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Abstract Deep networks can learn to accurately recognize objects of a category by training on a large

number of annotated images. However, a meta-learning challenge known as a low-shot image recognition

task comes when only a few images with annotations are available for learning a recognition model for one

category. The objects in testing/query and training/support images are likely to be different in size, location,

style, and so on. Our method, called Cascaded Feature Matching Network (CFMN), is proposed to solve

this problem. We train the meta-learner to learn a more fine-grained and adaptive deep distance metric by

focusing more on the features that have high correlations between compared images by the feature matching

block which can align associated features together and naturally ignore those non-discriminative features. By

applying the proposed feature matching block in different layers of the few-shot recognition network, multi-

scale information among the compared images can be incorporated into the final cascaded matching feature,

which boosts the recognition performance further and generalizes better by learning on relationships. The

experiments for few-shot learning on two standard datasets, miniImageNet and Omniglot, have confirmed

the effectiveness of our method. Besides, the multi-label few-shot task is first studied on a new data split

of COCO which further shows the superiority of the proposed feature matching network when performing

few-shot learning in complex images. The code will be made publicly available.
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1 Introduction

Deep learning achieves great success in a variety of tasks with large amounts of labeled data for image

recognition [14,18,38], machine translation [1,48] and speech synthesis [26]. However, labeled data is not

always massively available when annotation cost is too expensive or time is not allowed. By contrast, the

human can learn novel concepts with only a few examples in a short time [3].

Few-shot learning attempts to resolve this problem by training a model that classifies an unlabeled

example based on a small labeled support set. Specifically, N -way K-shot learning is the task of classifying

an example, termed as a query, into one of N classes, when only K samples per class are available as

supervision; these N × K samples with labels are termed as a support set. During training, support

images and some query images are sampled. The meta-learner needs to distinguish the category of query

images using only the support images. Moreover, the categories of the training set disjoint with those of

testing set and they are randomly sampled to prevent direct semantic relationship and visual similarities

between. Referring to [43], the batch of the support set and queries is termed as an episode.
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Figure 1 Visualization of the feature matching results of CFMN. Two adjacent images form a group. The feature

at the red cross in the left query image matches with all features at the colored positions in the right support image. The

colors, in turn, the red, green, blue, yellow, and purple point the positions which have the top five highest correlation

responses. Although the interested objects may be different in size, location, style, and so on, they are associated together

by our feature matching operation. More examples are shown in Fig. 7.

Given a test image, the model of few-shot learning needs to estimate the feature similarities between

the test and the supporting images of each class. Different from the traditional image recognition task

that each class is represented by a parametric model learned from a large number of images, the category

is supported by only a few, even a single image in the few-shot setting. This means that the classifier

needs to accurately evaluate the similarity with a little supervision and strong variance due to the lack

of enough supporting information. As can be seen from Fig. 1, the query image may share limited visual

similarities with support images. However, it’s hard for the model to generalize among those strong

inter-class differences with limited number of training images per class. [9, 39] show few-shot learning

problem is prone to severe overfitting. To deal with the strong inter-class difference, we propose that

the meta-learner should focus on essential spatial relationship features that have correlations between

the query and support images and pay less attention to the non-discriminative features. We design our

feature matching block to align the features of two compared images by the similarity of every feature

position pairs. As shown in Fig. 1, two positions corresponding to the object from the same category will

get a high response by our method, even the overall images may look quite different visually.

To fully utilize the proposed feature matching block, we apply three blocks at different layers of the

network and cascade them together. The representation level of features from shallow layers of CNN is

different from and usually lower than those of deep layers, and we extract the relation and similarity

information of edges, shapes, and colors using shallow layers while deeper layers can produce object parts

or other semantic information. The cascaded structure fuses all the information to make the final decision

more accurate and robust.

In this paper, our main contributions are reflected in four aspects. (1) We propose a feature matching

block that is capable of associating the object parts with high correlations between compared images

and encouraging the model to pay more attention to those parts, which generalize to the large intra-class

variation between the query and support images for few-shot learning challenge. (2) We cascade the

feature matching block to obtain multi-scale representation. The cascaded structure obtains more robust

and meaningful features (as can be shown in Fig. 1) for the few-shot image recognition task. (3) The

multi-label few-shot classification task is first proposed in this paper which shows the effectiveness of the

proposed method for few-shot learning from a more realistic and complex sample space. A new split

of COCO termed as FS-COCO, is compiled to benchmark this difficult yet important few-shot learning

task. (4) We also evaluate the cascaded architecture model on Omniglot and miniImageNet. Our model

shows state-of-the-art results. (5) We construct four hard settings of Omniglot to evaluate the model’s

robustness on size, location, and rotation variations.

