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Abstract

We present a novel attention-based mechanism to learn
enhanced point features for point cloud processing tasks,
e.g., classification and segmentation. Unlike prior works,
which were trained to optimize the weights of a pre-selected
set of attention points, our approach learns to locate the best
attention points to maximize the performance of a specific
task, e.g., point cloud classification. Importantly, we advo-
cate the use of single attention point to facilitate semantic
understanding in point feature learning. Specifically, we
formulate a new and simple convolution, which combines
convolutional features from an input point and its corre-
sponding learned attention point, or LAP, for short. Our
attention mechanism can be easily incorporated into state-
of-the-art point cloud classification and segmentation net-
works. Extensive experiments on common benchmarks such
as Model-Net40, ShapeNetPart, and S3DIS all demonstrate
that our LAP-enabled networks consistently outperform the
respective original networks, as well as other competitive
alternatives, which employ multiple attention points, either
pre-selected or learned under our LAP framework.

1. Introduction
Learning point features is one of the most fundamental

problems in 3D vision and a key building block for tasks
such as shape classification and segmentation. Conven-
tional convolution employs fixed kernels of varying sizes to
aggregate point features, while extensions to variable neigh-
borhoods, which account for anisotropy [42] and other local
shape properties, have also been studied. Another line of
approaches follows the non-local means idea [4] by collect-
ing features at points that are similar to one another.

Recently, the use of selective attention [37, 24, 38, 30,
29] has gained much success in computer vision. In a typ-
ical setting, an attentional network computes the feature of
a point by pre-selecting [11, 41, 53] a set of nearest points
in the point’s neighborhood and learning the associated at-

(a) Learned attention points (red) for point cloud classification.

(b) Learned attention points (red) for point cloud segmentation.

Figure 1: Learned attention points (LAPs) by our method,
shown in red, corresponding to several original (blue) points
on two tasks. For classification (a), the LAPs exhibit within-
class semantic consistency, while helping to discriminate
between different classes: attention points for similar orig-
inal points on chair seats and tabletops are located on dif-
ferent semantic parts. For segmentation (b), the two blue
points on each shape belong to different semantic regions,
but are spatially close, thus sharing similar spatial neighbor-
hoods. However, their LAPs are located far apart on dif-
ferent semantic parts, effectively “pushing” the blue points
into different segments by making their features dissimilar.

tention weights to capture additional contextual information
through the weights to enrich the point feature. Another re-
cent approach resorts to finding non-local neighbors [48] by
considering points within a much larger neighborhood.

In this paper, we present a new model for attentional
point feature learning, which learns to locate a single atten-
tion point for feature enhancement to optimize the perfor-
mance of a specific point cloud processing task such as clas-
sification and segmentation. For example, to incorporate
our model into a classification network, e.g.,DGCNN [41],
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Figure 2: Learning to locate the best attention point qi (red) for a given point pi (blue). The feature fi at pi is updated using
arbitrary local convolution. After that, we take fi to learn an offset vector to obtain di (yellow), from which we locate the
target attention point qi. We then aggregate the neighboring features of qi, which are finally fused into pi’s features.

(a) 1 LAP (b) 2 LAPs (c) 4 LAPs

Figure 3: Visualizing different number of LAPs (red dots)
selected by the same learning framework, for the same orig-
inal points (blue dots) on two airplanes. More LAPs, two or
four in (b) and (c), respectively, tend to exhibit less semantic
consistency, compared to the single best LAP (a).

that is based on point-wise convolutional feature process-
ing and aggregation, we can readily replace each convo-
lution layer in the network (i.e., EdgeConv in the case of
DGCNN) with a new convolution, which combines or fuses
the convolutional feature at an input point with the convo-
lutional feature at its corresponding learned attention point
(LAP). Hence, while only one attention point is selected
by our method, the feature fusion captures theinformation
from two local point neighborhoods. The LAP is obtained
by adding to the original point an offset vector, as illustrated
in Figure 2. These offset vectors are learned by minimizing
the classification errors over the training point clouds.

