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Abstract

Neural architecture search (NAS) methods have been
proposed to release human experts from tedious architec-
ture engineering. However, most current methods are con-
strained in small-scale search due to the issue of compu-
tational resources. Meanwhile, directly applying architec-
tures searched on small datasets to large datasets often
bears no performance guarantee. This limitation impedes
the wide use of NAS on large-scale tasks. To overcome this
obstacle, we propose an elastic architecture transfer mecha-
nism for accelerating large-scale neural architecture search
(EAT-NAS). In our implementations, architectures are first
searched on a small dataset, e.g., CIFAR-10. The best one
is chosen as the basic architecture. The search process on
the large dataset, e.g., ImageNet, is initialized with the ba-
sic architecture as the seed. The large-scale search process
is accelerated with the help of the basic architecture. What
we propose is not only a NAS method but a mechanism for
architecture-level transfer.

In our experiments, we obtain two final models EATNet-
A and EATNet-B that achieve competitive accuracies,
74.7% and 74.2% on ImageNet, respectively, which also
surpass the models searched from scratch on ImageNet un-
der the same settings. For the computational cost, EAT-NAS
takes only less than 5 days on 8 TITAN X GPUs, which is
significantly less than the computational consumption of the
state-of-the-art large-scale NAS methods. '

1. Introduction

Designing neural network architectures by human ex-
perts often requires tedious trials and errors. To make

'Our pretrained models and the evaluation code are released at
https://github.com/JaminFong/EAT-NAS
* The work was done during an internship at Horizon Robotics.
 Equal contributions.

this process more efficient, many neural architecture search
(NAS) methods [30, 18, 17] have been proposed. Despite
their remarkable results, most NAS methods require ex-
pensive computational resources. For example, 800 GPUs
across 28 days are used by NAS [29] on the task of CIFAR-
10 [10] image classification. Real-world applications in-
volve lots of large-scale datasets. However, directly carry-
ing out the architecture search on large-scale datasets, e.g.,
ImageNet [5], requires much more computation cost which
limits the wide application of NAS. Although some acceler-
ating methods have been proposed [30, 18, 17], few of them
directly explore on large-scale tasks.

From lots of previous works, e.g. VGGNet [21], Goog-
LeNet [22], ResNet [8], efc., a neural architecture that has
good performance on one dataset usually performs well on
other datasets or tasks. PNAS [12] suggests the transfer ca-
pability of the searched architectures by measuring the cor-
relation between performance on CIFAR-10 and ImageNet
for different neural architectures. Most existing NAS meth-
ods [30, 18, 12] search for architectures on a small dataset,
e.g., CIFAR-10 [10], and then apply these architectures di-
rectly on a large dataset, e.g., ImageNet, with the architec-
tures adjusted manually. Normally, when transferring to the
large dataset, both the number of stacked cells / layers and
filters in the network will be enlarged. The searched cell
structures or layer operations remain unchanged. However,
due to the dataset bias [24] between the small dataset and
the large dataset, the best representation of the neural archi-
tecture differs between datasets. Moreover, because of the
lower resolution and the limited number of training images
and data categories in the small dataset, the effectiveness
of the architecture or the cells / layers of it searched on the
small dataset degrades, when being directly applied on the
large dataset or transferred with only the depth and width
adjusted by handcraft.

In this work, we propose a transfer learning solution to
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Figure 1: The framework of Elastic Architecture Transfer for Neural Architecture Search (EAT-NAS). We firstly search for
the basic architecture on the small-scale task and then search on the large-scale task with the basic architecture as the seed of

the new population initialization.

the above problem. What we propose is not only a NAS
method but a common mechanism for architecture-level
transfer learning. We define the elements in the neural ar-
chitecture design as architecture primitives, e.g. the number
of filters, the number of layers, operation types, the connec-
tion mode, kernel sizes. Our proposed elastic architecture
transfer (EAT) is a mechanism which automatically trans-
fers the neural architecture to a large-scale dataset, as is
shown in Fig. 1. It is elastic because all the architecture
primitives are adjusted or fine-tuned automatically when
transferring the architecture to another dataset.

