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Abstract

Developing point convolution for irregular point clouds
to extract deep features remains challenging. Current meth-
ods evaluate the response by computing point set distances
which account only for the spatial alignment between two
point sets, but not quite for their underlying shapes. With-
out a shape-aware response, it is hard to characterize
the 3D geometry of a point cloud efficiently with a com-
pact set of kernels. In this paper, we advocate the use of
Hausdorff distance as a shape-aware distance measure for
calculating point convolutional responses. The technique
we present, coined Hausdorff Point Convolution (HPC),
is shape-aware. We show that HPC constitutes a pow-
erful point feature learning with a rather compact set of
only four types of geometric priors as kernels. We further
develop a HPC-based deep neural network (HPC-DNN).
Task-specific learning can be achieved by tuning the net-
work weights for combining the shortest distances between
input and kernel point sets. We also realize hierarchical
feature learning by designing a multi-kernel HPC for multi-
scale feature encoding. Extensive experiments demonstrate
that HPC-DNN outperforms strong point convolution base-
lines (e.g., KPConv), achieving 2.8% mIoU performance
boost on S3DIS [1] and 1.5% on SemanticKITTI [3] for
semantic segmentation task.

1. Introduction

Analysis of large-scale scanned scenes is drawing in-
creasing attention driven by advances in deep neural net-
works. Point clouds acquired by common depth scanners,
e.g., LiDAR, RGBD cameras, have challenging character-
istics: noisy, incomplete, sparse, irregular, and unordered.
These characteristics prevent applying conventional convo-
lutions to successfully extract effective per-point features.

Early attempts to applying convolutions on point cloud
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Figure 1. In Hausdorff Point Convolution, the response of a lo-
cal neighborhood (Q1 or Q2) to a geometric kernel (G) is com-
puted based on Hausdorff distance, which is a shape-aware dis-
tance measure. Such shape-aware convolution facilitates a power-
ful point feature learning with a compact set of geometric priors
as convolutional kernels.

have bypassed the irregularity problem by mapping the data
to predefined regular grids [38, 24]. Advanced techniques
use point convolution methods based on implicit or geomet-
ric kernel functions [36, 18, 32]. For example, KPconv [33]
adopts explicit kernel point set and achieves state-of-the-art
results. A crucial design choice herein is how to compute
the response between the input and a kernel point sets. Ex-
isting methods usually evaluate the response by computing
point set distance. The distance measures used by existing
techniques only account for the spatial alignment between
two point sets but not quite for their underlying shapes.
Without a shape-aware response, it is hard to characterize
the 3D geometry of a point cloud efficiently with a compact
set of kernels.

In this paper, we advocate the use of Hausdorff distance,
as a shape-aware distance measure, and show that it is par-
ticularly suited for computing convolutional response be-
tween a point cloud and a kernel point set; see Figure 1. We

1

ar
X

iv
:2

01
2.

13
11

8v
1 

 [
cs

.C
V

] 
 2

4 
D

ec
 2

02
0



introduce a new point convolution where the response of the
local neighborhood against a geometric kernel is computed
based on the Hausdorff distance measure, hence named
Hausdorff Point Convolution (HPC). Since HPC is shape-
aware, we are able to achieve a powerful point feature learn-
ing with a particularly compact set of only four types of
geometric priors as kernels. The key characteristic of Haus-
dorff distance is its robustness to noise, outliers and irregu-
lar point density, making HPC highly preferable for feature
learning of typical raw scan point data. Another property
of HPC is that it is permutation-invariant and can handle
data with arbitrary scales. Furthermore, rotation invariance
can be achieved by adopting a rotationally-symmetric ker-
nel shape.

We developed a HPC-based deep neural network, re-
ferred to as HPC-DNN, by adopting KPConv [33] as the ba-
sic architecture. To make HPC operations learnable within
the network, we decompose HPC into a distributive function
and a shortest distance matrix between the point sets of the
local neighborhood and a geometric kernel. The distribu-
tive function is then used to aggregate the shortest distances
weighted by the learnable parameters and the input features,
which is essentially a weighted Hausdorff distance. Task-
specific learning is achieved by tuning the network weights
for shortest distance aggregation. To realize hierarchical
feature learning, we design multi-kernel HPCs for multi-
scale feature learning.

