-

ing.

Continuous Integration.Continuous integration service is widely

used in the open-source community to automatically find the build
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or test failures. Considering the workflow of collaborative develop-

ment and the relative expensive costs of generating test cases for

detecting conflicts, we think integrating the unit test generation

in continuous integration is practical. After rerunning the whole

test-suite, the continuous integration service is able to collect the

coverage information. Then, if no tests fail, it utilizes the existing

test case that covers changed code to seed the unit test genera-

tion to accelerate the procedure of generating test cases to trigger

the semantic conflicts. Given the resource limit or the coverage re-

quirements, the continuous integrations service is helpful to give

developers more confidence on the quality of the merged software.

Potential Improvement. Besides the ability of test generation

tools, identifying thosemethods that may have latent conflicts also

plays an important role in the test generation for detecting con-

flicts. In our paper, we select the UUTs for generating tests based

on the explicit call and use dependencies between changed fields,

constructors and methods. However, we maymiss some dependen-

cies between changed entities, which leads to the failure of detect-

ing conflicts. Those dependencies include the co-change relation-

ships that can bemined from the software evolutionary history, the

documented API usages and other common contracts (e.g., devel-

opers should call the close method to free resource after invoking

openmethod). In real-world merge scenarios, we can seed the exist-

ing test cases that represents some dependency between entities to

generate tests. Still, the missing of dependencies between methods

has an impact on the detection results.

During the procedure of selecting UUTs, we extract all of the

changed entities. Note that some changes like refactoring may not

change the behavior at all. To prove the behavioral equivalence be-

tween program versions, much works [4, 15, 25] have been done.

However, considering the effectiveness, soundness and availabil-

ity of these existing tools, we currently do not make use of them

to rule out those change impacted methods that may not behave

differently. In future, with the help of advanced tools that can pre-

cisely determine the different behavior introduced by changes, we

can save some computing resource by filtering out those changed

methods whose behaviors are not changed.

6 RELATED WORK

In this section, we mainly describe the related works on software

merging and regression testing.

6.1 Software Merging

Over decades, software merging has been extensively studied be-

cause of its important role in software maintenance and evolution.

Ahmed et al. [1] study the relationship between code smells and

merge conflicts, and results showmerges contain more code smells

when conflicts arise. Nearly twenty years ago, Mens [21] provided

a comprehensive summary of excellent works in this field. Differ-

ent merging techniques such as textual, syntactic, semantic, struc-

tural and operation-based merging have been proposed very early.

However, the situation that developers rely on textual merge

tools to deal with their daily work has not been changed. Mckee

et al. [19] conduct interviews of 10 software practitioners to un-

derstand their perspectives on merge conflicts and resolutions. Ac-

cording to the unmet needs of software practitioners, they suggest

researchers and tool builders focus on program comprehension,

history exploration, etc. Nishimura and Maruyama [24] present

one tool that exploits the fine-grained edit history to assist devel-

opers to examine the merge conflicts.

For the last decade, some new ideas and trends have emerged.

Considering the variety of program languages, semi-structuralmerg-

ing [2] aims to achieve the balance between generality and perfor-

mance. Proactive or early detection [3][7][23] of conflicts is used

to decrease the possibility of merging branches with conflicts. Pro-

viding a set of candidate conflict resolutions to developers is also

helpful. Niu et al. [22] develop a tool scoreRec that recommends

the conflict resolutions ordered by estimating the cost and bene-

fit of resolving conflicts. Zhu and He [36] propose an interactive

approach that ranks the conflict resolutions generated via the ver-

sion space algebra. Xing and Maruyama [32] introduce the auto-

matic program repair techniques to resolve the merge conflicts by

leveraging the existing test cases.

Sousa et al. [29] propose the contract of semantic conflict free-

dom inspired from much earlier work [8][34], and then propose

the verification on three-way merges to increase developers’ con-

fidence on the merge result with respect to the contract. In this pa-

per, we propose the test oracle inspired from the semantic conflict

freedom and make it applicable for all merge scenarios. Utilizing

the state-of-the-art unit test generation tool, we can generate tests

to reveal conflicts if any.

6.2 Regression Testing

Regression test selection and regression test generation are thema-

jor techniques trying to prevent regression faults effectively with

the low cost. The cost of rerunning the whole test suite is grow-

ing with the size and complexity of the evolving software. Various

regression test selection techniques have been proposed. Zhu et

al. [35] propose the framework for checking the regression test se-

lection tool.