In our implementation, we choose Evolutionary Algo-
rithm (EA) to design the basic NAS method. Benefitting
from the population-based search process, the information
of the architecture searched on the small dataset is easy
to transfer to another architecture population on the large
dataset. We adopt a two-stage search process to achieve the
architecture transfer between different datasets. Firstly, we
carry out the first search stage on a small dataset. When the
first search process is finished, we choose the best archi-
tecture in the population as the seed which is called basic
architecture. Secondly, we use the seed to initialize the ar-
chitecture population of the second search stage on the large
dataset. We obtain the new architectures of the new popula-
tion by adding some perturbations to the basic architecture.
Finally, we carry on with the search process on the large
dataset for fewer epochs. The population resulting from
the deformed representations of the basic architecture can
evolve faster towards the direction that fits the new dataset.

EAT narrows the gap between datasets on the architec-

ture level automatically. The search process on the large
dataset is accelerated by taking advantage of the informa-
tion from the architecture searched on the small dataset.
Our proposed mechanism of the architecture-level transfer
supplies a new aspect for transfer learning. The transfer
mechanism could not only be deployed to the EA-based
NAS method, but also the gradient or RL based ones. More-
over, EAT could be available for various tasks and datasets
in practical problems.
Our contribution can be summarized as follows:

1) We propose an elastic architecture transfer mecha-
nism which automates the architecture transfer be-
tween datasets and enables performing NAS on large
datasets with less computation cost.

2) Through the experiments on the large-scale dataset,
i.e., ImageNet, we show the efficiency of our method
by cutting the search cost to only less than 5 days on
8 TITAN X GPUs, about 106x lower than the cost for
MnasNet estimated based on [23].

3) Our searched architectures achieve remarkable Ima-
geNet performance that is comparable to MnasNet
which searches directly on the full dataset with huge
computational cost (74.7% vs 74.0%).

2. Related Work and Background
2.1. Neural Architecture Search

Generating neural architectures automatically has arous-
ed great interests in recent years. In NAS [29], an RNN
network trained with reinforcement learning is utilized as a



controller to determine the operation type, parameter, and
connection for every layer in the architecture. Although
NAS [29] achieves impressive results, the search process
is incredibly computation hunger and hundreds of GPUs
are required to generate a high-performance architecture on
CIFAR-10 datasets. Based on the NAS method in [29],
many novel methods have been proposed to improve the ef-
ficiency of architecture search like finding out the blocks of
the architecture instead of the whole network [30, 28], pro-
gressive search with performance predictor [12], early stop-
ping strategy in [28], and parameter sharing in [ 7]. Though
they have achieved impressive results, the search process
is still computation hunger and extremely hard when the
searched datasets are in large-scale, e.g., ImageNet.

Another stream of NAS works utilizes the evolution-
ary algorithm to generate coded architectures [16, 18, 15].
Modifications to the architecture (filter sizes, layer num-
bers, and connections) serve as the mutation in the search
process. Though they have achieved state-of-the-art results,
the computation cost is also far beyond affordable.

Besides, gradient-based NAS methods [14, 26, 1] be-
come popular. Gradient-based methods discard the black-
box searching method and introduce architecture parame-
ters, which are updated on the validation set by gradient
descent, for every path of the network. A softmax classi-
fier is utilized to select the path and the operation for each
node. The search space is relaxed to be continuous so that
the architecture can be optimized with respect to its valida-
tion set performance by gradient descent. Though gradient-
based NAS methods achieve great performance with high
efficiency, the search space relies on the super network. All
the possible sub-architectures should be included in the del-
icately designed super network. This suppresses the expan-
sibility of the search space, e.g., it is not easy to search
for the width of the architecture by gradient-based methods.
For our evolutionary algorithm based EAT method over the
discrete search space, the architecture can be encoded and
is easier to be extended to diverse search spaces.