2 Related work

2.1 Deep learning for few-shot image recognition

Few-shot image recognition is a challenging problem which gains increasing attention in recent years.

A lot of deep learning techniques have sprung up. In order to increase memory capacity, some works
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adopted Neural Turing Machines [12, 36] or LSTM [15, 24]. There are also some works using parameter

adaptation. In MAML [9], the parameters are explicitly trained to generalize well on new tasks by a

small number of gradient steps with a small amount of training data. Sachin and Hugo [34] propose an

LSTM based meta-learner model to learn the exact optimization algorithm used to train another learner

neural network classifier in the few-shot regime.

There are also some specialized neural networks for few-shot image recognition. Matching Network [43]

learns an embedding function with a sample-wise attention kernel to predict the similarity. Compared

to Matching Network, Prototypical Network [39] has a similar structure but employs Euclidean distance

instead of cosine distance. TADAM [28] proposes a dynamic task conditioned feature extractor based

on Prototypical Network. Different from simple metrics, Relation Network [40] learns a deep non-linear

distance metric for similarity comparing. There are also some methods learn to predict the parameters

for novel categories without additional training [10,27,32,33], learn as a regression problem [2], learn from

unlabeled data [47] or weakly-labeled data [22]. SNAIL uses temporal convolutions and soft attention to

combine with the context of support samples. TPN [23] performs transductive learning on the similarity

graph. DTN [4] generates new reference features by transferring diversity information between training

image pairs in the same class. [50] learns object parts by clustering cell features and modeling their rela-

tionships in an attentional manner for few shot learning, which obtains the state-of-the-art performance

on the few-shot image classification benchmarks.

Data augmentation using generative models is also an effective option for few-shot learning [11,56]. At

first, attributed-guided augmentation methods in feature space are used in AGA [7] and FATTEN [21].

Then Hariharan and Girshick [13] transfer the transformation from a pair of known samples to a sample

from a novel class. ∆-encoder [37] has similar target as [13], but it is trained as a reconstruction task. [45]

is more straightforward which generates samples by adding random noises to support features. There

are also some methods used extra information, such as a deformation sub-network [57] or a pre-trained

saliency network [54].

Our work is a specialized neural network that can establish semantic associations between images and

encourage the model to focus more on the features that have high correlations; it overcomes the variance

of inter-class and gets better performance for few-shot image recognition.

2.2 Matching and attention for few-shot image recognition

Matching is an effective way to establish semantic correspondences between images [25, 41, 45]; and

the attention mechanism can help to decide which features are more useful based on the established

correspondences [1, 49, 52]. Matching Network [43] uses the softmax function over the cosine distance

between embedding features as a sample-wise attention kernel. It treats each image as an individual

sample without differentiating the semantic meanings of different pixels. In our work, the attention is

feature-wise between the query with each support images. It can learn the semantic correspondences

between each feature pair in different positions.

Attention can also be applied between label semantics and image domains [6, 44] for few-shot image

recognition, but they need extra information for word embedding. Our method learns from the training

images only, without any other external information. Our attention mechanism is similar to self-attention

[5,29] which has proven to be effective on machine translation [42], image transformer [30], video sequence

[46] and GAN [53]. Self-attention aims to find the relations within an image/sequence, but our method

focuses more on establishing the correlation responses of each feature position between images for more

accurate similarity measure which is specially designed for few-shot image recognition. The STANet [51]

is also similar to us. But we combine the attention results from different feature expression levels, while

STANet only uses the high-level feature. DCN [55] is also based on the Siamese structure to learn the

relation between the query and support image. A sequence of relation modules is used to compute a

non-linear metric. But our cascaded matching block focuses on matching fine-grained similarity of two

compared images, and highlights the corresponding feature to avoid interference from intra-class variance.
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Figure 2 Feature matching block. zq and zs are the features of the query and support image, respectively, which have

the same shape H ×W ×C. After the space transformation µ, ϕ and the reshape operation, h(zq , zs) = S(µ(zq)ϕ(zs)T ) is

a spatial attention map between each feature position of the query and it of the support image. S is the row-wise softmax.