Unlike prior attentional models, which were trained to
optimize the weights of a pre-selected set of attention
points [48, 53] or a sequence via a recurrent network [23],
we focus on learning to locate one best LAP. A key premise
of our work is that if the right point is found, then adding
more attention may not be more effective. Our intuition is

that as shape geometries and structures vary, e.g., within the
same class of shapes for classification or within the same se-
mantic part in the context of segmentation, it is easier to at-
tain semantic consistency with one LAP than with more, as
illustrated in Figure 3 for a comparison between one, two,
and four LAPs. Such a consistency implies that matching
points on two similar shapes (e.g., the two blue points on
the two airplanes in each column of Figure 3) tend to be
mapped to matching LAPs (the corresponding red points).

As shown in Figure 1, the attention points learned by our
method do appear to exhibit a certain level of semantic un-
derstanding. Since our training is task-dependent, the LAPs
tend to behave differently for different tasks. In particular,
they may not possess similar features as the original points.
A critical observation here is that for feature enhancement,
points with dissimilar features can be equally useful since
they can provide complementary information.

Our LAP-based attentional point feature learning mech-
anism can be easily incorporated into modern classifica-
tion and segmentation networks, such as PointNet++ [32],
RSCNN [26], DGCNN [41], and KPConv [36]. We show
through comprehensive tests that, on common benchmarks
ModelNet40, ShapeNetPart, and S3DIS, our LAP-enabled
networks consistently improve the performance over the re-
spective original networks, as well as other competitive al-
ternatives, which employ multiple attention points, either
pre-selected, such as PointASNL [48] and PointWeb [53],
or learned under our LAP framework. The consistent im-
provements are verified over varying point neighborhood
sizes, train-test splits, and ways for feature integration.

2. Related Work

Deep learning on 3D point clouds. Inspired by the sem-
inal work of PointNet [31], many deep neural networks
have been developed to directly operate on points [33]. To
overcome the inadequacy of PointNet on capturing local



structures, PointNet++ [32] adopts a deep hierarchical fea-
ture learning mechanism that recursively employs Point-
Net to process point neighborhoods of increasing sizes.
Later, PCNN [2] adapts image-based CNNs to the point
cloud setting, leading to a permutation-invariant point fea-
ture learning. PointCNN [21] learns a transformation ma-
trix to weight the input features associated with the input
points and rearrange the points into a canonical permuta-
tion. A recent survey on this topic is available in [10].

One recent work of relevance is S-NET [9], a learning-
based point cloud downsampling network that is also opti-
mized for a particular task (e.g., classification or retrieval),
like our work. Also, both their sampling problem and
our proposed approach to feature enhancement would come
down to learning to locate a small number of points that
contribute most to a task at hand. While the success of their
work can be seen as validation to our task-specific training,
the problem setup and model design for attention point se-
lection are completely different from S-NET.

Point feature learning. Point features play an important
role to task performance. So, a majority of deep models
on 3D point clouds focus on designing methods to extract
better features, typically by exploiting a point’s local neigh-
borhood. DGCNN [41] bases the neighboring relations of
points on their distances in the feature space and aggregates
pair-wise features to generate features for the center point.
PointWeb [53] densely connects every pair of points in a
local neighborhood, aiming at extracting point feature that
better represents the local region around the center point.

Other methods focus on designing efficient convolution
kernels [3, 17] on points. PointConv [43] treats the convo-
lution kernel as a Monte Carlo estimate of nonlinear func-
tions of the local 3D coordinates of points. Point features
are weighted by the estimated density. KPConv [36] uses
a set of points in Euclidean space as the convolution ker-
nel and aggregates input features based on the distances be-
tween kernel points and input points. Liu et al. [27] reveal
that different local operators contribute similarly to network
performance. While prior works focus mostly on learning
local features, some recent ones [7, 48] start to explore non-
local 3D features with the attention mechanism [37].

