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A Layered Grouping Random Access Scheme

Based on Dynamic Preamble Selection for

Massive Machine Type Communications
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Abstract

Massive machine type communication (mMTC) has been identified as an important use case in

Beyond 5G networks and future massive Internet of Things (IoT). However, for the massive multiple

access in mMTC, there is a serious access preamble collision problem if the conventional 4-step random

access (RA) scheme is employed. Consequently, a range of grant-free (GF) RA schemes were proposed.

Nevertheless, if the number of cellular users (devices) significantly increases, both the energy and

spectrum efficiency of the existing GF schemes still rapidly degrade owing to the much longer preambles

required. In order to overcome this dilemma, a layered grouping strategy is proposed, where the cellular

users are firstly divided into clusters based on their geographical locations, and then the users of the

same cluster autonomously join in different groups by using optimum energy consumption (Opt-EC)

based K-means algorithm. With this new layered cellular architecture, the RA process is divided into

cluster load estimation phase and active group detection phase. Based on the state evolution theory

of approximated message passing algorithm, a tight lower bound on the minimum preamble length for

achieving a certain detection accuracy is derived. Benefiting from the cluster load estimation, a dynamic

preamble selection (DPS) strategy is invoked in the second phase, resulting the required preambles with

minimum length. As evidenced in our simulation results, this two-phase DPS aided RA strategy results

in a significant performance improvement.

Index Terms — grant-free, layered grouping, AMP algorithm, minimum preamble length.

I. INTRODUCTION

In the next generation cellular networks, massive machine-type communications (mMTC) will

play an essential role for building the massive Internet of Things (IoT) and hence have been
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identified as one of the three main use cases in 5G and Beyond 5G (B5G) services. The mMTC

service has its particular features: (1) compared with human-to-human (H2H) communications,

the number of potential users (devices) in mMTC scenario could reach up to millions [1]; (2)

the user activity patterns are very sporadic; (3) mMTC demonstrates a salient short-packet-

transmission property [2]; (4) the users are very sensitive to energy consumption [3].

Let N represent the total number of potential users in a cell and Nac the number of active

users during one random access opportunity (RAO). Hence, the system sparsity could be defined

as λ = Nac

N
. Even λ is normally small in mMTC scenario, Nac is still significantly larger than

the size of LTE preamble pool. Because N is extremely large [4]. As a result, the traditional

LTE grant-based four-step random access will encounter a serious preamble collision problem,

which dramatically reduces the access success probability and increases the access latency [2].

Implementing the synchronization, active user detection, channel estimation, as well as the data

recovery in a one-shot joint operation becomes a promising direction, in grant-free (GF) RA [5]–

[7]. Since GF RA realizes an ”arrival-and-go” transmission of payload, it has attracted significant

attentions in recent years.

Obviously, the non-orthogonal multiple access (NOMA) technology directly motivate the

concept of GF RA as NOMA allows multiple users to share the same time-frequency resource.

Base Station (BS) can distinguish multi-user data through their different signature patterns if

the system overload does not exceed a certain level. Hence the cellular users can transmit their

data whenever available. A range of GF NOMA schemes were proposed, including power-based

GF NOMA [8], spreading-based GF NOMA [9]–[11], interleaving-based GF NOMA [12], etc.

However, before grant-free transmission, GF NOMA schemes still require necessary overheads

to tackle with the synchronization, identification and channel estimation of active users. Some

of the proposals even assume that the active users already connect to BS, or the active users

and BS know almost everything about each other, such as the number of multiplexing users,

their modulation and coding schemes. These facts imply that realizing an idealized GF RA is

extremely challenging, and the required overhead may be inevitably large in practice.

As a result, reducing the overhead for GF RA becomes an important issue. In this spirit,

compressive sensing (CS) technology becomes another foundation to enable GF RA [13], [14].

Because CS is capable of recovering the desired signals from far fewer measurements than the

total signal dimensions if a certain signal sparsity is guaranteed, CS is normally employed in

GF RA schemes to overcome the challenges of user identification and channel estimation [15],
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[16], or even simultaneously recover the payload data [17].

In the CS based GF RA, each device is assigned a user specific pilot sequence, termed

as preamble. According to CS theory, the preamble length for enabling a successful signal

reconstruction is impacted by the number of total users, the sparsity, and the type of measurement

matrix. This preamble length is also regarded as a dominant overhead metric of CS based GF

RA. Therefore, investigating the minimum preamble length (MPL) is important to mitigate high

overhead problem. The associated theoretical analysis has been attempted in [18], [19]. However,

only an asymptotic order of MPL was obtained. Some uncertain parameters were still involved

in this asymptotic order, whose value have to be experimentally tested according to specific

scenarios. This problem obviously limits the application of these theoretical results. On the

other hand, with the increasing number of potential users or active users, the preamble length

has to be increased accordingly. Consequently, in future ultra-dense cellular IoT networks (>106

devices/km2) [20], the high overhead problem may still exist even employing CS based GF

RA, which limits the number of affordable users within the same cell and also aggravate the

constrained power budget of RA procedure.

Extending our horizon further, to address the overload problem in future random access channel

(RACH), a range of other methods have been proposed [21]. These existing approaches could

be categorized into push-based and pull-based. In push-based approaches, the RA requests are

triggered from the device side while in pull-based approaches, the contention is controlled from

the BS side. Among these methods, it is noticeable that, grouping is an efficient alternative

to relax the cellular density, hence facilitates the massive connectivity and reduces the energy

consumption of RA procedure. That is, all users can be grouped according to various metrics

including the quality of service (QoS) [22], the level of received energy [23], the maximum

tolerable delay, etc. Most of the grouped transmissions fall under the category of the pull-based

approach [24], where every group has its unique group identification (GID) and the users of a

group will access the BS if and only if their GID is granted by the paging message sent from the

BS [25]. In [26], every group further selects one of its members as the group head (GH). The

GH will act as a relay node for other members in the same group.In general, grouped random

access demonstrated some particular advantages. However, these pull-based schemes may cause

a serious latency problem while the interval between two paging messages that grant the same

GID is quite long [27].

In this paper, we more focus on solving the active user detection challenge encountered in
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mMTC scenarios. More specifically, this paper aims at reducing the CS signaling overhead,

saving the random access energy consumption, and accommodating significantly more cellular

users. Hence, a layered grouping RA scheme based on dynamic preamble selection is proposed.

The main contributions of this paper are summarized as follows:

1) A layered grouping network framework is presented, where a cell is divided into several

large clusters based on their geographical locations, and each cluster is further partitioned

into a number of small groups according to the proposed construction and maintenance

algorithms. It is assumed that users are normally active in units of small groups, not

individually.