Recently, MnasNet [23] proposes to search directly on
large-scale datasets with latency optimization of the archi-
tecture based on RL. MnasNet successfully generates high-
performance architectures with promising inference speed,
but it requires huge computational resources. In total, 8K
models are sampled to be trained on the nearly whole train-
ing set for 5 epochs and evaluated on the 50K validation set.
It takes about 91K GPU hours as is estimated according to
the description in [23].

There is a work [25] that combines transfer learning with
RL-based NAS method. They transfer the controller by
reloading the parameters of the pretrained controller and
add a new randomly initialized embedding for the new task.
Our proposed elastic architecture transfer method focuses
on transferring on the architecture-level automatically. The

Algorithm 1: Evolutionary Algorithm

input : population size P, sample size S, dataset D
output: the best model My,
PO < initialize (P)
for j < P do
M;.acc < train-eval (M;, D)
Mj.score < comp-score (M, Mj.acc)
end
Q@ « comp-quality (P©)
while Q) not converge do

A N B W N =

7
8 SO sample(IP’m, S)

9 Myest, Muyorst + pick (S0)

10 M — mutate (Mpest)

11 Mut.acc < train-eval (Mmut, D)

12 Mput.score < comp-score (Mmut, Mmut.acc)
13 PO+D « remove Mwyorst from P&

u | POFY « add Mpue to PO

15 QUtY « comp-quality (POHY)

16 i ++

17 end

18 Mpest < rerank—-topk (Ppest, k)

architecture searched on the small dataset can be transferred
to the large dataset fast and precisely. EAT-NAS obtain
models with competitive performance and much less com-
putational resources than search from scratch.

2.2. Evolutionary Algorithm based NAS

Evolutionary algorithm (EA) is widely utilized in
NAS [16, 18, 15]. As is summarized in Algorithm 1, the
search process is based on the population of various mod-
els. Conventionally, the population P is first initialized with
randomly generated P models which are within the setting
range of the search space. Each model is trained and evalu-
ated on the dataset to get the accuracy of the model.

Following the Pareto-optimal problem [4], we use acc X
[size/T]“ to compute the score of the model, where acc
denotes the accuracy of the model, size denotes the model
size, i.e., the number of parameters or multiply-add opera-
tions, 7" is the target model size and w is a hyperparameter
for controlling the trade-off between accuracy and model
size. At each evolution cycle, S models are randomly sam-
pled from the population. The model with the best score and
the worst one are picked up. The mutated model is obtained
by adding some transformation to the one with the best
score. The mutated model is trained, evaluated and added
to the population with its score. The worst model is re-
moved meanwhile. The above search process is called rour-
nament selection [7]. Finally, the top-k performing models
are retrained to select the best one. Our architecture search
method is based on the evolutionary algorithm.
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Figure 2: Search Space. During search, all the blocks are concatenated to constitute the whole network architecture. Each
block consists of several layers and is represented by the following five primitives: convolutional operation type, kernel size,

skip connection, width and depth.
3. Method

To apply an architecture to large-scale tasks, most ar-
chitecture search methods [18, 17, 13, 30] merely rely on
prior knowledge of human experts. They transfer an archi-
tecture manually with only expanding the depth and width
by multiplication or direct addition. Different from these
conventional transfer methods, we propose an elastic archi-
tecture transfer (EAT) method. EAT automatically transfers
the neural architecture to a large-scale task by fine-tuning
the architecture primitives searched on a small-scale task.
It is elastic for the transfer capability of all the architecture
primitives, e.g., operator types, the structure, the depth and
width of the architecture. EAT accelerates the large-scale
search process by making use of the knowledge from the
base architecture searched on the small-scale task. EAT ad-
justs the basic architecture to the large-scale task with all
the architecture primitives fine-tuned.

