
SCIENCE CHINA
Information Sciences

. RESEARCH PAPER .

NAND-SPIN-Based Processing-in-MRAM
Architecture for Convolutional Neural Network

Acceleration

Yinglin ZHAO1,5, Jianlei YANG2*, Bing LI3*, Xingzhou CHENG2,

Xucheng YE2, Xueyan WANG4, Xiaotao JIA4, Zhaohao WANG4,

Youguang ZHANG1 & Weisheng ZHAO4

1School of Electronic and Information Engineering, Beihang University, Beijing 100191, China;
2School of Computer Science and Engineering, Beihang University, Beijing 100191, China;
3Academy for Multidisciplinary Studies, Capital Normal University, Beijing 100048, China;

4School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China;
5Qingdao Research Institute, Beihang University, Qingdao 266104, China

Abstract The performance and efficiency of running large-scale datasets on traditional computing systems

exhibit critical bottlenecks due to the existing power wall and memory wall problems. To resolve those

problems, processing-in-memory (PIM) architectures are developed to bring computation logic in or near

memory to alleviate the bandwidth limitations during data transmission. NAND-like spintronics memory

(NAND-SPIN) is one kind of promising magnetoresistive random-access memory (MRAM) with low write

energy and high integration density, and it can be employed to perform efficient in-memory computation

operations. In this work, we propose a NAND-SPIN-based PIM architecture for efficient convolutional

neural network (CNN) acceleration. A straightforward data mapping scheme is exploited to improve the

parallelism while reducing data movements. Benefiting from the excellent characteristics of NAND-SPIN

and in-memory processing architecture, experimental results show that the proposed approach can achieve

∼2.6× speedup and ∼1.4× improvement in energy efficiency over state-of-the-art PIM solutions.

Keywords Processing-in-memory, Convolutional neural network, NAND-like spintronics memory, Non-

volatile memory, Magnetic tunnel junction

Citation Yinglin ZHAO, Jianlei YANG, Bing LI, et al. A NAND-SPIN-Based Processing-in-MRAM Architecture

for Convolutional Neural Network Acceleration. Sci China Inf Sci, for review

1 Introduction

Over the past decades, the volume of data required to be processed has been dramatically increasing [1].
As the conventional von Neumann architecture separates processing and data storage components, the
memory/computational resources and their communication are in the face of limitations due to the long
memory access latency and huge leakage power consumption. This phenomenon can be interpreted as
memory and power walls [2]. Therefore, there is an urgent need to innovate the architecture and establish
an energy-efficient and high-performance computing platform to break existing walls.

Processing-in-memory (PIM), a promising architecture diagram, has been proposed to overcome power
and memory walls in recent years [3, 4]. Through the placement of logic units in the memory, the
PIM architecture is considered an efficient computing platform because it performs logic operations by
leveraging inherent data-processing parallelism and high internal bandwidth [5, 6]. However, the full
exploitation of the bandwidth and the integration of computing cells within the memory result in a
major circuit redesign and a significant chip area increase [7]. As CMOS technology is moving to its
physical limitation [8], the realization of PIM generates increases design and manufacturing costs and
sacrificed memory capacity to some extent, which is not conducive to obtaining cost-effective products.

* Corresponding author (email: jianlei@buaa.edu.cn, bing.li@cnu.edu.cn)

ar
X

iv
:2

20
4.

09
98

9v
1

 [
cs

.A
R

]
 2

1
A

pr
 2

02
2

Zhao Y, et al. Sci China Inf Sci 2

In recent years, many non-volatile memories (NVMs), such as resistive random-access memory (ReRAM)
[9–11], phase change memory (PCM) [12, 13], and magnetoresistive random-access memory (MRAM)
[14, 15], provide PIM with a new research platform. Among all emerging NVM technologies, MRAM
has emerged as a promising high-performance candidate for the main memory due to its non-volatility,
superior endurance, zero standby leakage, compatibility with the CMOS fabrication process and high
integration density [16]. In particular, spin-transfer torque MRAM (STT-MRAM) and spin-orbit torque
MRAM (SOT-MRAM) are two advanced types of MRAM devices [17]. However, the switching speed and
energy consumption of STT-MRAM are limited by the intrinsic incubation delay, while SOT-MRAM ex-
hibits a poor integration density because it contains two transistors in a standard bit cell [18]. In [19,20],
an emerging spintronics-based magnetic memory, NAND-like spintronics memory (NAND-SPIN), was
designed to overcome the shortcomings of STT-MRAM and SOT-MRAM and pave a new way to build
a novel memory and PIM architecture.