2) In this layered grouping cellular architecture, the initialization, update, as well as group

head (GH) selection procedure of every small group are implemented autonomously, where

a self-organizing optimum energy consumption (Opt-EC) based K-means algorithm is

designed and employed. The user which is capable of maximizing the energy efficiency

of the entire group is selected as the GH.

3) Associated with the layered cellular architecture, the RA procedure is divided into cluster

load estimation phase (namely, phase-I, in which RA operates in a push-based manner)

and active group detection phase (namely, phase-II, in which RA operates in a pull-based

manner). The conventional user ID (UID) based random access is replaced by a unique

group ID (GID) based random access. Here, the layered cellular architecture, the two-phase

access procedure, as well as the formed groups access entity, allow a BS to connect with

much more coexisted users in an energy efficient manner.

4) Two kinds of preambles, short and long preambles, are employed, where the short pream-

bles are orthogonal and allocated to clusters as their signature, while the long preambles

having the cluster-load depended minimum length are non-orthogonal and allocated to

group heads as group identity. The state-of-the-art approximated message passing (AMP)

algorithm [16], [17] is employed for realizing the active group detection.

5) To analyze the overhead problem and the impact of the preamble length in the AMP

algorithm, a tight lower bound on the minimum preamble length (MPL) is derived based

on the state-evolution method.

6) Based on the preamble categorization and MPL lower bound analysis, a dynamic preamble

selection (DPS) strategy is adopted in phase-II, where the required preambles having the

cluster-load depended minimum length are dynamically selected. It is shown that, benefiting
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from both the hierarchical preamble assignment and the DPS strategy, the overhead of the

proposed RA strategy can be significantly reduced.

The rest of this paper is organized as follows: in Section II, the layered grouping network

framework is proposed. Its associated constructing and maintaining mechanism is designed,

while the two-phase RA scheme is also depicted. Then, critical techniques employed in the

proposed two-phase DPS RA strategy including optimal energy computing (Opt-EC) based K-

means grouping algorithm, AMP detection algorithm, and dynamic preamble selection algorithm

are discussed in Section III. The tight lower bound on the minimum preamble length is derived

in Section IV. Simulation results are demonstrated and analyzed in Section V. Finally, the paper

is concluded in Section VI.

II. SYSTEM MODEL

A. Network Framework of Layered Grouping

We consider an mMTC cell having a radius R, where the BS equipped with a single antenna

locates in the cell center and a total number of N coexisted users randomly distribute in the cell.

It is assumed that all the mMTC users are mainly static, a typical scenario in mMTC applications

[21], e.g. the interactions among machines in the industrial automation, the monitoring in smart

agriculture, the environment monitoring for public safety, etc.

According to predefined system configurations including cell size, QoS requirement, maximum

number of coexisted cellular users, etc. , BS will divide all the cellular users into a number of

K clusters. Typically, K could be a small value, e.g. K = 2,4,8, or 16. During phase-I of the

proposed RA, in order to reduce the overhead, if the number of clusters is relatively small, then

every cluster can be distinguished by a very short orthogonal preamble. Hence, the overhead

is reduced. On the other hand, in order to facilitate the practical synchronization, it is better

that the users in the same cluster experience similar transmission delays, normally located in

a geographical area having roughly the same distance to the BS. This could be achieved by

estimating the received signal strength (RSS) at the BS [28], [29]. Ideally, the entire cellular is

divided into a number of K rings and all the users located in the same ring will be assigned to

the same cluster. This effect is visualized by the dashed ellipses in Fig.1. In practice, owing to

the limited localization accuracy, some edge users may be assigned to their adjacent cluster. But

this potential mismatch will not impact the proposed two-phase GF RA scheme, as the proposed

RA scheme is capable of adapting to unbalanced cluster loads.
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Fig. 1: Network topology of the layered grouping in an mMTC cell.

Then, the users assigned to the kth cluster ck, k = 1,2, · · · ,K will further participate in a

number of M(k) groups. These groups are initialized and updated in a self-organizing manner.

The mth group in kth cluster is denoted by gk,m. The users pertaining to a group is termed as

group members and the set of their user ID is denoted by Gk,m. The number of group members

is termed as the group size and denoted by |gk.m|. We would like to constrain the group size by a

small value. Because a large group size normally results in longer distances between GH and its

group members, which implies less reliable device-to-device (D2D) links. Actually, it was shown

in Fig.3 of [30] that packet error rate over D2D links becomes non-negligible after the group size

exceeds 20. Hence we could further reasonably assume that all the group members are close to

each other. As a benefit, the internal message exchange among group members can be reliably

realized by the D2D communication technique [30], which could be interference-free to other

groups and hence spectral efficient. Moreover, a particular group member, namely u̇k,m will be

selected as the GH of group gk,m. If a normal group member un wants to communicate with the

BS, it firstly sends the message to its GH u̇k,m. Then the GH u̇k,m relays this message to BS,

and vice versa. It implies that throughout the GF RA procedure, the GH u̇k,m will communicate

with the BS on behalf of all the members in the same group. The above-mentioned mechanism

is visualized by the dotted ellipses in Fig.1, where the GH is equivalently denoted as a relay

node.

Finally, a GH u̇k,m possesses two kinds of access preambles. The first one, namely sI
k is only

used in phase-I and actually the signature of cluster ck. All cluster signatures are orthogonal to
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each other, i.e. 〈sI
i ,s

I
j〉=







0, i f j 6= i

1, i f j = i

, where i, j = 1,2, · · · ,K. Since K is relatively small, this

orthogonality can be easily satisfied, even for a short preamble length. The second one, namely

sII
k,m is only used in phase-II and actually the signature of group gk,m. Since M(k) is normally a

very large number in mMTC scenarios, sII
k,m employed by different groups in the same cluster

has to be non-orthogonal sequences for reducing overhead. More details of preamble assignment

could be found in Section II-B and Section III-C.

B. Construction and Maintenance of the Layered Grouping

The construction of clusters can be controlled by BS, where only an approximated distance

from a user to BS is required. On the other hand, the formation and update of groups in

each cluster may also be implemented in a centralized manner [30] [31], where BS controls

the selection of GHs and assigns their group members. However, this centralized management

requires a range of global information including users’ accurate positions, propagations, data

rates, battery levels, etc. Aggregating these information from millions devices in the mMTC

scenario may become prohibitive. Hence distributed self-organized formation and update of

groups are advocated in this paper. Thus, the construction and maintenance procedures of the

proposed layered network framework are designed as follows

1) While a user (device) un,n = 1,2, . . . ,N, firstly powers on in the cell and hears the

system broadcast information (including the power level of control channel) from BS,

its registration process will then start by sending a registration message containing user

ID, device type, and a couple of reference signals, to BS in a contention free manner1.

