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Dear editor,

The sparse representation model has received a great

amount of attention in various signal and image processing

applications. Compressed sensing (CS) [1] has consistent-

ly focused on devising sparse representation methods that

seek to efficiently reconstruct a k-sparse (only k nonzero en-

tries, k ≪ n) underlying n-length signal via a much smaller

number of compressed measurements of length-m (m ≪ n).

Given an unknown k-sparse signal x ∈ R
n, the sparse recon-

struction problem is closely linked to solving a highly unde-

termined linear regression model with sparsity-constrained

optimization

min
x

‖x‖0 s.t. y = Ax, (1)

where x is the unknown signal to be reconstructed, ‖x‖0 is a

measure of sparsity involving the number of nonzero entries

in x, y ∈ R
m is the measurement vector, and A ∈ R

m×n is

the sampling/measurement matrix. The core insight in the

seminal paper on CS [1] is to solve ℓ1 minimization prob-

lems for (1) instead of ℓ0 minimization problems due to NP-

hardness (nonconvexity and combinatorial effects). This is

the basis pursuit (BP) problem in [2]

min
x

‖x‖1 s.t. y = Ax. (2)

Subsequently, researchers have presented various numerical

approaches for sparse signal reconstruction [3]. In general,

there are two major classes of numerical approaches: convex

relaxation and greedy algorithms. Convex relaxation uses ℓ1
norm of x in (2) instead of the ℓ0 norm in (1). In 2010, an al-

gorithmic framework called iterative support detection (IS-

D) was presented in [4]; this framework improves the failed

BP reconstructions by detecting the support set through the

solution of a truncated ℓ1 optimization problem (2). Anoth-

er line of research concerns greedy algorithms such as iter-

ative hard thresholding, hard thresholding gradient descent

(GraDes) [5], or hard thresholding pursuit (HTP) [6] for

approximating the ℓ0-constrained solution to (1). The key

part of greedy algorithms is to iteratively improve a sparse

solution by successively selecting one or more elements at

a time. Yuan et al. [7] presented gradient hard threshold-

ing pursuit (GraHTP) as a generalization of HTP from CS

to the generic problem of sparsity-exploiting loss functions.

Huang et al. [8] proposed a numerical method called sup-

port detection and root finding (SDAR) to approximate (1)

motivated from the KKT conditions for the ℓ0-constrained

least squares problem. The key idea is to iteratively create

a sequence of solutions based on support detection by ref-

erencing the primal and dual information and root finding

using truncated least squares optimization.

In this work, inspired by the success of ISD and SDAR in

sparse signal reconstruction, we propose a novel algorith-

mic framework, called generalized two-stage thresholding

(GTST), to determine sparse solutions of undetermined lin-

ear systems. GTST regards support detection as the first

stage thresholding, which detects a support set I using an

approximate iteration of (1) as the reference, and signal es-

timation as the second stage thresholding, which estimates

a new reconstruction by solving a truncated ℓ0-constrained

minimization problem on the detected support I; it repeats

these two stages for a few iterations. GTST generalizes ISD

from BP based convex relaxation to a generic ℓ0-constrained

minimization problem setup of sparsity-exploiting convex

optimization. It means that GTST exhibits more flexible

thresholding methods than SDAR. In addition, we introduce

an efficient implementation of GTST (dubbed as GTST-α)

equipped with an effective thresholding method for support

detection. GTST-α runs as fast as SDAR but requires sig-

nificantly fewer measurements. GTST-α is sparsity adap-

tive by introducing an easy-to-tune parameter α. This is

an appealing feature when the sparsity level is unknown. In

contrast to ISD, GTST-α is easy-to-implement.

Methods. Considering a CS sparse signal reconstruction

problem, the greedy algorithms aim to detect the infor-

mative support I and estimate y by k-term approximation

through y = AIxI . Then, reconstruct the unknown sparse
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signal x by solving the truncated version of the least squares

problem

xI = argmin
z

{‖y − AIz‖
2

2, supp(z) ⊆ I}, xT = 0, (3)

where the matrix AI refers to the restricting columns from

A indexed by I, T = [1, n] \ I is the complement set

of I on {1, 2, · · · , n}. Let supp(x) denote the support set

of x, i.e., the index set corresponds to the nonzero ele-

ments in x. The approximate analytical solution of xI is

A
†
I
y = (A′

I
AI )

−1A′
I
y. For large-scale applications, the

truncated least squares problem can be easily implemented

using the conjugate gradient method. We define a general

class of greedy algorithms, termed GTST. Starting from a

solution x = 0, GTST iterates between two main steps:

Step 1: Support detection:

Identify the support set I of the unknown signal x by refer-

encing the step of approximating solution of (1).