We have implemented HPC-DNN with PyTorch and
evaluated it on several classic tasks of point cloud process-
ing and understanding, i.e., semantic object detection and
segmentation on point scanned scenes. Experiments show
that HPC-DNN outperforms strong baseline point convolu-
tions (e.g., KPConv) significantly. In particular it attains
2.8% mIoU improvement on S3DIS [1] and 1.5% on Se-
manticKITTI [3] for semantic segmentation task.

2. Related Work
The analysis of unstructured point cloud is widely re-

garded as a difficult and ill-posed problem. In partic-
ular, feature extraction is a fundamental and important
one [29, 26, 27]. Recently, with the emergence of neural
networks, new methods for point cloud analysis have been
introduced [22, 23, 19]. These methods build upon the abil-
ity of neural networks to learn from data. The key challenge
in deploying neural networks is that point clouds are irreg-
ular and unordered, so conventional convolutions cannot be
adopted. Previous works can be roughly categorized into
three: i) Grid-based, ii) Implicit, and iii) Explicit point con-
volution. We briefly discuss them as follow.

Grid-based convolution on point clouds. To bypass the
data irregularity, these grid-based methods project or trans-
form the data into regular grids, on which traditional con-

volution methods can be applied [31, 21]. These meth-
ods are mainly designed for individual objects. For exam-
ple, in SFCNN [24], point clouds are projected onto a grid
sphere. The local and global features are then learned by a
multi-layer perception (MLP) architecture. FoldingNet [38]
proposes a two-step-folding operation to construct a map-
ping between point set and 2D grid. To obtain higher-
level features, some researches adopt the VoxelNet frame-
work. In [39], point clouds are voxelized and a shape atten-
tion regional proposal network is trained to learn the spa-
tial occupancy of objects in horizontal and vertical direc-
tions. Grid-based convolution is limited by resolution due
to heavy computation cost, which might be relieved with
efficient data structure [25, 15]. Nonetheless, this thread of
methods are, in general, sensitive to noise and tend to over-
look small-scale, yet visually meaningful shape details. For
larger and more complex scenes, specific designs need to
deal with incomplete data and outliers.

Implicit point convolution. The pioneering work of
PointNet [22], opened an avenue of works focusing on di-
rect convolution on 3D point clouds, which either aim to
improve the neighborhood structure [23, 7, 30], or to en-
hance the convolutional filters [28, 9, 37]. Atzmon et al. [2]
propose a unique volume-based point convolution, which
consists of two operators, i.e., extension and restriction,
mapping point cloud functions to volumetric ones and vise-
versa. Hu et al. [10] propose a location spatial encoding
block to group relative coordinates and input features, and
then extract the neighboring features. Li et al. [19] present
PointCNN, which uses MLP to learn an X matrix to can-
onize the point cloud features, thus permutation- invariant
and offering hierarchical convolutions. PointConv [36] con-
structs a location related weight function for continuous
convolution, and re-weight the weight function through a
learned point density factor. Tatarchenko et al. [32] pro-
pose a TangentConv that uses Gaussian kernels as implicit
kernel metrics functions. DGCNN [35] adopts an Edge-
Conv, which constructs a local graph on neighboring points.
Graph information function is instantiated by a fully con-
nected layer. All these methods locally organize the geo-
metric features [20, 16], and then use MLP to obtain the
final high-level features, referred to as implicit point con-
volution. These implicit convolutions learn permutation or
rotation invariance by MLP layers, thus sensitive to training
data quality and the network training convergence.

Explicit point convolution. Deep feature extraction by
analyzing local neighborhoods has received intensive atten-
tions, but no much focus has been given to the develop-
ment of explicit reference shapes to promote the deep fea-
ture expressiveness. Recently, KPConv [33] introduces a
point kernel based method for point cloud convolution op-
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Figure 2. An overview of the proposed HPC-DNN. The HPC-DNN adopts a multi-kernels Hausdorff based point convolution (HPC), and
extracts hierarchical features from the large-scale input point cloud scene. Then, multi-scale convolution responses of different kernels are
merged in each layer to implement scene semantic segmentation.

erations, which achieved state-of-the-art performances on
classic point cloud datasets. However, this method simply
applies the form of a two-dimensional grid operation and
uses a prescribed kernel function. JSENet [33] adopts KP-
Conv as its backbone network for point convolution, and
proposes a deep network that fuses the region and edge in-
formation for joint learning of semantic segmentation and
edge detection. Taking a perspective of blending both ge-
ometry and topology, we define a permutation-invariant and
scale-invariant geometric convolution, offering the analysis
of unordered point clouds. By combining feature mapping
and geometric convolution, we construct a convolutional
neural network that learns to weight the input shape fea-
ture. Moreover, based on the diversity of shapes, the multi-
kernels are designed to extract hierarchical features jointly.