3.1. Framework

Fig. | illustrates the process of EAT. The two search pro-
cess on the small and the large datasets are based on the
same search space (Section 18). We firstly search for a set
of top-performing architectures on the small dataset, such
as CIFAR-10. To get better performing architectures, we
search for the architecture scale (Section 3.3) with the help
of the width and depth factor. We design a criterion as pop-
ulation quality (Section 3.4) to better evaluate the model
population. Then we retrain the top-performing models and
choose the best one as the basic architecture. Secondly, we
start the architecture search on the large-scale task with the
basic architecture as the seed to initialize the new architec-
ture population. We design an architecture perturbation
function (Section 3.5) to produce architectures of the new
population. Then we continue the architecture search on the
large-scale task based on the population derived from the
basic architecture. In this way, the search on the new task is
accelerated and obtains better performing models than car-
rying it out from scratch, which is benefited from the useful
information of the basic architecture. Section 4.3 displays
the results of contrast. Finally, we select the best one from
the top-k performing models in the population by retraining

Algorithm 2: Elastic Architecture Transfer

input : datasets D1, D, population size P
output: the target architecture Archigrget
// initialize the population on D;
Py« initialize (P)
evolve (P1, D7)
Archpgsic ¢ rerank-topk & select (Pq, k)
// initialize the population on Dy
for i < P do
Arch; < arch-perturbation (Archpesic)
P . append ( Arch; )
end
evolve (P2, D2)
11 Archiarget ¢ rerank-topk & select (P2, k)
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them on the full large-scale dataset. Algorithm 2 displays
the whole procedure for the elastic architecture transfer.

3.2. Search Space

A well-designed search space is essential for NAS. In-
spired by MnasNet [23], we employ an architecture search
space with MobileNetV2 [19] as the backbone. As Fig. 2
shows, the network is divided into several blocks which can
be different from each other. Each block consists of sev-
eral layers, whose operations are determined by a per-block
sub search space. Specifically, the sub search space for one

block could be parsed as follows:

e Conv operation: depthwise separable convolution
(SepConv) [3], mobile inverted bottleneck convolution
(MBConv) with diverse expansion ratios {3,6} [19].

o Kernel size: 3x3,5x5, 7x7.

e Skip connection: whether to add a skip connection for
every layer.

e Width factor: the expansion ratio of the output width
to the input width, factory.qan = No/N;, [0.5, 1.0,
1.5, 2.0].

e Depth factor: the number of layers per block, [1, 2, 3,
4].

Besides, the down-sampling and width expansion opera-

tions are applied in the first layer of each block.

To manipulate the neural architecture more conveniently,

every architecture is encoded following the format defined
in the search space. As a network could be separated



Algorithm 3: Parameter sharing on the width-level

input : kernel K; in layer [, the original kernel K,
output: kernel K; in layer

1 ch$, < min( chi,, ch?, )

2 chiy: — min(chl,, chlu:)

3 Ky « Ko (w?, h°, chi,, chiu)

into several blocks, a whole architecture is presented as a
block set Arch = {B', B2,..., B"}. Each block consists
of the above five primitives, which is encoded by a tuple
Bt = (conv, kernel, skip, width, depth). Every manipu-
lation for the neural architecture is performed based on the
model code.

3.3. Architecture Scale Search

Most NAS methods [30, 17, 12, 18] treat the scale of the
architecture as a fixed element based on the prior knowl-
edge from human experts. The scale, the depth and width,
of the architecture, usually affects the performance of the
architecture. To obtain better performing architectures, we
search for the architecture scale by manipulating the width
and depth factors.

To accelerate the architecture search process, we employ
the parameter sharing method on each model during the
search. Inspired by the function-preserving transformations
in Net2Net [2], namely Net2WiderNet and Net2DeeperNet,
we propose a modified parameter sharing method on model
training. When initializing parameters for a network, the
proposed algorithm traverses the operation for each layer.
If the operation type and the kernel size of the layer con-
sist with that of the shared model, the parameter sharing is
applied on this layer. We introduce two parameter sharing
behaviors on the width and depth respectively.

Parameter sharing on the width-level By sharing the
parameters, we desire to inherit as more information as pos-
sible from the former model. For the convolutional layer,
we suppose the convolutional kernel of the I*" layer K
has the shape of (w', h!, ch! , ch! ), where w' and h!
denote the filter width and height respectively, while ch!,
and ch!,, denote the number of input and output channels
respectively. If the original convolutional kernel K, has the
shape of (w°, h°, ch?,, ch,.), we carry out sharing strat-

egy in Algorithm 3. In addition to the shared parameters,
the rest part of K; is randomly initialized.