2) Based on the reference signals contained in the registration message, BS is capable of

approximating the distance between a user and itself by utilizing RSS aided positioning

techniques [28], [29] and further assigning un to an appropriate cluster ck. Then, BS assigns

the generation method of a pair of preambles sI
k and sII

k,m , the initial preamble lengths, as

well as the group size
∣

∣gk,m

∣

∣ to un. These information and a couple of reference signals

are contained in the registration response message (RRM).

3) Based on the reference signals in RRM, user un is capable of estimating the channel from

BS, and the associated channel state information (CSI) is denoted by hn,b. It is assumed

1Since the number of users simultaneously switching on is normally extremely low, contention-free transmission of registration

message could be realized by predefining a small set of specific channel resources.
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that all the channels are reciprocal and have a relative long coherent time based on the fact

that the mMTC devices are mainly static in our application scenarios. According to RRM,

user un becomes aware of its cluster index k. Then, user un will further autonomously

select itself as a GH in a probability of 1

|gk,m| .

4) BS will periodically broadcast a group update opportunity message (GUOM) to all cellular

users. Bearing the quasi-static property of our application scenario in mind, the group

update period could be generally long, say daily or even weekly for reducing system

overhead.

5) Once the cellular users hear GUOM, they will implement the group initialization2 or

update3 procedure in a self-organizing manner and via D2D links. An Opt-EC based K-

means grouping algorithm is designed to iteratively improve the grouping relationship and

select the energy efficient GHs, which will be elaborated in Section III-A. With the aid of

this K-means grouping algorithm, the groups in a cluster are constructed and updated.

6) If the role of a user changes (i.e. switches from a normal group member to a GH and vice

versa), it will inform BS of its new state. The BS will add or remove the associated group

ID from its group list.

The above-mentioned construction and maintenance procedures are illustrated in Fig.2.

C. Two-Phase Random Access

As depicted in Fig.3, we divide the proposed RA procedure into phase-I and phase-II. During

phase-I, after receiving the RAO message from the BS, the GHs of all the active groups in the

cell will first transmit their cluster preambles sI
k. Bear in mind that sI

k of a GH u̇k,m has been

specified during the registration process introduced in Section II-B. Furthermore, a group gk,m

is regarded as an active group if one or more members in this group want to transmit payload

data to the BS. Accordingly, the signal received at the BS during phase-I can be written as

yI =
K

∑
k=1

M(k)

∑
m=1

ak,m

√

Pk,msI
khk,m→b +ω, (1)

where the activity state ak,m ∈ {0,1} indicates the activity of a group gk,m. If gk,m is active,

ak,m = 1, and so forth. hk,m→b is the CSI of the channel from the GH u̇k,m to the BS, which

2In the case a group has not been created before.

3In the case a group has existed.
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Fig. 2: Construction and maintenance of the layered grouping network framework.

simultaneously encapsulates both the large-scale fading and small-scale fading. ω is an AWGN

vector, whose elements obey i.i.d complex Gaussian distribution having zero mean and variance

σ 2. Pk,m is the actual transmit power of the GH u̇k,m, which is given by

Pk,m = P · βmin

βk,m
, (2)

where P is a common transmit power that can be afforded by all the GHs. The value of P could

be assigned to the users during their registration process. βk,m is the average large-scale fading

coefficient of the channel from the GH u̇k,m to the BS. It could be continuously updated by

testing the reference signals transmitted by the BS, e.g. the reference signals included in the

registration response message, the GUO message and the RAO message. βmin is the minimum

value among βk,m,k ∈ {1,2, · · · ,K},m ∈ {1,2, · · · ,M(k)}, which could be carried in the RAO

message. By substituting (2) to (1), it is apparent that specifying the actual transmit power Pk,m
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according to (2) is equivalent to employing an adaptive power control mechanism. Hence, at the

BS, the average power of the signal received from u̇k,m approximately equals to P ·βmin [17].

During a RAO, the number of active groups in a cluster ck is termed as its cluster load. Hence,

based on the received signal yI, the BS is capable of estimating the cluster load of ck, which is

given by

M̂
(k)
ac =

〈yI,sI
k〉

√

Pβmin

. (3)

Correspondingly, the sparsity of cluster ck is approximated by

λ̂k =
M̂

(k)
ac

M(k)
. (4)

After the cluster load estimation formulated by (3), the BS could rank the access priority of

different clusters according to their cluster loads M̂
(k)
ac . A higher access priority is assigned to the

cluster having a larger cluster load. As indicated by the largest streams in the middle and bottom

of Fig.3, the GHs in the highest loaded cluster will firstly send their group access preambles and

their payload data, respectively. Based on the cluster load estimation, as well as the compressive

sensing theorem, the BS will adaptively select the group preamble length of Lk = |sII
k,m| for

different clusters. After ranking the access priority and selecting the group preamble length, the

BS could arrange the access slots of every cluster. Then, the cluster-specific access slots and

preamble lengths that will be used in phase-II are broadcasted by the BS. This message is called

as the “Phase-II solution message” (PSM) in Fig.3. More details of DPS strategy is provided in

Section III-C.

After receiving the phase-II solution messages, the GHs of all the active groups will generate

their unique preambles of sII
k,m. The associated generation method has been determined in the

user registration process4 and the preamble length is indicated by the phase-II solution messages.

At this moment, the proposed two-phase RA procedure starts its phase-II operations. Firstly, the

GHs of all the active groups in the same cluster will simultaneously send their group preambles

during a specific access slot that has been indicated by the phase-II solution messages, which

are illustrated by the shadowed arrows having dashed, solid, and dotted borders in the middle

4In this paper, complex gaussian sequences having zero mean and variance 1

|sII
k,m| are employed as sII

k,m.



11

Active GHs of c1 send 

preambles of s
II

1,m

Active GHs of ck send preambles of

s
II

k,m

GHs of c1GHs of ckGHs of cK

………………

… BS…

Active GHs of cK send preambles of s
II

K,m

Active 

Group 

Detection

PDTS message to ck

PDTS message to c1

PDTS message to cK

Cluster load 

estimation

Phase-II solution message

t

Phase- I

Phase-II

Data 

Trans.

Ranking & 

Dynamic 

preamble 

selection 

Active GHs send their cluster preambles of sI
k

Active 

Group 

Detection

Active 

Group 

Detection

...
...