3. Method
Overview We propose Hausdorff point convolution
(HPC), a new point convolution based Hausdorff distance.
In HPC, there are four types of convolutional kernels whose
parameters are learnable with downstream tasks such as
point cloud segmentation; see Figure 2. The feature re-
sponse between input points and kernel points is computed
based on Hausdorff distance which essentially measures the
similarity between the two point sets. The feature responses
of multiple kernels at the same scale (layer) are combined to
form a powerful representation. Deep networks are formed
by stacking multi-scale HPCs which learn hierarchical fea-
ture representations and finally produce an output.

3.1. Definition of HPC

Given an input feature vector F = f(v) and a kernel
vector G = g(v), the discrete convolution writes as:

F ∗G =
∑
u∈U

f(u)g(v − u) = 〈f(u), g(v − u)〉, (1)

where ∗ denotes convolution operation, and 〈·, ·〉 is vector
inner product. Convolution is essentially a “sliding inner
product” between the input feature f(u) and the flipped ker-
nel g(v−u). Inner product measures the similarity between
two vectors. The convolution response thus reflects a “slid-
ing similarity” between the “shape” of F and G.

In 2D convolutional layers of a CNN, the similarity is
measured between a 2D feature map and a 2D filter for fea-
ture extraction. We hope to extend this concept of convo-
lution to deep feature learning of 3D point clouds. We give
a generalized definition of point convolution. Given a point
po ∈ P and its neighboring point set Q, and a given kernel
point set G, we use a function T to calculate the similarity
response ~ between each other:

~ = T (Q,G), Q = {pi | ‖po − pi‖ ≤ r}, (2)

where r is the query radius. Hausdorff distance can be
used for computing shape similarity. Given the neighboring
point set Q and a kernel point set G, the Hausdorff distance
H(Q,G) is adopted as the convolution function T :

H(Q,G) = max(h(Q,G), h(G,Q)), (3)

where h(G,Q) and h(Q,G) are called the narrow Haus-
dorff distance. Their formula is defined as follows:

h(G,Q) = max
g∈G

min
q∈Q
‖g − q‖,

h(Q,G) = max
q∈Q

min
g∈G
‖g − q‖,

(4)

where ‖g−q‖ is the Euclidean distance between point g and
q. Obviously, H(G,Q) = H(Q,G) ≤ r, but h(G,Q) 6=
h(Q,G) in general.

If the kernel point set G is defined in a spherical space,
G = {gi | ‖gi‖ ≤ r}, the neighborhood point set Q and
the kernel point set G do not necessarily need a rigid regis-
tration, which means that Hausdorff distance measurement
can be performed directly on the two point sets.
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Figure 3. Hausdorff distance metric on an indoor scene. The point
color (dark to bright) indicates the Hausdorff distance value (low
to high) between neighborhood points and the given kernel.

In fact, the Eq. (3) satisfies the important prop-
erties of point cloud convolutions described in [19].
For Q = [q1, . . . , qn] and its permuted counterpart
Q′ =

[
q′π1

, . . . , q′πn

]
, it has point permutation invariance:

H(Q,G) = H(Q′, G). Besides, it is scale invariance af-
ter normalization as H(Q,G) = H(rQ, rG)/r with the
query radius r being a given constant. Since H(G,Q) ≤ r,
1/r is then the normalization factor. This means that a ker-
nel shape can calculate neighboring shape responses at any
scale or query radius. Figure 3 shows the result of calcu-
lation using the Eq. (3) on a 3D indoor scene. It can be
seen that the vertical line kernel causes a notable response
on the pole-like structures, while the plane kernel has a no-
table response on the ground. This result is very similar to
the neuron activation of feature maps in 2D convolutional
neural networks.