The feature ω(zs) is scaled by the spatial attention map and mapped back to the input space. The final output of the block

is the combination of the matched feature g(zq , zs) and the original query feature zq with the proportion of λ : (1 − λ).

3 Method

3.1 Problem definition

To illustrate the few-shot image recognition task, we follow the definition in [43] which is termed as

N -way K-shot learning. Each evaluation step is an N -way K-shot task which consists of two parts,

support set, and query. We first sample N classes from the training/testing set, then sample a support

set Ds = {(xis, yis), i ∈ [1, ..., N×K]}, which contains K labeled examples from each of the N classes. The

query image (xq, yq) is sampled from the rest images of the N classes, i.e. yq ∈ {yis, i ∈ [1, ..., N ×K]}
and xq /∈ {xis, i ∈ [1, ..., N × K]}. It needs to be classified into one of the N classes based only on the

support set. Different from traditional image recognition tasks based on lots of training images, the label

space of the training set here is disjointed with it of the testing set. The testing process is in the form of

N -way K-shot but with classes unknown to the training set.

3.2 Feature matching block

The details of the feature matching block are shown in Fig. 2. zq and zs are the features of the query and

a support image from one of the hidden layers respectively, which are both in the shape of H ×W × C.

Firstly, they are mapped into another space µ and ϕ to get µ(zq) and ϕ(zs) respectively. Then they are

reshaped to 2-dimensional matrices with the shape of HW × Cm. The two matrices calculate a spatial

attention map as follows,

h(zq, zs) = S(µ(zq)ϕ(zs)
T ), (1)

where S is the row-wise softmax. In the 3-dimensional metrics µ(zq) and ϕ(zs), each feature point in

H ×W dimension is a feature position with the shape of 1 × 1 × Cm, represented by µ(ziq) and ϕ(zis),

i ∈ [1, 2, ...,H ×W ]. After reshaping, each row of the 2-dimensional matrix is a feature position which

is shown in In Fig. 2. Therefore each element hi,j of the spatial attention map is the similarity between

the feature in the i-th position of the query and the feature in the j-th position of the support image as

defined as follows,

hi,j =
exp(µ(ziq)ϕ(zjs)T )∑H×W

j=1 exp(µ(ziq)ϕ(zjs)T )
. (2)
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Figure 3 Illustration of the proposed Cascaded Feature Matching Network. As shown in the top right corner

of the figure, there are three different network blocks and one operation in CFMN. The blocks connected by a dashed line

share the same parameters. Before the first Concatenation Operation, there are four Convolutional Blocks to extract the

feature of each image. Three Feature Matching Blocks are applied after the second, the third, and the fourth Convolutional

Blocks which form a cascaded structure. There are two Convolutional Blocks and one Fully Connected Block to predict the

similarity of the two concatenated features. The final prediction is the connection of all the similarity scores

Meanwhile, the support feature zs is mapped to another space ω. It is scaled by the spatial attention

map h(zq, zs) to get g(zq, zs) = h(zq, zs)ω(zs). Therefore, ω(zjs) indicates the feature in the j-th position

of ω(zs). A single feature position in g(zq, zs) can be represented as follows,

gi =

H×W∑
j=1

hi,jω(zjs). (3)

We can find that the i-th feature position of the feature map g(zq, zs) depends on the correlation

responses between the i-th feature position of the query µ(zq) with all the feature positions of the support

ϕ(zs). That is why we term it as a spatial attention mechanism. The features of zq and zs will be more

retained if they are highly relevant to each other and the irrelevant features tend to be ignored. Then the

network can learn to focus more on the relevant features, thereby reducing the influence of strong variance

and producing better results. Then the matched feature g(zq, zs) is mapped via a 1× 1 convolution layer

to get the same shape as the input zq and zs. Moreover, we find that keeping the original feature of the

query image is helpful. In few-shot image recognition, in order to reach better similarity measurement,

not only should the model focus on some particular parts that have high correlation responses, but also

takes the whole feature into account. So the final output of the feature matching block is the combination

of the matched feature g(zq, zs) and the original query feature zq with the proportion of λ : (1 − λ) is

described as follows,

ẑq = λg(zq, zs) + (1− λ)zq, (4)

where λ is a weight factor over the matched feature. No matching information is injected if λ = 0; only

the matched features are considered if λ = 1.