Convolutional neural networks (CNNs) have received worldwide attention due to their potential of
providing optimal solutions in various applications, including popular image recognition and language
processing [21]. As neural networks deepen, the high-performance computation of CNNs requires a
high memory bandwidth, large memory capacity, and fast access speed, which are becoming harder to
achieve in traditional architectures. Inspired by the high performance and impressive efficiency of PIM,
researchers have attempted to implement in-memory CNN accelerators. For example, CMP-PIM involves
a redesign of peripheral circuits to perform CNN acceleration in the SOT-MRAM-based memory [22].
STT-CiM [16] enables multiple word lines within an array to realize in-memory bit-line addition through
the integration of logic units in sense amplifiers. However, their performance improvement brought about
by PIM is offset by the shortcomings of the SOT/STT-MRAM mentioned above.

NAND-SPIN adopts a novel design that allocates one transistor for each magnetic tunnel junction
(MTJ) and writes data with a small current, which means low write energy and high integration density.
Despite its excellent potential, the PIM architecture based on NAND-SPIN is still scarce. In this study,
we developed an energy-efficient memory architecture based on NAND-SPIN that can simultaneously
work as an NVM and a high-performance CNN accelerator. The main contributions of this study are
summarized as follows:

• Inspired by the outstanding features of NAND-SPIN devices, we developed a memory architecture
based on NAND-SPIN. Through the modification of peripheral circuits, the memory subarray can perform
basic convolution, addition and comparison operations in parallel.
• By breaking CNN inference tasks into basic operations, the proposed NAND-SPIN-based PIM ar-

chitecture achieves a high-performance CNN accelerator, which has the advantages of in-memory data
movement and excellent access characteristics of NAND-SPIN.
• We employed a straightforward data mapping scheme to fully exploit data locality and reduce data

movements, thereby further improving the performance and energy efficiency of the accelerator.
• Through bottom-up evaluations, we show the performance and efficiency of our design with com-

parison to state-of-the-art in-memory CNN accelerators.

The remainder of this paper is organized as follows: Section 2 presents the background of MRAM
and design motivation. Section 3 provides the details of the proposed architecture. Section 4 presents
the acceleration methods for CNNs and introduces some optimization schemes. Section 5 describes the
experimental platform and analyzes the simulation results. Section 6 concludes this paper.

2 Preliminary and Motivation

In this section, we present MRAM-related technologies, CNNs and existing in-memory computing designs.

2.1 MRAM

MTJs are the basic storage element in STT-MRAM and SOT-MRAM [17, 23]. As shown in Fig. 1a, an
MTJ contains three layers: two ferromagnetic layers with a tunnel barrier sandwiched between them.
The magnetization direction of the pinned layer is fixed and perpendicular to the substrate surface, while
the magnetization direction of the free layer exhibits two stable states: parallel (P) or anti-parallel (AP)
to that of the pinned layer. Due to the tunnel magnetoresistance (TMR) effect, when the magnetization
directions of the two ferromagnetic layers are parallel (anti-parallel), the resistance of the MTJ is low
(high). This state is used to represent the logic “0” (“1”) [24].

Zhao Y, et al. Sci China Inf Sci 3

The most popular STT-MRAM cell structure is illustrated in Fig. 1b [25]. The MTJ pillar has a small
area and can be integrated above transistors. Hence, the total cell area is determined only by the bottom
transistors and leads to an expectation of achieving a high-density memory. However, the long write
latency and high write energy hinder the broad application of STT-MRAM.

WL

BL

Free
Layer

Tunnel
Barrier

Pinned
Layer

Parallel
(Low Resistance)

(a)

Anti-parallel
(High Resistance)

(b)

SL N2

N1

BL

BL SL

(c)
Iwrite

Iread

PT

WL[1]

BL

VDD

(d)

BL BL

NT

GND

BL

WL[2] WL[3] WL[4]

Iprogram

Ierase

Iread

Figure 1 (a) Device structure of the MTJ in parallel and anti-parallel states. (b) 1T-1MTJ STT-MRAM cell. (c) Bit cell

schematic of the standard 2-transistor SOT-MRAM. (d) Structure and operations of the NAND-like spintronic memory.