Parameter sharing on the depth-level The parameters
are shared on the depth level in a similar way. Suppose
Ul[1,2,...,1,] denotes the parameter matrix of one block
which has [,, layers, and W1, 2, ..., [,,] denotes the parame-
ter matrix of the corresponding block from the shared model
which has [,, layers. The sharing process is illustrated in
two cases:

1l >y

(W, it <1y,
upi = { W . m
(i), otherwise
ii I, <ly:
U[L, 2, ..., 1] = WI[L,2, ..., L] )

where I" is a random weight initializer based on a normal
distribution.

3.4. Population Quality

During the evolution process, we design a criterion pop-
ulation quality to evaluate the model population. With the
search proceeding, the scores of the models in the popula-
tion improve. To judge whether the population evolution
converges, the variance of model scores needs to be taken
into consideration. Merely depending on the mean score of
models in the population may cause imprecision, because
accuracy gains could derive from both parameters sharing
and better model performance.

Therefore, until the objective of the population con-
verges to an optimal solution, the mean score of models
should be as high while the variance of model scores as low
as possible. This issue could be treated as a Pareto-optimal
problem [4]. To approximate the Pareto optimal solution,
we utilize a target function, population quality, as follows,

td 1"
Q = scoremean X L 3)
targetsiq
where w is the weight factor defined as follows,
. if std < target,
- a, if s . argetsid @
B, otherwise

where o and (§ are hyperparameters for controlling the
trade-off between the mean score and the standard devia-
tion of scores.

In Eq. 3, score,eqn denotes the mean score of models in
the population, std denotes the standard deviation of model
scores and targetgq is the target std. We set a = 5 =-0.07
to assign the value to w. After the evolution, we pick up the
best-quality population and retrain top-k models.

3.5. Architecture Perturbation Function

To transfer the architecture, we initialize the new popu-
lation on the large scale dataset with the the basic architec-
ture searched on the small dataset as the seed. We design an
architecture perturbation function to derive new architec-
tures by adding some perturbation to the input architecture
code homogeneously and slightly. Algorithm 4 illustrates
the process of the perturbation function. In each block of
the architecture, there are a total of five architecture primi-
tives (conv, kernel, skip, width, depth) to be manipulated
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Figure 3: The architectures searched by EAT-NAS. The upper one is the basic architecture searched on CIFAR-10. And the
nether one is the architecture EATNet-A searched on ImageNet which is transferred from the basic architecture.

Algorithm 4: Architecture Perturbation Function

input : basic architecture Archy, search space S,
number of blocks Npjocks, primitives prims
output: perturbed architecture Archy,
Archy < copy (Archs)
for _] < Nplocks dO
prim < rand-select (prims)
value < rand-generate (prim,S)
B! « get-block (Arch:,j)
B[type] « value

1
2
3
4
5
6
7 end

as described in Section 18. We randomly select one type of
the five primitives to perturb. For the selected primitive, we
generate a new value of the primitive stochastically within
the restriction of our search space and replace the existing
one.

When initializing the population on the large dataset, we
produce every new architecture by applying the architec-
ture perturbation function to the basic architecture until the
number meets the population size. In another word, each
initial architecture of the new population is a deformed rep-
resentation of the basic one. After initializing the new pop-
ulation, the evolution starts the same procedure as described
in Algorithm 1. Moreover, the architecture transformation
function is utilized as the mutation operation in evolution.

4. Experiments

Our experiments mainly consist of two stages, searching
for the basic architecture on CIFAR-10 and then transfer-
ring it to ImageNet. In this section, we introduce some im-
plementation details in EAT-NAS and report the experimen-

tal results. We analyze the results of some ablation experi-
ments which demonstrate the effectiveness of the proposed
EAT-NAS method. Other more implementation details are
displayed in the appendix of the Supplementary Materials.