...
...

...
...

Active GHs of c1 send 

preambles of s
II

1,m

Active GHs of ck send preambles of

s
II

k,m

GHs of c1GHs of ckGHs of cK

………

… BS…

Active GHs of cK send preambles of s
II

K,m

Active 

Group 

Detection

PDTS message to ck

PDTS message to c1

PDTS message to cK

Cluster load 

estimation

Phase-II solution message

t

Phase- I

Phase-II

Data 

Trans.

Ranking & 

Dynamic 

preamble 

selection 

Active GHs send their cluster preambles of sI
k

Active 

Group 

Detection

Active 

Group 

Detection

...
...

...
...

...
...

Fig. 3: Transmission stream of the two-phase grant-free random access procedure.

of Fig.3. During the access slot of cluster ck, the signal received at the BS is given by

yII
k =

M(k)

∑
m=1

ak,m

√

PksII
k,mhk,m→b +ωk =

√

PkSII
k xk +ωk, (5)

where ak,m and hk,m→b have been defined in (1). ωk is the AWGN vector in the access slot of

ck. Pk is the standard transmission power of all the GHs in phase-II. Let Lk denote the length of

sII
k,m, then we have SII

k = [sII
k,1,s

II
k,2, · · · ,sII

k,M(k)] ∈ R
Lk×M(k)

and xk = [xk,1,xk,2, · · · ,xk,M(k)]T , where

xk,m = ak,mhk,m→b.

As illustrated in the middle of Fig.3, after the active group detection of all the clusters are

completed, the BS will broadcast payload data transmission solution (PDTS) message to every
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cluster. The active group ID detected by the BS and its payload data transmission time slot are

carried in the PDTS message. Finally, as observed at the bottom of Fig.3 that the GH of every

active group will relay the payload data of their group members to the BS at different time slots

as indicated by PDTS messages.

III. GROUP MAINTENANCE AND DETECTION ALGORITHMS

A. Group Initialization and Update Algorithms

As stated in Section II-B, during step 5 of the construction and maintenance procedure of the

layered grouping framework, after receiving the group update opportunity message from BS, the

existing GHs u̇k,m,1≤m≤M(k) will broadcast grouping messages. Group ID is contained in these

grouping messages. A registered neighboring non-GH user un will select the one from which

it hears the strongest grouping message as its intended GH. Then, un broadcasts a subscribing

message (SM), which carries its user ID, intended group ID. After receiving all the subscribing

messages, a GH u̇k,m is capable of determining all of its group members, and then feedbacks

this temporary decision of Gk,m to all the group members. The transmission of above-mentioned

intra-group signaling messages will rely on dedicated spectrum such as 5905-5925 MHz in

5G NR V2X (PC5 interface) [32], or unlicensed spectrum technologies, namely D2D outband

communications [30]. Hence, the impact of these extra overheads on the cellular radio access

network (RAN) can be negligible. These intra-group signaling are summarized as lines 3-5 in

Algorithm 1.

The proposed Opt-EC based K-means grouping algorithm aims at selecting the best GH, which

simultaneously minimizes the energy required by intra-group communications5 and that required

by external cellular communications. In order to realize this optimization, every group member

should be aware of all the channel conditions from other group members to itself, namely

Hn = {hi,n : n ∈ Gk,m, i = 1,2, · · · ,
∣

∣gk,m

∣

∣ , i 6= n}. Again, this requirement could be satisfied by

exploiting D2D outband communications and the associated overhead is negligible for cellular

RAN. The update of Hn for every group member is summarized as line 6 in Algorithm 1.

Herein, we further assume that the transmit power, packet size and bandwidth of the reference

signals contained in the intra-group signaling messages are fixed to P, D, and B, respectively.

5Because, during the ensuing payload transmission slot, the group members will first send their data to the GH, then the GH

relays all the data to the BS.
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Algorithm 1: Opt-EC based K-means grouping algorithm

Initialize: cluster index k.

begin

1 while (Predefined max iterations has not been reached.) do

2 for (m = 1 to M(k)) do

3 u̇k,m selected in last iteration broadcasts grouping message;

end for

for (n = 1 to N) do

for (m = 1 to M(k)) do

4 un attempts to hear from u̇k,m and estimate hu̇k,m,n;

end for

5 un
subscribe group−−−−−−−−−→ argmax

u̇k,m heard by un

hu̇k,m,n;

end for

for m = 1 to M(k) do

6 Update Gk,m and every Hn;

7 u̇k,m = argmin
un∈Gk,m

γk,m(un);

end for

end while

end

Assume that un, ui are group members of gk,m, i.e. n, i ∈ Gk,m. The achievable error-free data-

rate from ui to un could be characterized by Ri,n = B log2

[

1+
P|hi,n|2

No

]

, where No denotes the

power density of additive Gaussian noise. Accordingly, if we select un as the GH u̇k,m, the

energy required by intra-group communications in ensuing payload transmission slot could be

characterized by ε
(n)
inner = ∑ i∈Gk,m

i6=n

P · D
Ri,n

.

Similarly, the achievable error-free data-rate from un to BS could be characterized by Rn,b =

B log2

[

1+
P|hn,b|2

No

]

. Again, if we select un as GH u̇k,m, the energy required by external commu-

nications between un and BS could be characterized by ε
(n)
outer = P · |gk,m|·D

Rn,b
.

Finally, the energy efficiency of selecting un as the GH u̇k,m could be characterized by

γk,m(un) = ε
(n)
inner + ε

(n)
outer, where a smaller value of γk,m(un) implies a better energy efficiency.

γk,m(un), n ∈ Gk,m will be calculated at the group member un and then be forwarded to current

GH. Hence, by running the Opt-EC based K-means algorithm, the GH of gk,m could be selected

according to u̇k,m = argmin
un∈Gk,m

γk,m(un), which is summarized as line 7 in Algorithm 1.

The above-mentioned operations can be repeated again among the cellular users for further

adjusting the grouping relationships and optimizing GH selections. But, in practice, owing to
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the limited energy budget, the iterations of Algorithm 1 has to be terminated within a predefined

maximum number.

B. MMSE Denoiser Based AMP Algorithm

The classical system model used in compressive sensing is represented as

y = Ax+ω , (6)

where x is the original signal vector having a number of M elements. A ∈R
L×M is the measure-

ment matrix. ω is an AWGN vector. Since M ≫ L, y is actually a compressed and corrupted

observation of x. As an efficient solution of recovering x from y, the approximated message

passing (AMP) algorithm is first proposed in [33]. Its theoretical derivation could be found in

[34].