Attentional point feature learning. Attention-based fea-
ture learning [37] has been introduced to learning point fea-
tures soon after its applications to image features. Rather
than being exhaustive, we discuss methods that focus on
point feature learning rather than on specific vision tasks.
Xie et al. [45] adopt self-attention to integrate point selec-
tion and feature aggregation into a single soft alignment op-
eration. Yang et al. [49] propose the point attention trans-
former, which leverages a parameter-efficient group shuf-
fle attention to learn the point relations. Zhang et al. [52]
propose Point Contextual Attention Network to predict the

significance of each local point feature based on the point
context. Chen et al. [6] learn local geometric representa-
tions by embedding a graph attention mechanism.

Further, attention can be used to learn long-range global
features. Liu et al. [23] propose Point2Sequence, an RNN-
based model that captures correlations between different ar-
eas in a point cloud. Lu et al. [28] design the spatial-channel
attention module to capture multi-scale and global context
features. Han et al. [12] create a global graph and weights
features of distant points with attention. More recently,
Cheng et al. [7] propose global-level blocks to update the
feature of a superpoint using weighted features of other su-
perpoints, while Yan et al. [48] propose PointASNL that
samples points over the whole point cloud to query similar
ones for non-local point feature learning.

All the methods mentioned above pre-select a set of
points, usually points in the local neighborhood or points
with similar features, as the attentional points. In the 2D
image domain, Zhang et al. [51] propose to learn an affinity
matrix for each attention point to shift it to a better location.
The features of the attention points are weighted based on
feature similarity. On the other hand, Xue et al. [47] suggest
that not all attention is needed, and only a small part of the
inputs is related to the output targets, through their investi-
gations into several natural language processing tasks. Our
work is inspired by these works which employ learned at-
tentional processing. Yet, we go beyond them and propose
to learn to locate the point to attend to, over the entire point
cloud, without relying on feature similarity.

3. Method
Recent deep learning approaches for 3D point clouds of-

ten focus on designing operators for better local feature ex-
traction. Denoting fi ∈ RC1 as the input feature of point pi
in a certain network layer (C1 is the channel number), this
local operator takes the input features of pi’s neighbors and
aggregates them to form the output feature f ′

i ∈ RC2 of pi,

f ′
i = LocalConv(N (pi)), (1)

where N (pi) is the set of neighboring points of pi, which
are often found by a ball query or k-nearest neighbor (KNN)
search. Here, LocalConv denotes a local convolution. It
can be a point-wise local operator [31, 32], a grid kernel lo-
cal operator [36], or an attention-based local operator [53].

Some methods use attention to learn global features for
long-range structures, in which N (pi) is replaced by a set
of pre-selected attention points. These points can be found
by locating points with similar features as fi in the feature
space. Like Eq. (1), a basic mechanism is to weigh the input
features of the attention points based on the feature similar-
ity, then to combine them into the output feature of pi.

In this work, we propose a new network module, called
LAP-Conv, that directly learns to find attention points with-



out relying on the feature similarity. In particular, we learn
to find for each input point pi only one attention point in-
stead of finding multiple ones. The top part of Figure 2
illustrates how LAP-Conv works. Let P be the input cloud
with n points {p1, p2, ..., pn}. Taking as an example the
blue point in Figure 2 as pi, we learn to find its associated
attention point qi, the red point, through the assistance of
the offset point di, the yellow point. The bottom part of
Figure 2 shows the overall feature learning pipeline. First,
we update feature fi of point pi using a Local Convolution
block (Eq. (1)), then map fi to the corresponding attention
point qi using the LAPs Mapping block (Section 3.1). Next,
the Attention Features Aggregation block (Section 3.2) ag-
gregates features for the attention point qi. Finally, the At-
tention Features Integration block (Section 3.3) integrates
the feature of the attention point into the output feature of
pi. Also, we show the detailed structure of LAP-Conv in
Figure 4, in which the three blocks are outlined.