3.3 Cascaded Feature Matching Network

In Fig. 3, we take 3-way 1-shot for example. The overall structure is a conditional neural network

f(xq, Ds; θ) as we described in Sect. 3.1. The input consists of the query xq (test image) and the support
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Figure 4 Illustration of CFMN for multi-label few-shot image classification. It shows a 3-label 3-way 1-shot

task. The first support image is sampled as a horse image, but it also contains another interested object, i.e., the dog.

Therefore, during measuring the distance of the query and the dog category, both the first and the second support images

are considered. The concatenated features of them are averaged before the distance metric procedure.

set Ds (condition). The output of the network is a 3-dimensional vector which indicates the prediction

for xq. The class with the highest prediction value is the final categorized result.

The first four Convolutional Blocks and all the three Feature Matching Blocks can be viewed as

a feature extractor. However, the extraction process of the query image is dependent on the feature

matching results with respective support images. The cascaded structure combines matched information

from different representation levels to reach a more accurate and robust performance.

After the feature extraction process, extracted features of the query and support images are concate-

nated in the channel dimension. Two Convolution Blocks and the Fully Connected Block after the first

Concatenation Operation learn a distance metric of the concatenated feature. The output of the Fully

Connected Block is a single value in a range of [0, 1]. The final output is the concatenation of all the

three outputs of the Fully Connected Block.

For K-shot where K > 1, the query will get K concatenated features with all K support images for

one class. We element-wise average over those K concatenated features to predict one similarity score

for this class. Thus, it can be guaranteed that there are only N scores to form the final output.

3.4 CFMN for multi-label few-shot classification

We propose a multi-label extension to the traditional few-show classification problem, where each image

may contain more than one interested object. In this extended setting, the mapping between images and

categories is many-to-many instead of many-to-one. As shown in Fig. 4, taking 3-way 1-shot task for

example, we first sample 3 categories (horse, dog, cat) and sample a support image for each category

form all the images that contain the object. The first support image is sampled as a horse image, but

it also contains another interested object, i.e., the dog, and the query also belongs to more than one

category. We believe that not only this setting brings up a more difficult and realistic problem to solve,

but will also drive the model to learn a more generalized ability of images matching. Since the difficulty

of memorization grows exponentially as the total number of categories, and the same image can become

strong support but also a strong distractor under different queries. During inference, the final output

is a 3-dimensional vector. The label values higher than a particular threshold (e.g., 0.4) are considered

positive. In Section 4, we will show that our proposed method surpasses other previous methods in this

problem.
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Table 1 The backbone of Cascaded Feature Matching Network for different datasets. CB: Convolution Block;

CO: Concatenation Op; FCB: Fully Connected Block. The left output size is calculated based on miniImageNet (84 × 84)

for example.

block name
miniImageNet & Omniglot FS-COCO

output size layers output size layers

CB 1 41 × 41 × 64
3 × 3 conv, 64 filters, BN, ReLU

2 × 2 maxpool, stride 2
56 × 56 × 64

7 × 7, 64, stride 2

3 × 3 max pool, stride 2[
3 × 3, 64

3 × 3, 64

]
× 2

CB 2 19 × 19 × 64
3 × 3 conv, 64 filters, BN, ReLU

2 × 2 maxpool, stride 2
28 × 28 × 128

[
3 × 3, 128

3 × 3, 128

]
× 2

CB 3 19 × 19 × 64 3 × 3 conv, 64 filters, BN, ReLU 14 × 14 × 256

[
3 × 3, 256

3 × 3, 256

]
× 2

CB 4 19 × 19 × 64 3 × 3 conv, 64 filters, BN, ReLU 7 × 7 × 512

[
3 × 3, 512

3 × 3, 512

]
× 2

CO 19 × 19 × 128 7 × 7 × 1024

CB 5 8 × 8 × 64
3 × 3 conv, 64 filters, BN, ReLU

2 × 2 maxpool, stride 2
7 × 7 × 256 3 × 3, 256, stride 1

CB 6 3 × 3 × 64
3 × 3 conv, 64 filters, BN, ReLU

2 × 2 maxpool, stride 2
3 × 3 × 64

3 × 3, 64, stride 1

2 × 2 max pool, stride 2

FCB 1
576 × 8 FC, ReLU

8 × 1 FC, Sigmoid
1

576 × 8 FC

8 × 1 FC, Sigmoid

4 Experiments

4.1 Dataset

Omniglot [19] was collected via Amazon’s Mechanical Turk to produce a standard benchmark for the