3.2. HPC Layer

As a network layer, Hausdorff convolution layer should
contain learnable weights which can be optimized via back
propagation. Instead of computing the Hausdorff response
directly, we opt to assign a weight corresponding to each
shortest distance, and automatically adjust the length ac-
cording to the attitude and distribution of neighboring
points with input features. We split the Hausdorff dis-
tance operator into two parts: the shortest distance set and
the distributive function (see definition below). The dis-
tance between a neighboring point qi and a kernel point set
G is defined as d(qi, G) = ming∈G ‖g − qi‖, and simi-
larly the distance between a kernel point gi and a neigh-
boring point set Q is d(gi, Q) = minq∈Q ‖gi − q‖. Let
set Dg represent the set of distances from each point in G
to the set Q as Dg = [d(g1, Q), . . . , d(gn, Q)], and Dq

be Dq = [d(q1, G), . . . , d(qm, G)], where n = |G| and

m = |Q|. Therefore, the Hausdorff convolution between
Q and G can be written as:

H(Q,G) = max(max(Dg),max(Dq))

= max([Dg, Dq]).
(5)

Let us name a function f satisfying f({f(Dg)} ∪
{f(Dq)}) = f(Dg ∪ Dq) a distributive function.
[Dg, Dq] = Dg ∪Dq is the shortest distance set. It can be
seen that the max function is a distributive function. How-
ever, the max operator is sensitive to outliers. To overcome
this issue, many improved variants of Hausdorff distance
has been proposed [5]. Among the variants, we found the
Hausdorff distance in the cumulative form [13] is more ap-
propriate for pattern matching. This modified Hausdorff
distance is:

h(Q,G) =
∑
q∈Q

min
g∈G

d(g, q). (6)

In this case, Eq. (3) and Eq. (4) would also adopt accumu-
lation operation instead of max operation. Let sum indicate
the accumulation of elements in a set, it can be:

H(Q,G) = sum(sum(Dg), sum(Dq))

= sum([Dg, Dq]).
(7)

Obviously, the accumulation function is also a distributive
function. We construct a shortest distance matrix Dmin to
store the shortest distance set Dg ∪Dq:

Dmin(i, j) =

{
‖qi − gj‖, ‖qi − gj‖ ∈ Dg ∪Dq

0, otherwise
(8)

where 1 ≤ i ≤ m and 1 ≤ j ≤ n. The size of Dmin is
n×m.

The point convolutional network layer is to weight the
elements in Dmin, and the input feature of each point can
also be considered as a distance weighting constant. In-
spired by KPConv [33], we formulate the computation of
Hausdorff convolution based on the shortest distance ma-
trix Dmin. For a input features Fin ∈ Rm×cin , and an output
features Fout ∈ Rcout , the convolution formula of the point
convolutional layer is:

Fout = f(DminFinW ), (9)

where W is the weight matrix with a size of n× cin × cout.
It maps the features from input channel number cin to the
output channel number cout. The shortest distance matrix
is a sparse matrix: ‖Dmin‖0 ≤ n + m. Therefore, multi-
plying Dmin by the weight matrix W approximates weight-
ing each shortest distance as wjiDmin(i, j). Since distribu-
tive functions including max, sum, min are all differen-
tiable, the Hausdorff convolutional layer is also differen-
tiable. Figure 4 shows the architecture of a HPC layer. As
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Figure 4. A point convolutional layer of the proposed HPC-DNN. The inputs are a query point and its neighboring points with correspond-
ing features and a given kernel points, the output is a feature vector of query point.

can be seen, the shortest distance matrix is normalized be-
fore weighting. Normalization is to remove the scale factor:
D̄min(i, j) = Dmin(i, j)/r. In addition, since the Hausdorff
distance measures the maximum dissimilarity between two
shapes, for similarity response, the nonzero value should
take 1− D̄min(i, j).

Hausdorff convolution is a general form of point cloud
convolution operation. From the view of Hausdorff con-
volution, KPConv [33] is equivalent to computing a one-
way similarity by using a self-defined measurement func-
tion (kernel function). PointConv [36] and RSCNN [20] are
equivalent to matching with a kernel containing only one
point at the center. PointConv uses density information to
weight distance, while RSCNN adopts maximum distance.