3.1. Learning to Locate Attention Points

The features of points in the point cloud are first updated
with Eq. (1). We learn a function D to map the input feature
of point pi to locate offset point di (the yellow point in Fig-
ure 2) with di = D(fi), and then find the target attention
point qi (the red point) with the assistance of point di. In-
spired by the way how neighboring points are found in the
feature space [41], we propose to learn to find the attention
points either in the Euclidean space or in the feature space.

Case (i). For attention points in the Euclidean space,
we use a small MLP to map the feature fi to a three-
dimensional offset vector in the Euclidean space. We then
add this vector back to the 3D coordinates xi of the original
point pi to locate the offset point

di = MLP (fi) + xi. (2)

This MLP is shared among all the points in the input point
cloud P . Also, point di is not necessarily a point in P . Its
location is arbitrary in the Euclidean space. Hence, we map
the feature of point pi to an offset vector, which acts as an
attention direction for further pinpointing di. Taking point
di as guidance, we then find the nearest point qi to point di
among all the points in the entire point cloud as the learned
attention point qi associated with pi.

Case (ii). For attention points in the feature space, the
feature fi of point pi is mapped via a small shared MLP
to an offset vector (with same channel number as fi) in the
feature space. This vector is then added to fi to produce
fdi

, which is an offset feature in the feature space:

fdi = MLP (fi) + fi. (3)

Similar to di in case (i), offset feature fdi
is not necessar-

ily a feature vector of the points in the original point cloud.

LAPs Mapping
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Figure 4: The structure of LAP-Conv. For each attention
point in the Euclidean space, we learn a 3-dimensional off-
set vector and add it back. Each resulting point is used as
a query point to find the k nearest points in the point cloud.
The features of these points are aggregated into the learned
attention point and the feature of each attention point is in-
tegrated into the original feature. For attention points in the
feature space, the offset vectors are in the same space and
the neighboring points are also found in the feature space.

Also, it can have arbitrary values. With fdi
, we then search

the entire point cloud for point qi with the nearest feature
vector fqi to fdi in the feature space, and take qi as the cor-
responding learned attention point for point pi. The blocks
with the red-dotted frames in Figure 4 illustrate the detailed
procedure of this LAPs Mapping.

3.2. Attentional Features Aggregation

After finding the target attention point qi for point pi, we
then aggregate the features of the neighborhood of qi and
update the feature of point qi with

fqi = LocalConv(N (qi)). (4)

For attention points in the Euclidean space, these neighbor-
ing points are found in the Euclidean space. For attention
points in the feature space, these neighboring points are also
found in the feature space.

To find the closest point qi to di, we need to calculate
the distances between point di and all the other points. To
further find the neighboring points of qi, another distance
calculation is required. To reduce the cost of processing two
sets of distance calculations, we directly find the neighbor-
ing points of point di instead of explicitly finding point qi
and then its neighbors. The learned attention point qi must



be among the neighboring points of di, since qi is the near-
est one to di in the original point cloud. So, the feature of
the learned attention point can be updated using the features
of the neighboring points of di as

fqi = LocalConv(N (di)). (5)

For both cases (i) and (ii), we prefer to find these neigh-
boring points using KNN. In this situation, no matter how
large the offset vectors are, there are always neighboring
points of di. If the neighboring points are found with a ball
query [32], an additional loss is needed to punish the point
di from being shifted too far away. Otherwise, there could
be no neighboring points of di within a certain radius.

Hence, we use KNN to finding the neighboring points for
performing LocalConv1 for consistency. After we learn the
offset points, we use them as query points to find k neigh-
boring points and update the feature of qi, as shown in the
green dotted frames in Figure 4. It should be noticed that all
these neighboring points are points from the original point
cloud (case (i)) or the features of the points in the original
point cloud (case (ii)), in which di or fdi

is not one of them.

3.3. Integration of Attentional Features

After we aggregate a feature for the learned attention
point qi, we then integrate the feature into the feature of
pi with an integration function I (‘I’ for integration):

f ′
i = I(LocalConv1(N (pi)), LocalConv2(N (di))), (6)

where we could use the same or different convolutional op-
erators for LocalConv1 and LocalConv2.