SOT-MRAM is a composite device of spin hall metal and MTJ [14], and Fig. 1c shows the basic bit cell
of a standard SOT-MRAM. The access transistors, N1 and N2, connect the pinned layer of the MTJ and
heavy metal strip with bit lines (BLs), respectively. The data can be written into and read out from the
MTJ by referring to the green and blue currents flowing from the source lines (SLs) to BLs [26]. Although
SOT brings the fast switching of magnetization, such a design faces the storage density challenge because
it contains two transistors in a unit.

A multi-bit NAND-SPIN device is shown in Fig. 1d, in which the MTJs are organized similar to
a NAND flash memory [19, 27]. The PMOS transistor (PT) and NMOS transistor (NT) work as the
selection transistors for conducting paths to the VDD and GND, respectively. In the NAND-SPIN, the
write operation requires two steps:

Step 1: Erase data in all MTJs, and initialize them into default AP states. In this step, two transistors,
PT and NT, are activated, while all word line (WL) transistors are off. The generated current between
VDD and GND can erase all MTJs in the heavy metal strip via the SOT mechanism.

Step 2: Program the selected MTJs by switching them into the P state. In this step, the corresponding
WL and PT transistors are activated, and the currents flowing through the MTJs from free layers to
pinned layers would switch the states of the MTJs to the P state via the STT mechanism.

Because NAND-SPIN uses MTJs as the basic storage element, it has high endurance, which is essential
for memory cells. In addition, the compatibility with CMOS makes NAND-SPIN a high density memory,
because it distributes MTJs over CMOS circuits. Compared with conventional STT-MRAM, NAND-
SPIN only requires a small STT current to complete an efficient AP-to-P switching. The asymmetric
writing scheme reduces the average latency and energy of write operations while achieving a high storage
density, which unlocks the potential of MRAM-based architectures.

2.2 CNN

A CNN is a type of deep neural network, commonly used for image classification and object recognition.
Typically, a CNN consists of three main types of layers, namely, convolutional layer, pooling layer and
fully-connected layer [6, 28,29].

In the convolutional layer, the kernels extract features from the input feature maps through convolution
operations. The convolution operation applies a kernel to move across the input feature map and performs
dot products between the inputs and weights. There are usually many input and output feature maps in
a convolutional layer, which requires considerable convolution operations.

The pooling layer is used to reduce the input dimensions of the feature maps. Similar to the convolu-
tional layer, the pooling operation slides a filter across the inputs and combines the neuron clusters into
a single neuron. There are two types of pooling layers, namely max/min pooling and average pooling.
Max/min pooling uses the maximum/minimum value of each cluster as the neuron of the next layer,
while average pooling uses the average value.

The fully-connected layer connects all neurons from one layer to every activation neuron of the next
layer, and it usually leverages a softmax activation function to classify inputs as the final outputs. Past
studies have concluded that the fully-connected layer can be treated as another convolutional layer [30,31].

Zhao Y, et al. Sci China Inf Sci 4

…

Bank

Bank

Controller I/O

Global Data Buffer

…

Bank

Bank

Bus

Decoder

Global Data Buffer

Driver

Mat Mat

Mat Mat

…

…

Controller Decoder

Driver

Subarray …

Subarray

Controller

Local Data Buffer

Subarray

… Subarray

Figure 2 Hierarchical memory organization in the proposed architecture.

2.3 PIM Architectures

To reduce the cost of data movement, the PIM platform has been proposed for several decades [32–
34]. Some proposals in the context of static RAM (SRAM) or dynamic RAM (DRAM) have been
researched in recent years. For example, in [35], a grid of SRAM-based processing elements was utilized
to perform matrix-vector multiplication in parallel. The design in [36] uses a CNN accelerator built with
DRAM technology to provide a powerful computing capability and large memory capacity. However,
their working mechanisms inevitably lead to multi-cycle logic operations and high leakage power.

Considering the possibility of using NVM as a substitute for the main memory, various works have been
conducted to explore emerging PIM architectures. These works put forward a wide range of specialized
operators based on NVM for various applications [37,38]. For instance, in [39], an interesting design was
proposed to implement in-memory logic based on MTJs. Pinatubo optimized the read circuitry to perform
bitwise operations in data-intensive applications [40]. Based on PCM, a equivalent-accuracy accelerator
for neural network training is achieved in [13]. In addition, some designs modify memory peripherals to
perform specific applications instead of general applications. In [41], a ReRAM crossbar-based accelerator
was proposed for the binary CNN forward process. Moreover, PRIME shows a ReRAM-based PIM
architecture in which a portion of a memory array can be configured as NN accelerators [42].