Step 2: Signal reconstruction:

Reconstruct the true sparse signal x by solving the truncated

version of least squares problem, xI = A
†
I
y, xT = 0.

Like ISD, GTST is an algorithmic framework. For GTST,

successful sparse signal reconstruction depends on support

detection, which requires an efficient reference and an ef-

fective support detection strategy. We employ the GraDes

step [5] as the reference for support detection and introduce

an efficient implementation of GTST equipped with a dy-

namic thresholding strategy. The complete description of

the proposed algorithms is presented here:

Step 1: Initialization:

Initialize primal approximation x0 = 0, residual signal

r0 = y, dual approximation d0 = A′r0, support set I0 = ∅,

complement set T 0 = [1, n], and set the iteration counter

t = 1.

Step 2: Support detection:

Update signal approximation: xt = xt−1 + dt−1.

Detect the support set I:

It = {i : |xti| > α max |xtj |; i ∈ [1, n], j ∈ T t−1, α ∈ (0, 1]},

T t = [1, n] \ It.

Step 3: Signal reconstruction:

Estimate the signal: xt
It

= A
†

It
y, xt

T t
= 0.

Update the residual: rt = y − Axt.

Update the dual approximation: dt
T t

= A′
T t

rt, dt
It

= 0.

Step 4: Halting:

Check whether the stopping condition is False. If so, update

t = t+1 and back to Step 2. Otherwise , the reconstructed

signal x has nonzero elements in the support set It and xt
It

corresponds to the support vector.

We have presented the implementation of GTST, which

employs the GraDes step as the reference for support detec-

tion, and the corresponding algorithm referred to as GTST-

α (as shown in Appendix A), where α ∈ (0, 1] is the thresh-

olding parameter. The key idea is to constrain the GraDes

step to be sparse via dynamic thresholding. GTST-α it-

eratively refines the detected support I, which is not nec-

essarily nested or increasing over the iterations. However,

SDAR needs a hard thresholding to fix the cardinality of

the support set I and ensures that the new approximation

is k-sparse. The most appealing feature of GTST-α is its

capability of sparse recovery without prior knowledge about

the underlying sparsity level k. This makes it a promis-

ing candidate for many practical applications. GraDes can

be considered as a single-stage thresholding method, which

does not involve a refining step on the detected support set

I. GTST updates the reconstructed signal using a truncat-

ed least-squares solution on the detected support set I with

size no more than k. However, ISD progressively refines the

ℓ1 solution on the complement set of the support set I with

larger sizes.

Experiments. We evaluate the sparse reconstruction a-

bility of GTST and compare it with GraDes and SDAR,

where the latter is a state-of-the-art algorithm. First, we

present a demo of signal reconstruction performed in [4].

GTST-α can perfectly reconstruct a sparse signal with 25

nonzeros using only 60 measurements with signal dimension

n=200, but SDAR fails to do so under the same setting. Sec-

ond, we demonstrate the sparse reconstruction performance

of GTST in terms of the probability of exact reconstruc-

tion. GTST-α obtains better reconstruction performance

than GraDes and SDAR. For more detailed experimental

results, please refer to the supplementary materials.

Conclusion. In this work, we proposed a novel algorith-

mic framework, dubbed as GTST, for CS sparse signal re-

construction. GTST alternates between detecting a support

set of the unknown true signal by referencing the step of ap-

proximating solution of ℓ0-constrained least-squares prob-

lem and reconstructing the sparse signal by solving a trun-

cated version of least-squares optimization on the detected

support. Moreover, we proposed an efficient implementation

of GTST equipped with an effective thresholding approach

for support detection. The experimental studies demon-

strated that GTST outperforms SDAR and GraDes in terms

of the probability of exact reconstruction.
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