In the previous attention-based networks for processing
point clouds, e.g., [41, 53, 7, 48, 49, 12, 45, 22], the fea-
tures of the attention points are weighted by a dot-product
similarity between the features of the pre-selected attention
points and pi, or by the similarity in the spatial location be-
tween them. An attention point with a more similar feature
is given a larger weight when added into the feature of pi.
However, we argue that not only points with similar features
could be useful, but also points with different features could
also be useful in feature learning. Particularly, points with
different features could supply the center point pi with vital
context for performing the target task.

Here, one straightforward choice for I is to simply add
the features of point qi and point pi together:

I = Add(fpi , fqi), (7)

as illustrated in the blue dotted frames in Figure 4. Since
LocalConv1 and LocalConv2 do not share parameters, the
network can learn to update the feature of qi for adding it
into the feature of pi. Another choice for I is to concatenate
the two features then use an MLP to reduce the dimensions:

I = MLP (Concatenate(fpi
, fqi)). (8)

A comparison result between these two forms of feature in-
tegration can be found in Table 5 of Section 4.

4. Results and Evaluation
Our proposed LAP-Conv can be easily adapted into con-

ventional point-wise feature learning networks. In existing
networks, a LocalConv block is generally used in a set ab-
straction level to update the input feature fi of a point and
produce f ′

i , as described in Eq. (1). Hence, by keeping the
channel sizes of the input and output features to be the same,
we can replace the LocalConv block in existing networks
with our LAP-Conv to boost the network performance.

To demonstrate the effectiveness of our LAP-Conv, we
adapt it into common networks, including PointNet++ [32],
RSCNN [26], DGCNN [41], and KPConv [36], produc-
ing LAP-enabled networks, i.e., LAP-PointNet++, LAP-
RSCNN, LAP-DGCNN, and LAP-KPConv. Note that since
DGCNN finds neighboring points in feature space, the at-
tention points for LAP-DGCNN are learned in the feature
space (Eq. (2)). For the other LAP-enabled networks, the
LAPs are learned in Euclidean space (Eq. (3)).

We conduct experiments using these networks on various
tasks, including shape classification (Section 4.1), part seg-
mentation, and semantic segmentation (Section 4.2), show-
ing both quantitative comparisons and qualitative results. At
last, we evaluate various aspects of our LAP-Conv (Sec-
tion 4.3), e.g., one vs. multiple learned attention points,
neighborhood sizes, train/test split, etc.

4.1. Classification

First, we evaluate our method on the shape classification
task using ModelNet40 [44], which provides a comprehen-
sive collection of 12,311 CAD models from 40 categories.
Here, we use the input point clouds sampled from these
models by PointNet [31]. Typically, 1,024 points are uni-
formly sampled per model to serve as the network input.
Following the official train/test split, we use 9,843 models
for training and 2,468 models for testing.

In this experiment, we evaluate the performance of
LAP-PointNet++, LAP-RSCNN, LAP-KPConv, and LAP-
DGCNN, where data preprocessing, augmentation, and the
choice of hyper-parameters all follow the original network
settings. Also, we employ only 3D point coordinates as
network inputs. For LAP-PointNet++, LocalConv1 and
LocalConv2 in Figure 4 are small shared MLPs with max-
pooling separately. For LAP-RSCNN, LocalConv1 is an
RS-Conv and LocalConv2 is a small shared-MLP with
max-pooling. Note that, since only the single-scale ver-
sion of the RSCNN code is officially released, we develop
our LAP-RSCNN based on the released code and report
91.7 for the single-scale RSCNN, following [20]. For LAP-
KPConv, LocalConv1 is a KP-Conv and LocalConv2 is
a small shared-MLP with max-pooling. In this paper, we



Table 1: 3D Shape classification results on ModelNet40.
OA: overall accuracy (%); mAcc: mean class accuracy (%);
xyz: points only as input; xyz+nor: use points and normals.