few-shot learning task of the handwritten character recognition domain. It contains 20 examples of 1623

characters from 50 different alphabets ranging from well-established international languages which can

be viewed as a transpose of the dataset MNIST. The images are resized to 28×28. Following [36,43], the

data set is augmented with random rotations by multiples of 90 degrees. There are 1200 and 423 classes

for training and testing, respectively.

miniImageNet was proposed in [43] by sampling a subset from the well-known ImageNet dataset [35].

It is a large-scale and challenging few-shot image classification dataset that consists of real-world im-

ages, and it has been served as a standard benchmark for many few-shot image classification methods.

miniImageNet contains 100 classes, and each class has 600 images in the size of 84× 84 pixels. Because

the exact train-test splits used in [43] were not released, we followed the splits introduced by [34]. In this

split setting, there are 64, 16 and 20 classes for training, validation, and testing, respectively.

FS-COCO is the first dataset for multi-label few-shot learning proposed in this paper. It is a new

split of the COCO dataset [20], which is one of the most popular datasets in multi-label classification.

COCO contains 80 classes in total. In our setting, the dataset is randomly divided into 54, 11, and 15

classes for training, validation, and testing, respectively. The details of the data split can be found in the

Appendix. Since the ground-truth labels of the test set are not available, we only use the samples from

the training set and validation set of version 2014 of COCO. The images are resized to 224× 224.

4.2 Architecture

Most few-shot learning models utilize four convolution layers for embedding feature extractor [9, 40, 43].

For a fair comparison, we follow the same architecture for miniImageNet and Omniglot which is shown

in Table 1. Each Convolution Block contains a 3 × 3 convolution layer followed by batch normalization

and a ReLU non-linearity layer. The third and the fourth Convolution Blocks do not contain the 2 × 2

max-pooling layer for providing a larger feature map to the following distance metric network. The
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Concatenation Operation is applied on the channel-dimension. After the Convolution Block 6, the feature

is reshaped to a vector and fed to the following two Fully Connected Blocks. The final output is a single

value represents the similarity of the compared images. For the multi-label few-shot classification task

on FS-COCO, a structure similar to ResNet-18 [14] is used which is also shown in Table 1. The input

size is 224× 224.

4.3 Training details

We carry out 5-way 1-shot and 5-way 5-shot image classification experiments for FS-COCO. For each

episode on the 5-way 1-shot task, the support set is composed by sampling 1 image from each of the

5 classes; then we sample another 15 samples as the query set from each of the 5 class among the

remain images for 1-shot task; thus there are 1 × 5 + 15 × 5 = 80 images in a episode/mini-batch for

training. As for 5-way 5-shot classification, there are 5 images for each class in the support and query set,

respectively. Following [39], the model is trained on 20-way and 30-way 15 queries per training episode for

miniImageNet. Beside 5-way 1-shot and 5-way 5-shot, 20-way for 1-shot and 5-shot image classification

experiments are also evaluated on Omniglot. There are 19 and 15 images for each class in the query set

for 1-shot and 5-shot, respectively.

Our few-shot image classification network is trained on the training set and validated on the validation

set. The model that obtains the best performance on the validation set is selected. The selected model

is evaluated on the testing set to obtain the final results. The mean square error (MSE) loss is used to

train our model.

We implement the proposed network using PyTorch [31]. The optimizer is Adam [17]; the learning rate

decreases by 0.1 to the original one if the validation accuracy does not increase during the last 15, 000

episode. Besides, the current best model will be reloaded and trained with the updated learning rate. The

training procedure is early stopped if the validation accuracy does not increase during the last 50, 000

episode.