4.1. Search on CIFAR-10

The experiments on CIFAR-10 are divided into two steps
including architecture search and architecture evaluation.
CIFAR-10 consists of 50,000 training images and 10,000
testing images. We split the original training set (80% -
20%) to create our training and validation sets for the search
process. The original CIFAR-10 testing set is only utilized
in the evaluation process of the final searched models. All
images are whitened with the channel mean subtracted and
the channel standard deviation divided. Then we crop 32 x
32 patches from images padded to 40 x 40 and randomly
flip them horizontally.

During the search process, we set the population size as
64 and the sample size as 16. Every model generated dur-
ing evolution is trained for 1 epoch and is evaluated on the
separate validation set. We mutate about 1,400 models dur-
ing the total evolution. The number of model parameters is
the sub-optimizing objective with the target as 3.0M. Each
model on CIFAR-10 consists of 7 blocks and the downsam-
pling operations are carried out in the third and fifth blocks.
The initial number of channels is 32. For evaluation, we
retrain top-8 models searched on CIFAR-10 and select the
one with the best accuracy as the basic model. Since the
CIFAR-10 results are subject to high variance even with ex-
actly the same setup [13], we report the mean and standard
deviation of 5 independent runs for our model. The basic
model achieves 96.42% mean test accuracy (the standard



Table 1: ImageNet classification results in the mobile setting. The results of manual-design models are in the top section,
other NAS results are presented in the middle section, and the result of our models are in the bottom section.

#Params #Mult-Adds Top-1/Top-5 Search Time

Model (M) (M) Ace(%) Search Dataset (GPU hours)
MobileNet-v1 [9] 4.2 575 70.6/ 89.5 - -
MobileNet-v2 [19] 34 300 71.7/- - -
MobileNet-v2 (1.4)[20] 6.9 585 74.7 1 - - -
ShuffleNet-v1 2x [27] ~5 524 73.7/ - - -
NASNet-A [30] 53 564 74.0/91.6 CIFAR-10 48K
NASNet-B [30] 53 488 72.8/91.3 CIFAR-10 48K
NASNet-C [30] 4.9 558 72.5/91.0 CIFAR-10 48K
AmoebaNet-A [18] 5.1 555 74.5792.0 CIFAR-10 76K
AmoebaNet-B [18] 53 555 74.0/91.5 CIFAR-10 76K
AmoebaNet-C [18] 5.1 535 75.1/92.1 CIFAR-10 76K
PNASNet-5 [12] 5.1 588 74.2/91.9 CIFAR-10 6K
MnasNet [23] 4.2 317 74.0/91.8 ImageNet 91K
MnasNet (our impl.) 42 317 73.3/91.3 ImageNet 91K
DARTS [14] 4.7 574 73.3/91.3 CIFAR-10 96
SNAS [26] 43 522 72.7/90.8 CIFAR-10 36
EATNet-A 5.1 563 74.7792.0 CIFAR-10 to ImageNet 856
EATNet-B 53 551 74.2/91.8 CIFAR-10 to ImageNet 856
EATNet-S 4.6 414 72.7/91.1 CIFAR-10 to ImageNet 856

* To avoid any discrepancy between different implementations or training settings, we try our best to reproduce the performance

of MnasNet [
as that we reproduce MnasNet for the fair comparison.

deviation of 0.05) with only 2.04M parameters. The archi-
tecture of the basic model is shown in Fig. 3.

4.2. Transferring to ImageNet

We use the architecture of the basic model searched on
CIFAR-10 as the seed to generate models of the population
on ImageNet. The search process is carried out on the whole
ImageNet training dataset. To avoid overfitting the origi-
nal ImageNet validation set, we have a separate validation
set which contains 50K images randomly selected from the
training set to measure the accuracy. We use the architec-
ture perturbation function to produce 64 new architectures
based on basic architecture. During architecture search, we
train every model for one epoch. The number of multiply-
add operations is set as the sub-optimizing objective during
evolution with the target as S00M. The input resolution of
the network is set to 224 x 224. Each model is composed
of 7 blocks and the number of input channels is 32 as well.
The downsampling operations are carried out in the input
layer and the 2nd, 3rd, 4th, 6th block.