Method input #points OA
PointNet [32] xyz 1k 89.2
O-CNN [39] xyz+nor - 90.6

PAT [49] xyz+nor 1k 91.7
Kd-Net [16] xyz 32k 91.8

PointCNN [21] xyz 1k 92.2
PCNN [2] xyz 1k 92.3

PointWeb [53] xyz+nor 1k 92.3
SpiderCNN [46] xyz+nor 5k 92.4
PointConv [43] xyz+nor 1k 92.5

A-CNN [17] xyz 1k 92.6
Point2Node [12] xyz 1k 93.0
PointASNL [48] xyz 1k 92.9
PointASNL [48] xyz+nor 1k 93.2
DensePoint [25] xyz 1k 93.2

SO-Net [19] xyz+nor 5k 93.4
PointNet++ [32] xyz 1k 90.7

RSCNN [26] xyz 1k 91.7
KPConv [36] xyz 7k 91.9
DGCNN [41] xyz 1k 92.9

LAP-PointNet++ xyz 1k 92.9
LAP-RSCNN xyz 1k 92.8
LAP-KPConv xyz 7k 92.3
LAP-DGCNN xyz 1k 93.9

report 91.9 for KPConv as the result reproduced by the of-
ficially released code.

Finally, for LAP-DGCNN, we use EdgeConv for both
LocalConv1 and LocalConv2.

Table 1 reports the results of using different methods
for the shape classification task. Comparing the results of
the three LAP-enabled networks with those of the original
counterparts, we can see that all of them improve the perfor-
mance over the original networks, showing that our LAP-
Conv can help improve the quality of the features for the
shape classification task. Overall, LAP-DGCNN attains the
highest performance with an overall accuracy of 93.9 to date
on the classification task, compared with all others, includ-
ing other attention-based methods such as PointWeb [53],
Point2Node [12], and PointASNL [48].

4.2. Segmentation

Part segmentation. The ShapeNet Part dataset [50] has
16,881 shapes over 16 categories and with 50 part labels.
We sample 2,048 points per shape from this dataset for
our experiments and follow the official data split setup [5]
adopted in DGCNN [41] and PointNet++ [32].

Table 2 reports the performance by various methods, in

(a) Ground-truth (b) PointNet++ (c) LAP-PointNet++

Figure 5: Comparing part segmentation on ShapeNet Part
between PointNet++ and LAP-PointNet++. In each case,
we highlight an incorrectly labeled point near a segmenta-
tion boundary (hollow arrow) by PointNet++ and how the
use of LAP-Conv (right) corrected the label with feature en-
hancement by an attention point (large red dot).

Table 2: Part segmentation results on ShapeNet Part.

Method mIoU
Kd-Net [16] 82.3

PointNet [31] 83.7
PointNet++ [32] 85.1

PCNN [2] 85.1
DGCNN [41] 85.2
RSCNN [26] 86.2
KPConv [36] 86.4

LAP-PointNet++ 85.4
LAP-DGCNN 85.8
LAP-RSCNN 86.4
LAP-KPConv 86.9

terms of the mean Intersection-over-Union (mIoU) metric,
showing that LAP-Conv helps improve the part segmenta-
tion performance of PointNet++, RSCNN, DGCNN, and
KPConv. Figure 5 visually contrasts PointNet++ and LAP-
PointNet++ to show the differences made by LAP-Conv;
see more such results in the supplementary material.

Indoor scene semantic segmentation. We use the Stan-
ford 3D Large-Scale Indoor Spaces (S3DIS) dataset [1],
which contains large-scale 3D-scanned point clouds for six
indoor areas with 272 rooms from three different buildings.
Altogether, the dataset has ∼ 273 million points, each be-
longing to one of 13 semantic categories. Area-5 is used as
the test scene for evaluating the method’s generalizability.

For LAP-DGCNN, each room is split into blocks of size



Table 3: Semantic segmentation results on the S3DIS
dataset (evaluated on Area 5).