4.4 Testing details

In testing and validation, there are 600 episodes for datasets MS-COCO and miniImageNet. In every

episode, 1 and 5 support images per class are sampled for the 1-shot setting and the 5-shot setting,

respectively. Then 15 images for each class are taken as the queries. Thus, we have 45, 000 = 600×15×5

classification results. The mean and confidence intervals of the classification accuracy of the 45, 000

testings are recorded. For dataset Omniglot, there are 1000 testing episodes. In every episode, 19 and 15

query images per class are sampled for the 1-shot and the 5-shot setting, respectively.

To avoid the randomness of the episode sampling effects, we perform the above testing procedure for

10 times. The mean of the accuracy and confidence intervals over all the 10 times are reported in this

paper.

4.5 Results

Results on Omniglot and miniImageNet

Table 2 and 3 illustrate the performance of our method against the current state-of-the-art on Omniglot

and miniImageNet, respectively. All accuracy results are reported with 95% confidence intervals. The

best performing results are bold. It can be observed that our CFMN obtains better performance on

both the two classical benchmarks than the state-of-the-art models, such as Relation Network, MAML,

Prototypical Network, Meta Network.

Multi-label few-shot learning results on FS-COCO

As shown in Table 4, precision, recall, and F1-measure are employed to evaluate the models. Labels

with confidence higher than 0.4 are considered positive. These measures do not require a fixed number

of labels per image. Our model outperforms the existing methods by a sizable margin.

Impact of weight factor of matched feature
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Table 2 Few-shot images classification accuracies on Omniglot. ‘-’: not reported. The best results are bold. The

Cascaded Feature Matching Network (CFMN) obtains the state-of-the-art or comparable performance on all settings. Some

accuracy results are reported with 95% confidence intervals.

Methods Ref 5-way 1-shot 5-way 5-shot 20-way 1-shot 20-way 5-shot

MANN [36] ICML’16 82.8% 94.9% - -

Matching Network [43] NIPS’16 98.1% 98.9% 93.8% 98.5%

Neural Statistician [8] ICLR’17 98.1% 99.5% 93.2% 98.1%

ConvNet with Memory Module [16] ICLR’17 98.4% 99.6% 95.0% 98.6%

Meta Network [24] ICML’17 99.0% - 97.0% -

Prototypical Network [39] NIPS’17 98.8% 99.7% 96.0% 98.9%

MAML [9] ICML’17 98.7% ± 0.4% 99.9% ± 0.1% 95.8% ± 0.3% 98.9% ± 0.2%

Relation Network [40] CVPR’18 99.6% ± 0.2% 99.8% ± 0.1% 97.6% ± 0.2% 99.1% ± 0.1%

CFMN (Ours) 99.7% ± 0.2% 99.8% ± 0.1% 98.0% ± 0.2% 99.2% ± 0.1%

Table 3 Few-shot images classification accuracies on miniImageNet. ‘-’: not reported. The best results are

bold. The Cascaded Feature Matching Network (CFMN) obtains the state-of-the-art performance on 5-way 1-shot and

competitive results on 5-way 5-shot. All accuracy results are reported with 95% confidence intervals.

Methods Ref 5-way 1-shot 5-way 5-shot

Matching Network [43] NIPS’16 43.56% ± 0.84% 55.31% ± 0.73%

Meta Network [24] ICML’17 49.21% ± 0.96% -

Meta-Learn LSTM [34] ICLR’17 43.44% ± 0.77% 60.60% ± 0.71%

MAML [9] ICML’17 48.70% ± 1.84% 63.11% ± 0.92%

Prototypical Network [39] NIPS’17 49.42% ± 0.78% 68.20% ± 0.66%

Relation Network [40] CVPR’18 50.44% ± 0.82% 65.32% ± 0.70%

CFMN (Ours) 52.98% ± 0.84% 68.33% ± 0.70%

Table 4 Multi-label few-shot images classification accuracies on FS-COCO. The best results are bold. CFMN

obtains the best performance.