In more detail, the AMP algorithm could be formulated by the following iterative procedures

xt+1 = ηt(A
∗zt +xt ,τt), (7)

zt+1 = y−Axt+1 +
1

µ
zt〈η ′

t (A
∗zt +xt ;τt)〉, (8)

τt ≈
1√
L
‖zt‖2. (9)

where x is initialized to a zero vector, i.e. x0 = 0, ηt(·) is the soft thresholding function and t

is the index of iteration, xt represents the estimation of x at the tth iteration, zt calculates the

residual component, A∗ denotes the conjugate transpose of A, 〈·〉 denotes the average of a vector,

η
′
t is the first derivative of ηt with respect to the first argument, and µ = L

M
is the under-sampling

ratio. In contrast to the conventional iterative thresholding algorithms, η
′
t (A

∗zt +xt ;τ t) is a new

component invoked by the AMP algorithm and known as the “Onsager reaction term”, which is

identified as the fundamental improvement of the AMP algorithm.

Furthermore, in [15], the soft thresholding denoiser ηt (·) is developed to an MMSE denoiser

as follows

ηt(x̂
t
m,gm) = E[X |X̂ t = x̂t

m,G = gm], (10)

where X , X̂ t , x̂t
m, and gm have the same definitions as that in [15].
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Algorithm 2: Dynamic preamble selection algorithm.

Input: yI

Output: V , L= [L1,L2, · · · ,LK] ; /* V indicates the access slot

indices of every cluster, L indicates the preamble

lengths selected for every cluster. */

Initialize: K, target pF , target pM,
{

M(k),k = 1,2, · · · ,K
}

,
{

[R
(k)
1 ,R

(k)
2 ],k = 1,2, · · · ,K

}

; /* R
(k)
1 ,R

(k)
2 are the inner and outer radius of the kth

cluster, respectively. */

begin

1 for k=1 to K do

2 M̂
(k)
ac = Estimate Cluster Load(yI,k) ; /* according to (3). */

3 Lk = Lower Bound on MPL(M̂
(k)
ac ,M

(k),R
(k)
1 ,R

(k)
2 , pF, pM); /* according

to (18), (20) and (23). */

4 L[k] = 1.1∗Lk ; /* slightly enlarge Lk, see Section IV. */

5 M̂ac[k] = M̂
(k)
ac ;

end for

6 V = Allocate Access Slot(M̂ac,L) ; /* arrange the access priority

of every cluster in the descending order of M̂
(k)
ac , then

allocate the access slot indices of every cluster

according to L. */

7 Return: V , L;

end

This MMSE denoiser can employ the large-scale fading coefficient G known at the BS as a

priori information of AMP algorithm. Hence it results in a better recovery accuracy. The above-

stated MMSE based AMP algorithm is employed to solve the active group detection problem by

replacing the classical compressive sensing model given in (6) with the group access model given

in (5). Accordingly, the variables y, A, x, ω involved in (6)∼(9) are replaced by the variables

yII
k , SII

k , xk, ωk given in (5), respectively. The under-sampling ratio of µ in (8) is calculated by

Lk

M(k) . The number of total elements M and nonzero elements Mac in x is replaced by that of total

groups M(k) and active groups M
(k)
ac in a cluster ck, respectively.

C. Dynamic Preamble Selection Algorithm

In the context of our active group detection and according to the CS theorem [18], [35],

to satisfy a certain detection accuracy, the minimum preamble length is related to the number

of active groups in a cluster, namely M
(k)
ac and to the total number of groups in a cluster,

namely M(k). Apparently, in practice, the value of M
(k)
ac and M(k) shall be salient different in
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different clusters. It implies employing a preamble with inappropriate length will result in either

a serious detection inaccuracy or an excessive overhead. Accordingly, a DPS algorithm shown in

algorithm 2 is designed and employed in phase-II of the random access. The technical challenge

of algorithm 2 occurs at its line 3 that evaluates the MPL. Owing to analyzing complexity and

importance, we specifically discuss it in Section IV.

IV. THEORETICAL ANALYSIS ON THE MINIMUM PREAMBLE LENGTH

According to Section III-C, finding the MPL required by MMSE based AMP algorithm for

achieving a certain data recovery accuracy makes great sense. Similar works have been attempted

in [18] and [35]. However, two deficiencies of the MPL calculation method given in [35] prevent

us from applying it in our DPS algorithm: (1) two constant parameters, namely C1 and C2 are in-

volved, i.e., instead of an exact value, it only provides an asymptotical order; (2) it does not relate

to a specific data reconstruction method. Furthermore, the authors of [36] and [37] attempted

to answer this fundamental question from the perspective of classical asymptotic information

theoretic analysis. In [37], seeking for the MPL is termed as the “minimum user-identification

cost” problem. In their Gaussian many-access channel (MnAC) model, the minimum number of

channel uses for guaranteeing an error-free random user identification is given by

L =
N ·H2(

Nac

N
)

1
2

log(1+Nacγ)
, (11)

where N denotes the total number of cellular users. In contrast, Nac denotes the average number

of active cellular users. γ denotes the signal-to-noise ratio (SNR) and it is assumed in [37] that

every active user is subject to the same power constraint of γ . Besides, the entropy function is

defined as H2(p) =−p log(p)− (1− p) log(1− p). However, the theorems provided in [37] are

still not suitable in our scenarios owing to two reasons: (1) the result shown in (11) does not

relate to any specific active user detection algorithm, hence a significant gap may exist between

the MPL required by AMP algorithm and that predicted by (11), as illustrated in Fig.4; (2) only

Gaussian noisy channels are considered. However, both large-scale and small-scale fading effects

are taken into account in our system for modelling a more practical random access scenario.

In the following, we will provide a tight lower bound on MPL for MMSE-AMP algorithm.

The state evolution method proposed in [15] is employed, where the mean square error (MSE)

of data reconstruction is regarded as a state variable. In more detail, at every iteration of MMSE
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N

Fig. 4: MPL versus sparsity. The MPL required by MMSE-AMP algorithm and that predicted by [37] are compared. AWGN channels are
assumed.

based AMP algorithm, X̂ t in (10) is modeled as a noise corrupted signal. Hence, X̂ t could be

formulated as

X̂ t = X + τt ·ω0, (12)

where the random variable ω0 follows complex Gaussian distribution with zero mean and unit

variance. Then, τt is referred to the variance of the tth estimation X̂ t . Particularly, according to

[15], τt is given by

τ2
t+1 =

σ 2

PkLk

+
M(k)

Lk

MSE(τt), (13)

where σ 2 is the variance of background noise ω involved in (1). The function MSE(·) evaluates

the MSE of its input variable and is specified in [15].