Method mIoU
PointNet [31] 41.1
DGCNN [41] 49.1

TangentConv [35] 52.6
PointCNN [21] 57.3
SPGraph [18] 58.0

ParamConv [40] 58.3
PointWeb [53] 60.3
HPEIN [15] 61.9

MVPNet [14] 62.4
Point2Node [12] 63.0

MinkowskiNet [8] 65.4
KPConv [36] 67.1
JSENet [13] 67.7

LAP-DGCNN 53.6
LAP-KPConv 68.2

Figure 6: Visualization of two semantic segmentation re-
sults on S3DIS. Left: input point cloud with RGB colors.
Middle: points with ground-truth semantic labels. Right:
segmentation results predicted by LAP-DGCNN.

1m×1m as done in DGCNN. The input is point coordi-
nates together with RGB colors and normalized spatial co-
ordinates (a 9D vector per point), following the settings in
DGCNN [41]. During the training, we sample 4,096 points
from each room block. Then, all sampled points are used for
testing. For LAP-KPConv, each 3D scene in the dataset is
segmented into small sub-clouds contained in spheres. Dur-
ing the training, the spheres were picked randomly in the
scenes, and during testing, they are picked regularly in the
point clouds. Table 3 gives the results, showing that LAP-
Conv helps improve semantic segmentation performance on
S3DIS for both DGCNN and KPConv. Also, we present two
visual semantic segmentation results on S3DIS in Figure 6.

Note that since PointNet++ and RSCNN did not report
their results on S3DIS, LAP-PointNet++ and LAP-RSCNN
are not evaluated on S3DIS.

Table 4: Comparing different ways of choosing LAPs.

OA mAcc Parameters (M)
DGCNN (baseline) 92.9 90.2 4.21

random-LAP-DGCNN 93.0 89.9 4.25
LAP-DGCNN 93.9 91.5 4.28
LAP2-DGCNN 93.3 90.2 4.35
LAP4-DGCNN 93.1 90.3 4.49

4.3. Ablation Study

Finally, we evaluate various aspects of our method, em-
ploying LAP-DGCNN to test on ModelNet40.

Different ways of choosing LAPs. In this experiment, we
compare LAP-DGCNN with three variants of the network
in terms of how to choose attention points:

• Random-LAP-DGCNN, in which we replace the MLP
for learning to generate the offsets (Eq. (3)) with a
randomly-generated vector, thus replacing the core of
our LAP-Conv, which uses the learned offset vector to
locate the learned attention point;

• LAP2-DGCNN and LAP4-DGCNN, which respec-
tively learns two and four attention points simultane-
ously, instead of one, in one single LAP-Conv module.

As comparison results in Table 4 show, random-LAP-
DGCNN hardly makes any improvement over the baseline,
which is DGCNN. This result demonstrates the importance
of the learned offset vectors for searching for the target at-
tention point. Yet, using just the right learned attention
point, as in LAP-DGCNN, we can achieve a large perfor-
mance improvement over the original DGCNN.

Next, comparing LAP2-DGCNN and LAP4-DGCNN
with LAP-DGCNN, we can see that learning to find and
use more than one attention point improves over DGCNN.
However, the improvement is far below than using just one
single learned attention point. Yet, an interesting observa-
tion is that the more learned attention points we use, re-
sulting in larger network capacity, the worse the results ap-
pear to be, indicating that LAP’s effectiveness is not merely
brought by more convolution layers. The visualization in
Figure 3 on where the 1, 2, and 4 attention points were se-
lected by the networks may hint at a possible reason: as
more points are added, their consistency tends to drop.

Different feature integration. We can have different
ways of integrating the feature of point pi with that of its
LAP qi; see Section 3.3. As shown in Table 5, option I1
(Eq. (7)) gives a slightly better performance compared with
I2 (Eq. (8)), so we empirically choose I in our LAP-Conv.
We have tested other ways of feature integration, e.g., point-
wise multiply, but they do not lead to good results.



Table 5: Comparing different ways of integrating features.