3.3. HPC with Multiple Kernels

Similar to common CNNs, we require multiple kernels
(the point cloud G) to facilitate a powerful feature learn-
ing. This involves the design of kernel point generation and
multi-kernel network structure.

Kernel point generation The choice of the shape of ker-
nel point clouds is important. They should be geometric
primitives (e.g., planar patches, cylindrical patches, quadric
patches, etc.), and meanwhile they should be ideally om-
nipresent on the 3D surface of common objects and scenes.
In this work, we find that the following four types of kernel
shapes suffice: points, lines, planes, and spherical patches,
encompassing primitives from 0D to 3D. Further, we find
that Hausdorff response is more robust if G has a rotation-
ally symmetric structure:

H(Q,G) = H(RQ,G), (10)

where R ∈ SO(3) is a rotation transformation being ap-
plied to the neighborhood point set Q. Apparently, point
and spherical kernels bring rotation invariance to the cal-
culation, which qualifies Hausdorff distance for retrieving
the same kernel in varying poses. To form the kernel point
sets, we sample the primitive shapes using the farthest point

+
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Output Features

HPC Relu

HPC

... ...

Relu Relu

HPC Relu

p ∗ cout

1

p ∗ cout

1

p ∗ cin

1

Figure 5. The architecture of multi-kernel Hausdorff point convo-
lution layer. For a query point and its input feature Fin, output
feature Fout, the convolution results cout of K kernels are linearly
accumulated.

sampling (FPS) algorithm. Figure 3 shows the four kernel
shapes adopted in our method.

Multi-kernel network structure With multiple kernel
point sets, we hope that each convolution feature compo-
nent contributes to the final encoding feature. Therefore,
a multi-kernel feature encoding F̃out ∈ Rcout groups K
Hausdorff point convolution result Fout ∈ Rcout :

F̃out = ReLU(

K∑
k=1

ReLU(Fout(Gk))), (11)

where K is the number of kernels and ReLU is the activa-
tion function of rectified linear units. Figure 5 shows the
architecture of multi-kernel Hausdorff point convolution.
Different kernel features are grouped by summing opera-
tion. Compared with concatenation operation, the param-
eter amount of summing is smaller and the common part
between features can be mutually enhanced.

4. Results and Evaluation
Our network, HPC-DNN, is implemented based on KP-

FCNN [33]. The network architecture consists of two parts:
an encoder and a decoder. The encoder contains five convo-
lutional layers. Each convolutional layer contains two HPC

5



Input Scan
Spherical Plane Vertical Line Central Point

Figure 6. Visualization of feature maps on point clouds after point convolution with different kernels.

layers or two multi-kernel HPC layers. For a feature of di-
mension cin, the input and output dimension of the first con-
volution operation is cin and 2∗ cin, respectively. The input
and output dimensions of the second convolution layer are
both 2∗ cin. The query radius r of point neighborhood dou-
bles for every layer. The decoder, following the encoder,
acts as deconvolution. Deconvolution implements point fea-
ture propagation based on nearest neighbor upsampling. We
retain the shortcut structure of KP-FCNN in convolutional
layers. For multi-kernel HPCs, the shortcut structure is re-
moved for building a concise convolutional layer.

We implement our network with PyTorch and perform
training/testing on a server with 22 Intel 2.20GHz Intel(R)
Xeon(R) E5-2699 CPU and 9 Quadro GV100. We con-
duct scene semantic segmentation tasks on large-scale point
clouds of indoor and outdoor scenes for evaluation.

4.1. Segmentation on S3DIS

For indoor scene segmentation, we use the public in-
door point cloud dataset S3DIS [1] to compare our proposed
HPC-DNN with KPConv [33], JSENet [11] and other state-
of-the-art point convolution methods. S3DIS contains 271
indoor rooms encompassing offices, corridors, etc. The 3D
data were acquired with RGBD scanner, and the dense point
cloud data is associated with RGB color information. Fol-
lowing the convention, we use the set of Area-1 to Area-4
and Area-6 for training, and the set of Area-5 for testing.
Segmentation accuracy is measured by mean of intersection
over union (mIoU).