Based on the state evolution method [15], in order to achieve a high data reconstruction

accuracy, the recursive reconstruction progress formulated by (7)-(9) has to converge. It means

the variance of the AMP estimation, namely τt should constantly decrease to σ2

PkLk
. Hence, the

following inequality holds

τ2
t+1 ≤ τ2

t ,∀t. (14)

By substituting (13) into the inequality (14), a lower bound on preamble length for satisfying
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the convergence of AMP algorithm is given by

Lk ≥
σ2

Pk
+M(k)MSE(τt)

τ2
t

. (15)

In order to evaluate the performance of AMP algorithm, two metrics are invoked: (1) the

probability of missed detection (pM) in cluster ck; (2) the probability of false alarm (pF) in

cluster ck. They are defined as

pM(k) =
∑M(k)

m=1{x̂k,m < θ & xk,m 6= 0}
∑M(k)

m=1{xk,m 6= 0}
, (16)

pF(k) =
∑M(k)

m=1{x̂k,m ≥ θ & xk,m = 0}
∑M(k)

m=1{xk,m = 0}
, (17)

where xk,m is defined in (5), x̂k,m is the estimation of xk,m given by the AMP based active group

detection, and θ denotes the decision threshold employed by AMP algorithm. While x̂k,m ≥ θ ,

AMP algorithm will regard gk,m as an active group. Then, according to the state evolution method,

the pM(k) and pF(k) that can be achieved in the t th AMP iteration could be characterized by



















pF (k) = e
− θ2

τ2
t ,

pM(k) = 1
M

M

∑
m=1

(1− e
− θ2

τ2
t +g2

m ) =

ˆ

(1− e
− θ2

τ2
t +g2 ) ·P(k)

G (g) dg,

(18)

where P
(k)
G (g) is the probability density function of the large-scale fading coefficient g. The

random variable g takes both the path-loss effect and the shadowing effect into account. In more

detail, the path-loss effect is modeled as α +β log10(d), where d is the distance between a group

head and the BS. The shadowing effect follows log-normal distribution with a variance of σ 2
s .

In practical applications, we aim at a target performance of pM and pF , namely pMob j and

pFob j, respectively. Then, by substituting the target pMob j and pFob j into (18), the appropriate

decision threshold θ and the required variance of tth AMP estimation τt can be determined while

given the large-scale fading model. The associated solutions of θ and τt could be denoted as

θob j and τob j, respectively.

Bear the above statements in mind, in order to obtain θob j and τob j, we shall specify the large-

scale fading model. According to the proposed layered grouping network framework shown in

Fig.1, the users of a cluster uniformly locates in the same ring, whose inner and outer radius
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are represented by R1 and R2, respectively. Hence the distance between a user and the BS obeys

d ∼ [R1,R2]. Accordingly, the probability density function of large-scale fading coefficient could

be formulated as

PG(g), a1g−γ1Q1(g)−a2g−γ2Q2(g), (19)

where


















































































a1 =
40

(R2−R1)2β
√

π
exp(

2(ln 10)2σ2
s

β 2 − 2ln(10)α
β ),

a2 =
40R1

(R2−R1)2β
√

π
exp(

(ln10)2σ2
s

2β 2 − ln(10)α
β

),

γ1 ,
40
β
+1,γ2 ,

20
β
+1,

Qi(g) =
´ b lng+ci2

b lng+ci1
exp(−s2)ds, i ∈ {1,2}

ci2 =
−α−β log10(R1)√

2σs
− 20

iβb
, i ∈ {1,2}

ci1 =
−α−β log10(R2)√

2σs
− 20

iβb
, i ∈ {1,2}

b =− 10
√

2
ln(10)σs

.

(20)

According to the state evolution method, if the AMP algorithm always achieves the target

performance of pMob j and pFob j, then the following inequality has to be true as long as a

sufficient large iteration number t is chosen

τt+1 ≤ τob j ≤ τt . (21)

By substituting (13) into the above inequality, it results in

Lk ≥
σ2

Pk
+M(k)MSE(τt)

τ2
ob j

. (22)

Then, it is provable that MSE(·) is a monotonically increasing function in the region of g ∈
[0,100]. Hence we have MSE(τob j)≤MSE(τt) in practical scenarios. It implies replacing MSE(τt)

by MSE(τob j) in (22) will yield a relaxed lower bound (LB) on MPL, which is given by

Lk ≥
σ2

Pk
+M(k)MSE(τob j)

τ2
ob j

. (23)

For example, in practice, simultaneously achieving pMob j = 0.05 and pFob j = 0.05 may be

an acceptable active group detection performance. While considering the large-scale fading

model given in (19)-(20), the associated solution of (18) is θob j ≈ 8.65×10−8,τob j ≈ 5×10−8.
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Assuming that network configurations including the SNR, the cluster size M(k), as well as the

sparsity λ are known. Then, by substituting τob j ≈ 5× 10−8 into (23), we could calculate the

exact lower bound on MPL that enables the AMP algorithm to achieve the target active user

detection performance.

N K M σ2

Pk = 18

Pk = 24

Pk = 30

Fig. 5: Comparison between simulated MPL and its lower bound with respect to different transmit powers. The practical preamble length
required by conventional “no grouping” RA scheme [15] is provided for comparison.

It is evidenced in Fig.5 that the lower bounds on MPL (23) gets quite close to the actual

MPLs estimated by the Monte Carlo simulations for different transmit powers, although their

discrepancy will be slightly enlarged while increasing the sparsity λ . The comparison between

simulated MPL and its lower bound with respect to different coverage areas are illustrated in

Fig.6. Fig.6 demonstrates that the discrepancy between the simulated MPL and its lower bound

will be impacted by different cluster coverages. This phenomenon is due to the fact that the

large-scale fading effect will be impacted by the cluster coverage as formulated in (19) and (20).

On the condition of having a low sparsity of λ ≤ 0.05, this discrepancy would not exceed 10%

of the theoretical lower bound. Therefore, in algorithm 2, we first calculate the lower bound on

MPL for a specific cluster ck, then the Lk employed by the active groups in ck will be 10%

higher than the lower bound.