Different Function I OA mAcc
I1 or Eq. (7) 93.9 91.5
I2 or Eq. (8) 93.6 91.0

Table 6: Comparing different neighboring sizes (k) in KNN.

k
OA

DGCNN LAP-DGCNN
5 90.5 93.5

10 91.4 93.4
20 92.9 93.9
40 92.4 93.3

Table 7: Shape classification results on ModelNet40 with
different train/test splits.

(Train/all)% OA
DGCNN LAP-DGCNN

80% 92.9 93.9
60% 91.5 92.6
40% 90.6 92.1
20% 88.9 90.2
10% 87.3 88.0
5% 82.7 83.1
1% 63.5 64.9

Different neighborhood sizes. Note that we built LAP-
DGCNN by following the setting of DGCNN to use k=20
for the two KNN operations in LAP-Conv. In this exper-
iment, we test LAP-DGCNN with different neighboring
sizes (k), while keeping all the other settings unchanged.

As shown by results in Table 6, the performance of our
LAP-DGCNN is quite robust against different choices of
k, and it also consistently outperforms DGCNN. Even with
a rather small neighborhood size k=5, our method can al-
ready attain a rather high performance, which exceeds that
of DGCNN for all the neighborhood sizes shown in Table 6,
as well as all other methods listed in Table 1.

Different train/test splits. In a final experiment, we test
the robustness of our method over different training/test
splits. Note that the original setting uses 9,843 models,
which is around 80% of the whole dataset, for training, and
the remaining 20% for testing. We test the performance
of our LAP-DGCNN using smaller training sets, from 80%
down to 1% of the whole dataset, and compare to DGCNN,
with results shown in Table 7. Similar to [34], we select
the training samples as follows, for all train/test splits: we
randomly sample one object per class first; the remaining
training data are randomly sampled from the original train-
ing set, regardless of their classes. As we can observe from

(a) (b) (c) (d)

Figure 7: LAP selection learned by our network is neither
symmetric (a) nor invertible (b), in general; and it is not
always stable (c-d), as nearby points may be mapped afar.

Table 7, our method performs well even with a very small
training set, and most importantly, it consistently outper-
forms DGCNN over all train/test splits. Also, the random-
ization during our setup of the multiple training sets can
alleviate potential concerns of over-fitting.

5. Discussion, Limitation, and Future Work
Our paper is about learning point features, which is an

essential step in most point cloud processing tasks including
classification, segmentation, and more. Furthermore, we
tackle arguably the most fundamental question in this set-
ting, namely, how to find the neighbors of a point P to best
characterize its features. With deep learning, many works
propose to learn what P ’s neighbors are and their weights,
as discussed in Section 2. Our work improves upon these
attentional learning methods and it is motivated by two key
observations: a) the learning of attention points should be
task-specific; and b) one attention point may be best as it
is easier to attain semantic consistency; see Figures 3. The
merit of our ideas has been validated through a comprehen-
sive evaluation, demonstrating that our one-LAP approach
outperforms the use of multiple attention points, both by
previous works (e.g., PointASNL [48], PointWeb [53]), and
when they are learned under our framework.

Currently, our LAP selection is neither symmetric nor
invertible in general. As shown in Figure 7, if two points p
and q are symmetric on a shape, LAP (p) and LAP (q) may
not be; and p 6= LAP (LAP (p)). The figure also shows that
the selection may become unstable, as one would expect
from the results of a data-driven optimization. However,
it is worth noting that in general, we find the learned off-
set vectors to be more stable than the final attention points,
which are obtained by projecting back onto the point clouds.
These findings suggest that we do not yet have a mathe-
matically or semantically precise way to reason about the
best attention point. We speculate that unless we inject ad-
ditional inductive biases, e.g., to enforce consistency, into
the design of our convolution, there may not be a universal
interpretation, or “geometric intuition”, to reliably predict
the best LAP. Our current learning framework is completely
data-driven, similar to all other works that learn more atten-



tion points: any geometric intuition would need to be built
into the network design, not learned.

On the technical front, our method may not extend to
other representations such as voxels. In voxel-based repre-
sentation, the offset points need to be discretized into voxels
which may cause discontinuity in gradients.
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