As shown in Fig. 4, the evolution process takes about
100 evolution epochs to converge. In another word, taking
the initial 64 models into account, we only sample around
164 models to find out the best one based on the basic archi-
tecture. In MnasNet [23], the controller samples about 8K
models during architecture search, 50 times the amount of

]. The highest accuracy we could reproduce is 73.3% for MnasNet. All the training settings we use are the same

ours. With much less computational resources, EAT-NAS
achieves comparable results on ImageNet as in Table 1.

Fig. 3 displays the basic architecture and the architecture
of EATNet-A. From the figure, we find that though based
on the basic architecture, there are some transformations on
EATNet-A. During the elastic architecture transfer process,
all architecture primitives in the basic architecture are likely
to be modified. For example, the operation type in the sec-
ond block has changed from Mbconv6 to SepConv, and the
kernel sizes have changed in some blocks. The depth and
the width of the architecture have changed as well. The
modifications to the architecture primitives adapt the archi-
tecture to the new dataset.

In summary, our EAT-NAS includes two stages, search
on CIFAR-10 and transfer to ImageNet. It takes 22 hours
on 4 GPUs to search for the basic architecture on CIFAR-
10 and 4 days on 8 GPUs to transfer to ImageNet. Though
DARTS [14] and SNAS [26] take less search time, they only
search on the small dataset, CIFAR-10. And our ImageNet
performances surpass them clearly.

4.3. Ablation Study

Efficiency of EAT To demonstrate the efficiency of our
proposed method EAT-NAS, we carry out the search pro-
cess on ImageNet from scratch. All the settings are the same
as EAT-NAS in both search and evaluation process. The
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Figure 4: Comparing the evolution process on ImageNet of EAT-NAS and search from scratch.
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Figure 5: The mean accuracy and the mean multiply-adds
of the models during the search on ImageNet whose basic
architecture has worse performance on CIFAR-10.

search process takes the same GPU hours as well. Fig. 4
shows the mean accuracy of models in the population and
the population quality of EAT-NAS and search from scratch
on ImageNet for equal search epochs. We find out that af-
ter initialization, the mean accuracy of models is obviously
higher of EAT-NAS than that of search from scratch all
through the search process. And the evolution process con-
verges faster for EAT-NAS. In Table 2, we compare the best
performing model of top-8 searched from scratch with that
from EAT-NAS. The compared models we select are guar-
anteed to have similar model sizes. The model EATNet-S
surpasses that searched from scratch obviously.

Effectiveness of EAT To verify the effectiveness of our
elastic architecture transfer method, we apply our basic
architecture searched on CIFAR-10 directly on ImageNet
without any modification as the handcrafted transfer does.
We train the basic model on ImageNet under the same set-
tings of EAT-NAS. The performance of the basic model
is shown in Table 2 as well. The basic model achieved
a high validation accuracy but with a very large number
of multiply-add operations. Its high validation accuracy
demonstrates the superior quality of the initialization seed
in the transfer process. Comparing EATNet-A with Basic

Table 2: The results of contrast experiments on ImageNet.
SS denotes the model searched from scratch on ImageNet.
The basic model searched on CIFAR-10 is directly ap-
plied on ImageNet without any modification. Model-B de-
notes the best model searched on ImageNet with a worse-
performing basic architecture.

#Params #Mult-Adds Top-1/Top-5
Model ™) ™) Ace (%)
SS 5.53 447 71.8/90.6
Basic Model 3.14 886 74.3/92.0
Model-B 3.20 405 71.7/790.5
EATNet-A 5.08 563 74.7/92.0
EATNet-B 5.25 551 74.2/91.8
EATNet-S 4.63 414 72.7/91.1

Model, we find that not only does EAT promote the accu-
racy of the model, but also optimizes the size of the model.