Model
5-way 1-shot 5-way 5-shot

Precision Recall F1 Precision Recall F1

Prototypical Network [39] 32.78% 45.96% 38.06% 44.42% 61.10% 51.22%

Relation Network [40] 34.37% 47.21% 39.52% 43.61% 63.34% 51.43%

CFMN (Ours) 37.61% 53.90% 44.14% 45.71% 64.46% 53.25%

As defined in Sect. 3.2, λ represents the ratio of the matched feature and the original feature. λ = 0.0

means only using the original feature while λ = 1.0 means that only the matched feature is taken into

account. We evaluated our model with several standard values for λ. Referring to the results shown in

Table 5, it can be found that the model cannot reach the best performance with whether the original

feature alone or the matched feature alone. When λ = 1, the network only takes the matched information

into consideration. But shallow layers only get some low-level vision information like the color, shape, and

edge. Although feature matching is really helpful, an appropriate combination of the matched feature and

the original feature is necessary. Making an analogy with how our human beings recognize the similarity

of two images, we would not only compare the details of them but also conclude by the visual context of

the whole image. The combination by the ratio λ behaves in the same way.

Impact of details of the feature matching block

Table 6 shows the impact of the reduction dim Cm, the softmax axis and space transformation oper-

ation. It can be seen that the accuracy does not just simply improve as Cm increases. An appropriate

setting for Cm can get better performance, at the same time reduce the computation. The row-wise

softmax and space transformation both directly improve accuracy. But obviously, the row-wise softmax

is more important to the results.

Impact of the cascaded structure

As defined in Sect. 3.3, we take a cascaded structure for combining the matched information from
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Table 5 Impact of weight factor of matched feature. All the results are evaluated on miniImageNet for 5-way

1-shot task. The best results are bold.

weight factor accuracy

CFMN with λ = 0.00 50.89%

CFMN with λ = 0.25 52.02%

CFMN with λ = 0.50 52.98%

CFMN with λ = 0.75 50.28%

CFMN with λ = 1.00 45.59%

Table 6 Impact of the details of the feature matching block. All the results are evaluated on miniImageNet for

5-way 1-shot task.

Model accuracy Model accuracy

Cm = 4 51.63% Cm = 64 52.98%

Cm = 8 52.14% Cm = 128 52.49%

Cm = 16 52.52% w/o softmax 49.93%

Cm = 32 52.93% w/o transformation 52.46%

locationoriginal size rotation all

Figure 5 Samples of four harder variations on Omniglot. Original: Image size is 28 × 28. The characters are

always in the center. Location: Images of the original set are randomly put in a 56×56 white background. Size: Characters

are randomly resized to [20, 55], and put in the center of the 56 × 56 white background. Rotation: Characters are resized

to 50, and randomly rotated [−45, 45] degrees, and put in the center of the 56 × 56 white background. All: Characters are

randomly resized to [20, 55], and randomly rotated [−45, 45] degrees, and randomly put in the 56 × 56 white background.

Table 7 Impact of the cascaded structure. All the results are evaluated on miniImageNet for 5-way 1-shot task.

The best results are bold.

layers accuracy layers accuracy

CB 1 50.47% CB 3, 4 52.34%

CB 2 51.11% CB 2, 3, 4 52.98%

CB 3 51.63% CB 1, 2, 3, 4 50.17%

CB 4 51.92%

different representation levels to reach a more accurate and robust performance. In order to illustrate

the necessity and effectiveness of this structure, we applied the different numbers of feature matching

blocks in different positions at the backbone. For example, Convolution Block 1, 2, 3, 4 means that there

are four feature matching blocks after the first fourth Convolution Blocks, respectively. From the results

in Table 7, we can see that if taking only one feature matching block, deeper layers are better than

the shallow one. Table 7 also shows that the cascaded structure is much better than only a single one

feature matching block. However, the exception is that the feature after the first Convolution Block

is unsuitable for the matching block. Because the feature merely contains pixel information. Applying

feature matching block here will make the model focus too much on the low-level feature which has

detrimental effects on the performance.

4.6 How does CFMN work

The effectiveness of spatial feature matching

In order to further check the effectiveness of the feature matching block, we design four harder variations

(query and support images are highly variant in location-variation, size-variation, rotation-variation and

all -variation). As shown in Fig. 5, the image size of all the four harder variations is 56× 56. Each image

in the Omniglot is used to create 10 different images. In the location-variation, we randomly place the
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Table 8 Results of four harder settings on Omniglot on 10-way 1-shot task. The best results are bold. Our

CFMN always reaches the best performances. It can greatly reduce the influence caused by the differences in the size,

location, rotation and even the combination of them.

weight factor original size location rotation all

Prototypical Network [39] 98.02% 95.75% 94.34% 93.67% 88.93%

Relation Network [40] 99.18% 98.95% 97.64% 96.94% 94.95%

CFMN (Ours) 99.23% 98.99% 99.05% 98.42% 97.89%

Figure 6 Visualization of feature matching on the all-variation of Omniglot defined in Sect 4.6. Two adjacent

images form a group. The left one is the query. The red cross in it is an image position which is matched with all positions

of the right support image. The colours, in turn, the red, green, black, yellow and purple point the positions which have

the top five highest correlation responses.