Furthermore, the conventional no grouping GF RA scheme proposed in [15], which also

employs the MMSE based AMP algorithm, is shown in Fig.5 and Fig.6 as well. It is demonstrated

in Fig.5 and Fig.6 that the MPL required by the proposed layered grouping based RA scheme

is always significantly less than that required by its counterpart in [15] regardless of different
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Pk K = 2 M = 1000

N = 10000, [R
(1)
1 , R

(1)
2 ] = [0, 500]

k = 1, [R
(1)
1 , R

(1)
2 ] = [0, 500]

k = 2, [R
(2)
1 , R

(2)
2 ] = [500, 1000]

Fig. 6: Comparison between simulated MPL and its lower bound with respect to different cluster coverages. The practical preamble length
required by conventional “no grouping” RA scheme [15] is provided for comparison.

SNR values, different sparsities, different coverages. For the sake of fair comparison, the total

number of cellular users remains the same in Fig.5 and Fig.6.

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, the active user detection performance of the proposed two-phase DPS aided

RA scheme is simulated. The obtained results are compared with the classical CS aided RA

that does not exploit any grouping strategy [15] and with the conventional group paging aided

RA that does not exploit CS technologies [38]. Without loss of generality, the group size |gk,m|
and the number of groups in different clusters M(k) are prefixed to constants regardless of the

indices of k and m. Other system parameters are listed in Table.I.

In Fig.7, the pF , pM versus transmit power in the two-phase DPS aided RA is compared with

that of CS aided RA [15], which also employs the MMSE based AMP algorithm. It is a general

consensus that pF = pM implies a good performance balance of active user detection can be

achieved. Hence the decision threshold employed by MMSE based AMP algorithm is adjusted

for achieving pF = pM.

Comparing the solid line labelled by diamonds with the dashed line labelled by crosses in Fig.7,

the two-phase DPS aided RA achieves a dramatic power gain with respect to the conventional

CS based RA [15] while using the same preamble length of 400. Comparing the solid line

labelled by triangles with the solid line labelled by squares in Fig.7, the grouping strategy of
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Parameter Value

Radius of the cell 1000m

Path-loss model 15.3+ 37.6log10(d(m))
Variance of shadowing σ2

s 8

Background noise No -99dBm

Total cellular devices N 10000,20000

Number of clusters K 2,4,8
Group size |gk,m| 5

Number of groups per cluster M(k) M = 1000,2000

Preamble type and length of sI
k Walsh Seq., |sI

k|= 32

TX power P defined in (2) 23dBm

Preamble type of sII
k,m Gaussian Random Seq.

TX power Pk defined in (5) 23dBm

Cluster coverages of K = 2
[

R
(k)
1 ,R

(k)
2

]

=

{

[0,500] , k = 1

[500,1000] , k = 2

Cluster coverages of K = 4
[

R
(k)
1 ,R

(k)
2

]

=



























[0,250] , k = 1

[250,500] , k = 2

[500,750] , k = 3

[750,1000] , k = 4

TABLE I: System Configuration.

K = 4, M = 1000 achieves a better performance than that of K = 2, M = 2000, even they

employ the same preamble length of 800. It implies a RA power gain is available by adjusting

the number of clusters and the number of groups.

Then, we define the probability of successful detection (pS) in cluster ck as

pS(k) =
∑M(k)

m=1{x̂k,m ≥ θ & xk,m 6= 0}
∑M(k)

m=1{xk,m 6= 0}
. (24)

According to this definition and equation (18), pF , pM and pS have following relationships















pS(k) = 1− pM(k) = 1−
´

(1− e
− θ2

τ2
t +g2 ) ·P(k)

G (g)dg,

pS(k) = 1− 1−λk

λk
pF(k) = 1− 1−λk

λk
e
− θ2

τ2
t .

(25)

The parameter τt involved in (25) can be determined according to (13). Hence, (25) enable

us to theoretically analyze the active group detection performance of the proposed RA strategy.

As a result, the pS achieved by preamble length fixed strategy is compared with that achieved

by DPS strategy in Fig.8, where both of them employ two-phase RA framework and the grouping
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Pk

N = 20000 λ = 0.05

L = 400
L = 2600
K = 2,M = 2000 |sIIk,m| = 400

K = 2,M = 2000 |sIIk,m| = 800

K = 4,M = 1000 |sIIk,m| = 400

K = 4,M = 1000 |sIIk,m| = 800

Fig. 7: pF, pM versus transmit power of the two-phase DPS aided RA. It is clear that the layered grouping scheme employing a preamble length
of only 800 can approach the performance of no grouping scheme [15] which employs a very long preamble length of 2600.

strategy is fixed to K = 4,M = 1000. Observe at Fig.8 that while employing a predefined preamble

length of |sII
k,m| = 64, 128, the pS of grouped RA still rapidly drops along with the growth

of sparsity. In contrast, benefiting from the DPS aided RA scheme, the system is capable of

achieving a high pS probability throughout the entire sparsity region. Actually, the DPS strategy

approaches a similar active group detection performance to a preamble length fixed counterpart

having |sII
k,m|= 256. However, the average preamble length required by the DPS strategy is always

less than 210 throughout the entire sparsity region. It means the DPS strategy will further save

considerable overhead.

We would like to further evaluate the energy consumption of two-phase DPS aided RA.

According to interpretation in Section II, the transmission energy required for constructing the

layered grouping network framework is negligible. Because the group construction only happens

once after a GH user is registered. Besides, the group update only happens once during a very

long period. Hence we only focus on the random access energy desired on the active user side

in the entire “Phase-I” plus “Phase-II” durations. As shown in Fig.3, it consists of six parts: (1)

energy required by transmitting cluster preambles for the sake of cluster load estimation, i.e.

εpmb−I =
1

N·λ ∑K
k=1 ∑M(k)

m=1 ak,mPk,m|sI
k|, (2) energy consumed by waiting for the Phase-II solution

message, i.e. εwait−I = Pwait · T wait−I, (3) energy required by processing the received Phase-II

solution message, i.e. εpcs−I = Ppcs ·T pcs−I, (4) energy required by transmitting access preambles
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K = 4,M = 1000 Pk

|sIIk,m|
|sIIk,m|
|sIIk,m|

Fig. 8: pS versus sparsity performance of two-phase DPS aided RA, where preamble length fixed strategy is compared with. The preamble
length required by dynamic scheme is always less than 210 after averaged over all clusters.

for the sake of active group identification, i.e. εpmb−II =
1

N·λ ∑K
k=1 ∑M(k)

m=1 ak,mPk,m|sII
k |, (5) energy

consumed by the waiting model (as defined in [39]) in the entire “Phase-II” duration, i.e.

εwait−II = Pwait · T wait−II, (6) energy required by processing the PDTS message, i.e. εpcs−II =

Ppcs−II ·T pcs−II. Hence, the average random access energy per active user could be calculated as:

ε = εpmb−I + εwait−I + εpcs−I + εpmb−II + εwait−II + εpcs−II (26)

In the above energy parts, Pk,m and Pk are defined in (2) and (5), respectively. Thus, the values of

Pwait, Ppcs, T wait−I and T wait−II are specified according to similar parameters given in [38]- [39].