Different from selection, regression test generation aims to gen-

erate new test cases that can expose the behavioral differences be-

tween two versions, when existing test suites fail to expose differ-

ence. Taneja and Xie [30] synthesize one driver that calls two ver-

sions of the target method and adds conditions comparing the re-

turn values. Then, they utilize existing tools to generate test cases

that cover the different branches in the driver method. As Jin et

al. [10] explain, the generated test cases may not reveal the re-

gression faults while cover the changed parts. Hence, they develop

BERT to generate test cases that cover different parts first, and then

analyze the behavioral differences to reveal the regression faults.

Person et al. [26] propose differential symbolic execution that

leverages symbolic execution techniques to characterize the changes,

without providing the inputs to execute the changed program. Per-

son et al. [27] propose directed incremental symbolic execution

to find those path conditions affected by code changes. Taneja et

al. [31] develop eXpress as one search strategy for dynamic sym-

bolic execution to prune out paths that cannot lead to any code

regions and those paths through which a state infection cannot

propagate to any observable output.

Xu et al. [33] propose directed test suite augmentation that iden-

tifies code affected by changes and existing test cases relevant to
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testing that code. Then the identified test cases are used to seed the

concolic or genetic test case generation approach to create new test

cases that execute the affected code.

Software merging acts as the important activity during the soft-

ware evolution, whereas there is no tool aiming to generate test

cases revealing conflicts after merging. In our paper, we implement

TOM to generate test cases for 2-way, 3-way and octopus merges.

7 CONCLUSION

In this paper, we propose the general test oracles for real-world pro-

gram merges including 2-way, 3-way and octopus merges. Based

on our test oracles, we propose an approach of regression unit test

generation for detecting semantic conflicts. On this basis, we im-

plement a tool called TOM to automatically generate test cases

to reveal merge conflicts. In addition, we design the benchmark

MCon4J to support further studies on regression test generation

for software merges. In our experiments, a total of 45 conflict 3-

way merges and 87 conflict octopus merges are identified by our

tool TOM, while the state-of-the-art verification based tool Safe-

Merge fails to work on MCon4J. The experimental results show

that our regression unit test generation tool is useful and effective

in guaranteeing the quality of real-world program merges.

REFERENCES
[1] Iftekhar Ahmed, Caius Brindescu, Umme Ayda Mannan, Carlos Jensen, and

Anita Sarma. 2017. An Empirical Examination of the Relationship Between Code
Smells and Merge Conflicts. In Proceedings of the 11th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM ’17). 58–
67.

[2] SvenApel, Jörg Liebig, Benjamin Brandl, ChristianLengauer, and ChristianKäst-
ner. 2011. SemistructuredMerge: RethinkingMerge in RevisionControl Systems.
In Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Con-
ference on Foundations of Software Engineering (ESEC/FSE ’11). 190–200.

[3] Yuriy Brun, Reid Holmes, Michael D. Ernst, and David Notkin. 2011. Proactive
Detection of Collaboration Conflicts. In Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of Software Engi-
neering (ESEC/FSE ’11). 168–178.

[4] Berkeley Churchill, Oded Padon, Rahul Sharma, and Alex Aiken. 2019. Seman-
tic Program Alignment for Equivalence Checking. In Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion (PLDI 2019). 1027–1040.

[5] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: automatic test suite genera-
tion for object-oriented software. In Proceedings of the 19th ACM SIGSOFT Sym-
posium and the 13th European Conference on Foundations of Software Engineering
(ESEC/FSE ’11). 416–419.

[6] Florian Gross, Gordon Fraser, and Andreas Zeller. 2012. Search-Based System
Testing: High Coverage, No False Alarms. In Proceedings of the 2012 International
Symposium on Software Testing and Analysis (ISSTA ’12). ACM, New York, NY,
USA, 67–77.

[7] Mário Luís Guimarães and António Rito Silva. 2012. Improving Early Detection
of Software Merge Conflicts. In Proceedings of the 34th International Conference
on Software Engineering (ICSE ’12). 342–352.

[8] Susan Horwitz, Jan Prins, and Thomas Reps. 1989. Integrating Noninterfering
Versions of Programs. ACM Transactions on Programming Languages and Sys-
tems 11, 3 (July 1989), 345–387.

[9] Siyuan Jiang, Collin McMillan, and Raul Santelices. 2017. Do Programmers do
Change Impact Analysis in Debugging? Empirical Software Engineering 22, 2 (01
Apr 2017), 631–669.