Impact of Basic Architecture Performance We select
one architecture with worse performance as the basic archi-
tecture in our transfer process, whose validation accuracy
on CIFAR-10 is 96.16% and the number of parameters is
1.9M. As Fig. 5 shows, the basic architecture with worse
performance has a negative impact on transfer. The mean
accuracy degrades in the preliminary epochs. This experi-
ment demonstrates the importance of a well-performing ba-
sic architecture for transfer. We retrain the searched top-8
models under the same settings and compare the best one
with that searched by EAT-NAS which has a similar model
size. As Table 2 displays, models searched by EAT-NAS
surpass that searched with the bad-performing basic archi-
tecture. We attribute the results to the performance of the
basic architecture.

5. Conclusion and Future Work

In this paper, we propose an elastic architecture transfer
mechanism for accelerating the large-scale neural architec-
ture search (EAT-NAS). Rather than spending a lot of com-
putation resources to directly search the neural architectures



on large-scale tasks, EAT-NAS makes full use of the infor-
mation of the basic architecture searched on the small-scale
task. We transfer the basic architecture with elasticity to
the large-scale task fast and precisely. With less compu-
tational resources, we obtain networks with excellent Ima-
geNet classification results in mobile sizes.

In the future, we would try to combine the proposed
mechanism with other search methods, such as reinforce-
ment learning and gradient-based NAS. In addition, EAT-
NAS can also be utilized to search for neural architectures
in other computer vision tasks like detection, segmentation,
and tracking, which we also leave for future work.
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A. Experiment Details

We provide more experiment details in this appendix.
Our experiments mainly consist of two stages, searching for
the basic architecture on CIFAR-10 and then transferring it
to ImageNet.

A.l. Search on CIFAR-10

For each model during the search ,the depth and width of
the mutated model would vary in an extremely wide range
within our search space if there is not any restriction. Some
constraints are added to the scale of the model within an ac-
ceptable range to avoid the memory running out of control
during the search. On CIFAR-10, the total expansion ratio
is limited within [4, 10].

For training during the search process, the batch size
is set as 128. We use SGD optimizer with the learning
rate of 0.0256 (fixed during the search), momentum 0.9,
and weight decay 3 x 107*. The search experiment is
carried out on 4 GPUs which takes about 22 hours. For
evaluation, every model is trained for 630 epochs with a
batch size of 96. The initial learning rate is 0.0125 and the
learning rate follows the cosine annealing restart schedule.
Other hyperparameters remain the same as that in the search
process. Following existing works [17, 30, 12, 18], addi-
tional enhancements include cutout [6] with the length of
16, and auxiliary towers with weight 0.4. The training of
the searched model takes around 13 hours on two GPUs.

A.2. Transferring to ImageNet

During architecture search, we train every model for one
epoch with batch 128 and a learning rate of 0.05. Follow-
ing GoogLeNet [22], the input images are sampled as var-
ious sized patches of the image whose size is distributed
between 20% and 100% of the image area with aspect ratio
constrained to the interval [%, %] The input resolution of
the network is set to 224 x 224. Other hyperparameters of
the search process are the same as that on CIFAR-10. For
each model, the number of layers is limited within [16, 18]
and the total width expansion ratio is limited within [8, 16].

For evaluating the model performance on ImageNet, we
retrain the final top-8 models on 224 x 224 images of the
training dataset for 200 epochs, using standard SGD opti-
mizer with momentum rate set to 0.9, weight decay 4x 10~°
and 0.1-weighted label smoothing. Our batch size is 256 on
4 GPUs. The initial learning rate is 0.1 and it decays in a
polynomial schedule to 1 x 1074, We follow ResNet [5]
to do the data augmentation. We resize the original in-
put images with its shorter side randomly sampled in [256,
480] and 1 + % aspect ratio for scale augmentation [21]. A

224 x 224 patch is randomly cropped from an image or its
horizontal flip, with the per-pixel mean subtracted [ 1]. For
the last 20 epochs, we only keep the 256 x N for the resizing
scale to fine-tune the model. To avoid any discrepancy be-
tween different implementations or training settings, we try
our best to reproduce the performance of MnasNet (74.0%
on ImageNet). The highest accuracy we could reproduce is
73.3% for MnasNet. All the training settings we use are the
same as that we reproduce MnasNet for the fair comparison.