Figure 7 Visualization of feature matching on miniImageNet. The meaning of the red cross and colored dot is

the same as Fig. 6. Although the interested objects of each class may be different in the size, location, style and so on, they

are associated together by our matching operation.

handwritten character on a white background. For the size-variation, we randomly resize each character

by the size range in [20, 55] and put it in the center of a white background. Analogously, each image is

randomly rotated by −45 to 45 degrees for the rotation-variation. The rotated images are also put in

the center of a white background. As for all -variation, as the name implies, it combines all of the former

operations for each image, which is more difficult than the other.

We evaluate our CFMN on all the four harder variations and compare it with two existing methods.

We can see from the results shown in Table 8 that CFMN consistently outperforms the other works,

especially on the all -variation. The results on original Omniglot data are similar to each other. But

the performances of Matching Network and Prototypical Network severely decrease when dealing with

harder visual differences. It illustrates that our proposed model can overcome the obstacles from the

object variations in the size, rotation, location, and even the combination of them.

Visualization

To provide a more intuitive view of how our proposed method works, we visualize the feature matching

operation in Fig. 6, Fig. 7 and Fig. 8. Two images from the same class form a group in Fig. 6 and Fig. 7.

The left is the query; the right is the support image. The visualization is based on the spatial attention

map in the last feature matching block. It stands for the performance of all of the three matching blocks

because a matched feature is also the input of the next matching block. The feature has been matched

three times after all of three matching blocks. The position represented by a red cross in the query is

matched with all the right positions. By comparing the values in the spatial attention map, we point

positions which have the top five highest correlation responses by different colors. It can be seen from

figures that although the compared characters are different in the size, location, rotation, and so on, the

corresponding strokes are associated together by our matching operation.
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Figure 8 Visualization of feature matching on FS-COCO. The yellow rectangular boxes indicate the receptive

fields of the features that get the highest correlation responses in the last Feature Matching Block. Two images aligned

vertically is a group.

Since a deeper network is used for FS-COCO, receptive fields of the features in the last Feature

Matching Block is larger than them in miniImageNet and Omniglot. Therefore, the receptive field is

indicated by the rectangular box in Fig. 8. We can find that when the same query image matched with

different support images, the associated parts can get higher responses in the spatial attention map,

which benefits a lot in the multi-label few-shot setting.

5 Conclusion

In this paper, we proposed the Cascaded Feature Matching Network (CFMN), which is a simple and

effective method for few-shot image recognition. Our motivation is based on the observation that the

interested object in compared images from the real world usually differs significantly in the size, location,

style, etc. Our feature matching block can overcome those barriers and associate the corresponding parts

together. The features with high correlation responses are paid more attention, while the opposite will be

naturally ignored. Three feature matching blocks are applied there to construct a cascaded structure that

combines the matching information from different representation levels. The extensive experiments on

few-shot and multi-label few-shot classification on three standard datasets demonstrate the effectiveness

of our proposed method.

Appendix

Data split for FS-COCO

Training set: toilet, teddy bear, bicycle, skis, tennis racket, snowboard, carrot, zebra, keyboard,

scissors, chair, couch, boat, sheep, donut, tv, backpack, bowl, microwave, bench, book, elephant, orange,

tie, bird, knife, pizza, fork, hair drier, frisbee, bottle, bus, bear, toothbrush, spoon, giraffe, sink, cell

phone, refrigerator, remote, surfboard, cow, dining table, hot dog, baseball bat, skateboard, banana,

person, train, truck, parking meter, suitcase, cake, traffic light.

Validation set: sandwich, kite, cup, stop sign, toaster, dog, bed, vase, motorcycle, handbag, mouse.

Testing set: laptop, horse, umbrella, apple, clock, car, broccoli, sports ball, cat, baseball glove, oven,

potted plant, wine glass, airplane, fire hydrant.
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