[10] Wei Jin, Alessandro Orso, and Tao Xie. 2010. Automated Behavioral Regression
Testing. In Proceedings of the 2010 Third International Conference on Software
Testing, Verification and Validation (ICST ’10). 137–146.

[11] René Just. 2014. The Major mutation framework: Efficient and scalable muta-
tion analysis for Java. In Proceedings of the International Symposium on Software
Testing and Analysis (ISSTA). San Jose, CA, USA, 433–436.

[12] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: A Database
of Existing Faults to Enable Controlled Testing Studies for Java Programs. In
Proceedings of the 2014 International Symposium on Software Testing and Analysis
(ISSTA 2014). 437–440.

[13] René Just, Darioush Jalali, Laura Inozemtseva, Michael D. Ernst, Reid Holmes,
and Gordon Fraser. 2014. Are Mutants a Valid Substitute for Real Faults in Soft-
ware Testing?. In Proceedings of the 22NdACM SIGSOFT International Symposium
on Foundations of Software Engineering (FSE 2014). 654–665.

[14] Bakhtiar Khan Kasi and Anita Sarma. 2013. Cassandra: Proactive Conflict Min-
imization Through Optimized Task Scheduling. In Proceedings of the 2013 Inter-
national Conference on Software Engineering (ICSE ’13). 732–741.

[15] Shuvendu K. Lahiri, Kapil Vaswani, and C A. R. Hoare. 2010. Differential Static
Analysis: Opportunities, Applications, and Challenges. In Proceedings of the
FSE/SDP Workshop on Future of Software Engineering Research (FoSER ’10). 201–
204.

[16] Davy Landman, Alexander Serebrenik, and Jurgen J. Vinju. 2017. Challenges
for Static Analysis of Java Reflection: Literature Review and Empirical Study. In
Proceedings of the 39th International Conference on Software Engineering (ICSE
’17). 507–518.

[17] Olaf Leßenich, Janet Siegmund, Sven Apel, ChristianKästner, and Claus Hunsen.
2017. Indicators for merge conflicts in the wild: survey and empirical study.
Automated Software Engineering (09 Sep 2017).

[18] MatiasMartinez, Thomas Durieux, Romain Sommerard, Jifeng Xuan, andMartin
Monperrus. 2017. Automatic repair of real bugs in java: a large-scale experiment
on the defects4j dataset. Empirical Software Engineering 22, 4 (01 Aug 2017),
1936–1964. https://doi.org/10.1007/s10664-016-9470-4

[19] S. McKee, N. Nelson, A. Sarma, and D. Dig. 2017. Software Practitioner Perspec-
tives on Merge Conflicts and Resolutions. In Proceedings of IEEE International
Conference on Software Maintenance and Evolution (ICSME ’17). 467–478.

[20] G. G. L. Menezes, L. G. P. Murta, M. O. Barros, and A. Van Der Hoek. 2018.
On the Nature of Merge Conflicts: a Study of 2,731 Open Source Java Projects
Hosted by GitHub. IEEE Transactions on Software Engineering (2018), 1–1.
https://doi.org/10.1109/TSE.2018.2871083

[21] Tom Mens. 2002. A state-of-the-art survey on software merging. IEEE transac-
tions on software engineering 28, 5 (2002), 449–462.

[22] Jing-Ru C. Cheng Sandeep Reddivari Nan Niu, Fangbo Yang. 2013. Conflict reso-
lution support for parallel software development. IET Software 7 (February 2013),
1–11(10). Issue 1.

[23] Hung Viet Nguyen, My Huu Nguyen, Son Cuu Dang, Christian Kästner, and
Tien N. Nguyen. 2015. Detecting Semantic Merge Conflicts with Variability-
aware Execution. In Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering (ESEC/FSE 2015). 926–929.

[24] Y. Nishimura and K. Maruyama. 2016. Supporting Merge Conflict Resolution
by Using Fine-Grained Code Change History. In 2016 IEEE 23rd International
Conference on Software Analysis, Evolution, and Reengineering (SANER), Vol. 1.
661–664. https://doi.org/10.1109/SANER.2016.46

[25] Nimrod Partush and Eran Yahav. 2014. Abstract Semantic Differencing via Spec-
ulative Correlation. In Proceedings of the 2014 ACM International Conference on
Object Oriented Programming Systems Languages & Applications (OOPSLA ’14).
811–828.

[26] Suzette Person, Matthew B. Dwyer, Sebastian Elbaum, and Corina S. Pǎsǎreanu.
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