Table 1 shows that our HPC-DNN exhibits a significant
performance improvement for scene segmentation com-
pared to other baselines. We achieve a 66.7% for single
kernel HPC and 68.2% for multi-kernel HPC, which are
both higher than KPConv [33] under the same configura-
tion. In particular, the results of multi-kernel HPC-DNN
achieves the state-of-the-art performance among all meth-
ods. Due to the high scanning quality of S3DIS scenes, the
geometry of the objects is relatively complete. The multi-
kernel HPC-DNN can effectively capture and enhance the
geometric features of semantic targets.

Table 1. Semantic scene segmentation results on S3DIS.
Method mIoU

TangentConv [32] 52.6
PointNet++ [23] 53.4

DGCNN [35] 56.1
PointCNN [19] 57.3
PointNet [22] 57.8

ParamConv [34] 58.3
PointWeb [41] 60.3
HPEIN [14] 61.9

SPGraph [17] 62.1
MVPNet [12] 62.4

Point2Node [8] 63.0
MinkowskiNet [4] 65.4

KPConv [33] 65.4
JSENet [11] 67.7
HPC-DNN 66.7

Multi-kernel HPC-DNN 68.2

4.2. Segmentation on SemanticKITTI

SemanticKITTI [3] is a dataset of large-scale outdoor
point clouds built based on the KITTI vision benchmark [6].
The data sequences in SemanticKITTI are composed of
continuous frames of point cloud captured by LiDAR scan-
ners without color information. Although a single frame
of point cloud contains about 100K points, they are usu-
ally scattered in a space of 160 × 160 meters. Therefore,
the point clouds are very sparse. Besides, due to the round
scanning nature of LiDAR, the density of the point clouds
is heavily anisotropic, which further increase the difficulty
of processing and understanding. We use sequences 0–7
and 9–10 for training, and sequence 8 for testing. We again
use mIoU to evaluate the prediction accuracy over the 19
categories in the dataset. Our method is compared to KP-
Conv [33], PolarNet [40] and other baselines. The hyper-
parameters, e.g., the query radius of each layer and the num-
ber of sampled points, are kept consistent across different
deep networks.
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Table 2. Semantic scene segmentation results on SemanticKITTI.
Method mIoU

PointNet++ [23] 20.3
RSCNN [17] 47.2
PolarNet [40] 58.2
KPConv [33] 58.8
HPC-DNN 59.6

Multi-kernel HPC-DNN 60.3

Table 3. The effect of different distributive function f .
f function mIoU

max function 65.41
min function 65.05
sum function 66.65

Table 2 shows the scene segmentation result of our net-
works and other baselines. HPC-DNN and Multi-kernel
HPC-DNN get an mIoU of 59.6% and 60.3%, respectively,
outperforming the state of the art KPConv. Although the
point clouds of this dataset contain much missing data, HPC
is still able to capture as much geometric information as
possible, leading to improved understanding results.

4.3. Ablation Study

Distributive functions. We analyze the performance of
our HPC-DNN with different kinds of distributive functions
(see definition in Section 3.2). The experiment was carried
out on the S3DIS dataset using a spherical kernel, with max,
min, and sum functions used, respectively. As shown in
Table 3, the accuracy of the sum function is 65.41% which
is better than 65.04% of min and 65.01% of max. Although
these three functions are all metric functions recommended
by Dubuisson and Jain [5], the cumulative form of sum is
more preferable in overcoming the outlier issue.

Shortest distance matrix. In Section 3.2, we use shortest
distance matrix to capture the correlation between the ker-
nel and target shapes. Shortest distance matrix is a sparsifi-
cation of neighborhood distance matrix with only the short-
est distances kept and the rest set to 0. Here, we make a
comparison between the shortest distance matrix and neigh-
borhood distance matrix using S3DIS. Table 4 shows that
the performance of shortest distance matrix is much better
than that of neighborhood distance matrix. Although the
shortest distance matrix contains less information than the
neighborhood distance matrix, the results demonstrate that
the former effectively retains the key information of point
neighborhood and avoids the interference of redundant data.

Table 4. Analysis of the shortest distance factor: with and without
constructing the shortest distance matrix.