Particularly, T wait−II is the average waiting time of an active group required in the entire “Phase-

II” duration, which equals to subtracting length of |sII
k | and T pcs−II from duration of “Phase-II”

6. More specifically, according to LTE standard, up to 839 symbols can be transmitted within

a single time slot (i.e. 0.5 ms). Hence, we equivalently employ the number of symbols as our

time metric.

Furthermore, if we replace practical preamble length |sII
k | used in (26) by its theoretical lower

6The duration of “Phase-II” is determined by system configurations of N,K,λ etc. It can be calculated by experimental method

as shown in Fig.12.
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bound (LB) specified in (23), the LB of εpmb−II is given by

ε∗pmb−II =
1

N ·λ
K

∑
k=1

M(k)

∑
m=1

ak,mPk

σ2

Pk
+M(k)MSE(τob j)

τ2
ob j

, (27)

Simultaneously, the length of T wait−II is also minimized, which results in the minimization of

εwait−II, namely ε∗wait−II. Substitute ε∗pmb−II and ε∗wait−II into (26), we refer to the resultant ε as

theoretical RA energy of our two-phase DPS aided RA, namely ε∗.

10−7

10−6

10−5

10−4

10−3

Group-paging[39] No grouping[15]

Simulated RA Energy: ε

Theoretical RA Energy: ε∗

Fig. 9: RA energy comparison between the proposed scheme, group-paging RA scheme [38] and no grouping RA scheme [15], where N = 20000,
λ = 0.05, K increases from 2 to 8.

10−7

10−6

10−5

10−4

10−3

Group-paging[39] No grouping[15]

|gk,m|

Simulated RA Energy: ε

Theoretical RA Energy: ε∗

Fig. 10: RA energy comparison between the proposed scheme, group-paging RA scheme [38] and no grouping RA scheme [15], where N = 20000,
λ = 0.05, |gk,m| increases from 5 to 20.
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Observe at Fig.9 and Fig.10 that on the condition of approaching the same pS ≥ 90%, the

two-phase DPS aided RA scheme achieves a significant power gain compared with both the

conventional no grouping CS based RA scheme [15] and the conventional no CS aided group

paging strategy [38]. There are three major advantages of the proposed layered grouping RA

scheme, i.e. (1) in the proposed system, only GH of an active group has to send access preamble,

while in [15], [38], every active user has to send access preamble; (2) GHs also have better

channel conditions than other group members owing to the Opt-EC based K-means grouping

algorithm; (3) the DPS algorithm given in Algorithm 2 effectively reduces the preamble length

used in phase-II. In more details, the energy consumed per active user is reduced as the number

of clusters K is increased, as illustrated in Fig.9, while the associated penalty is the increase of

RA delay as shown in Fig 12 per active user versus. On the other hand, as can be seen from

Fig.10, the energy consumed per active user can be reduced more significantly when the group

size is increased. However, it may become impractical if the group size is too big due to the

complexity and synchronization requirements.

The capability of DPS aided RA scheme to support the massive connectivity is depicted in

Fig. 11, which is measured in the maximum number of coexisted users in a cell while fixing

the preamble length, the sparsity, the transmit power, as well as the target level of pF and pM.

As can be observed from Fig. 11, for the given condition, the proposed RA scheme is capable

of supporting more than 105 users. In contrast, no grouping strategy [15] can only support

approximately 2500 users for the same amount of physical resources.

N

No grouping[15]

|gk,m| Pk

|sIIk,m| λ pS ≥ 0.9

Fig. 11: Comparison on affordable number of coexisted users in a cell between the proposed RA and no grouping CS aided RA.



27

Finally, the average time required by an active group head u̇k,m for completing random access

procedure is adopted as our delay metric. According to the proposed RA procedure in Fig.3 and in

line with our RA energy analysis, the RA delay of u̇k,m consists of six major components: (1) The

time T 1 required by all active GHs for transmitting their cluster preambles of |sI
k|, k = 1,2, · · · ,K;

(2) the waiting time T wait−I during ”Phase-I”; (3) the time T pcs−I required for processing phase-

II solution message; (4) the time T 2 required by an active GH for transmitting its group access

preamble; (5) the waiting time T wait−II during “Phase-II” and (6) the time T pcs−II required for

processing PDTS message. Again, the number of symbols is employed as the time metric.

No grouping[15]

|gk,m| = 5

|gk,m| = 15

Fig. 12: Access delay versus number of clusters in the proposed two-phase GF RA scheme.

The random access delay performance of the proposed DPS aided RA scheme is demonstrated

in Fig.12, where λ = 0.05, N = 20000. Observe at Fig.12 that the proposed RA scheme imposes a

higher random access delay than the conventional no grouping CS based RA scheme, especially

when the number of clusters K grows. But, benefiting from the DPS scheme, employing a

large group size could slightly mitigate the latency. Consequently, our proposal may be more

suitable for the mMTC devices which have a relative higher tolerance of time delay. Fortunately,

benefiting from the DPS aided RA scheme, the random access delay will not linearly increase

with respect to the number of clusters.

VI. CONCLUSIONS

With the explosive growth of IoT devices (may approach around 125 billion by 2030 [21]),

the mMTC communication will become one of the most important services of forthcoming B5G
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networks. An extremely large number of devices are accommodated in a single cell. Neighbor-

hood devices are inclined to have a similar communication behavior and QoS requirement. These

fundamental characteristics of future mMTC scenario motivate us to propose a two-phase DPS

aided RA scheme. Benefiting from the proposed layered grouping network framework, instead

of a large number of active users directly access the BS, only the GHs of active groups access

the BS on behalf of all the active members. The mechanism of constructing and maintaining

this layered grouping network framework, as well as the two-phase RA procedure are carefully

designed, especially the Opt-EC based K-means grouping algorithm, the orthogonal sequence

based cluster load estimation, the dynamic preamble selection, as well as the MMSE based

AMP algorithm. A tight lower bound on MPL required by AMP algorithm for achieving the

given detection accuracy is provided. In summery, compared with the existing RA schemes, the

proposed DPS aided RA scheme achieves three major improvements: a) reducing the access

overhead as shown in Fig. 5, Fig. 6 and Fig.8; b) saving the access energy as shown in Fig.7

and Fig.9; c) increasing the number of coexisted cellular users as shown inFig.11, at the price

of relatively longer access delay.
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