Distance type mIoU

All distances between G and Q 61.84
The shortest distance 66.65

Table 5. The impact of kernels in different shapes.
Kernel prior shape mIoU

Sphere 66.65
Plane 64.02
Straight Line 62.16
Center point 44.70

Table 6. The results of different numbers of kernels.
The number of Kernel mIoU

Kernel (Sphere) 66.65
Kernels (Sphere + Plane) 67.85
Kernels (All Four) 68.23

4.4. Impact of Kernels

Kernel shape. We tested the effect of different kernel
shapes over the S3DIS dataset. The kernel shapes being
tested include 3D sphere, 2D plane, 1D straight line, and
a center point. The number of points in each kernel is 15,
and all the points are generated by sampling the parametric
shape with farthest point sampling. The results are shown
in the Table 5. It can be seen that spherical kernel achieves
the best performance of 66.65%. Planar kernel, straight line
kernel, and center point kernel obtain 64.02%, 62.16% and
44.70%, respectively. The good performance of spherical
kernel is mainly attributed to invariant to rotation in calcu-
lating geometric distances. Since the point kernel concen-
trates at the center, it is less informative.

Number of kernels. We also analyze the impact of the
number of kernels using, again, S3DIS. The numbers of
kernels tested are K = 1, K = 2, and K = 4. The results
are shown in the Table 6. As can be seen, the performance
of network with multi-kernels significantly improves over
the single kernel version. Among multi-kernel versions,
two-kernel leads to a performance improve of 1.2%, and
four-kernel 1.6%. This shows that the features extracted by
the multi-kernel HPC can effectively complement to each
other, and provide more powerful feature description for the
point clouds. Of course, multi-kernel features contain re-
dundancy, which explains the slower performance improve-
ment when four kernels are used.
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Figure 7. A gallery of HPC-DNN segmentation results on the S3DIS dataset.

Ground-Truth Our Result Ground-Truth Our Result

Figure 8. A gallery of HPC-DNN segmentation results on the challenging SemanticKITTI dataset.

4.5. Visualization of Results

We visualize the feature map of our HPC-DNN network
after convolution, particularly the extracted features from
different kernel shapes. Besides, we visualize the segmen-
tation results of HPC-DNN on S3DIS and SemanticKITTI.

Figure 6 shows the feature maps of the same layer with
different kernels on a S3DIS point cloud scene. In some fea-
ture channels, the features extracted from each kernel has
obvious characteristics. In two different feature channels,
the spherical kernel produces similar convolution response
on the wall in the same direction(left sub-figure) and in arbi-
trary directions(right sub-figure), respectively. It shows that
the network has learned directional information by spheri-
cal kernel. Meanwhile, the planar kernel strengthens edge
structures. The vertical linear kernel is robust to the vertical
walls with the same feature distribution. The center point
kernel has a local strengthening effect on the point cloud
associated with input features.

Figure 7 shows some results of scene segmentation on
S3DIS. It can be seen that our method attains accurate seg-
mentation results; it is especially good at distinguishing ob-
jects with geometry discrepancy. The segmentation error
mainly comes from the semantic objects on the facade with
similar planar shape. Figure 8 demonstrates the predicted

labels by our proposed network on SemanticKITTI. As can
be seen, small objects, e.g., vehicle, on road scene are well
distinguished by our method.

5. Discussion and Future Work
We have presented a method for 3D point cloud convo-

lution using Hausdorff distance between neighborhoods of
the query points and a set of kernel points. The convolu-
tion operation is share-aware and allows a powerful feature
learning with a small set of geometric priors/kernels. Based
on this geometric convolution operator, we extend conven-
tional regular CNNs to HPC-DNN, using multi-kernels rep-
resenting different geometric priors. We further extend our
approach and define a weighted Hausdorff distance, which
fuses features from adjacent levels and local geometric in-
formation in the network. Evaluations on point cloud scene
dataset S3DIS and SemanticKITTI demonstrates that our
method is effective, about 2% higher than strong baselines.

Our HPC-DNN has similar limitations as conventional
CNNs: the number of kernels, i.e., convolution filters,
is limited by the capacity of the deep network. Fur-
thermore, the kernel points represent prescribed geometric
prior. Their shape is not learnable; only their shortest dis-
tance weighting is learned. For extreme sparse point cloud

8



data, the geometry is hard to be extracted, hindering the ex-
traction of effective features by the HPC-DNN. In the fu-
ture, we would like to explore different architecture based
on HPC, where, in a longer term, explore the possibility to
learn the kernel geometries. The challenge is to keep the
valuable properties of permutation and scale invariance.
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