Although PIM-based designs effectively reduce data movements, the complex multi-cycle operations
and insufficient data reuse are still hindrances to performance improvement. Different from previous
designs, we not only used NAND-SPIN to build an in-memory processing platform, but optimized the
storage scheme to minimize data duplication and provide large parallelism for in-memory processing.

3 Proposed Architecture

In this section, we first introduce the architecture design and the function of each component. Then, we
show how to perform memory and logic functions based on the proposed architecture.

3.1 Architecture

The general memory organization is shown in Fig. 2. There are three levels in such a hierarchical
organization: the bank, mat and subarray. The bank is a fully-functional memory unit and banks within
the same chip share the I/O resources. The mat is the building block of bank, and multiple mats
are connected with a global data buffer. The subarray is the elementary structure in our design, and
multiple subarrays in a mat implement memory access or CNN acceleration in parallel. To coordinate
those components, the controller generates control signals to schedule computations and communications.
In particular, the local data buffer temporarily hold data sent from subarrays and the global buffer for
alleviating data congestion. The mat level scheme and peripheral components is shown in Fig. 3a, and
the subarray architecture based on NAND-SPIN is illustrated in Fig. 3b. Here, we mark a single NAND-
SPIN device containing a group of 8 MTJs with a green ellipse. The specific structure of subarrays and
the operation details of CNN acceleration are discussed later.

3.2 Microarchitecture

Fig. 4a describes the detailed structure and internal circuits of a block. The synergy of control signals
carries out 3 logic functions: writing, reading and logic AND (for CNN acceleration mode). The writing
process is divided into two stages: the stripe erase stage and the program stage. As illustrated in Section
2.1, the WE and ER are both activated in the erase stage to generate the SOT current, while the WE,

Zhao Y, et al. Sci China Inf Sci 5

Input Data Controller

W
ei

gh
t D

at
a

Decoder

Data Bus

Convolution Memory
256 x 128 bits

...

...

...

...

...

...

8 bits

8
bi

ts

SA

16

1625
6

bi
ts

W1[0],

SA SA

Bit-counter

...
888

(b)

Subarray 1
Mat

W2[0], W8[0],
Buffer

FF
=1

&

FF
=1

&

⋯ ⋯

Bit-counter Unit

⋯

Su
ba

rr
ay

 2

⋯

SA

Bit-counter

Buffer

Su
ba

rr
ay

 3

Column Driver

R
ow

 D
riv

er

...

(a)

Subarray 1

Local Data Buffer

M
U

X

M
U

X

Figure 3 (a) Mat level scheme and peripheral components. (b) NAND-SPIN-based subarray architecture.

Cx(x = [1,m]) and corresponding Ry(y = [1, n]) are selected in the later program stage to produce the
STT current. In regard to read operations, the REF, FU and corresponding Ry(y = [1, n]) are set high.
Then, the SA is connected to the circuit for a reading operation. Besides, the setting for AND operations
is similar to read operations, but the FU varies with the operand.

The SA is the central functional unit that performs read operations and AND operations, utilizing
a separated PCSA (SPCSA) circuit (depicted in Fig. 4b) [43]. The SPCSA can sense the resistance
difference between two discharge branches according to the discharge speed at two points (Vref and
Vpath). Accordingly, Rref refers to the resistance in the reference path, and is set to (RH+RL)/2 (RH

and RL represent the resistance of an MTJ in AP and P states, respectively), and Rpath represents the
total resistance in another path.

An SA requires two steps to implement a single function. The first step is to charge Vref and Vpath

by setting the RE low voltage. The second step is a reverse process that flips RE to discharge Vref and
Vpath. The inverter connected to the point with a higher path resistance first flips and latches the state.

Note that we use a complementary method for data storage. For example, the MTJ in the AP state
actually means storing binary data “0”. Fig. 4c lists the possible conditions (DATA represents the actual
binary data stored in MTJ1) and the outputs of the SA. Moreover, the transistor connected to the REF
is turned on by default when the SA is working.

1). Memory Mode: Based on the subarray design described above, Fig. 5 and Table 1 describe the
paths of the current flow and corresponding signal states respectively.

Erase operation: To erase the contents in a group of MTJs, the current is generated flowing through
the heavy metal strip. As shown in Fig. 5a, the transistors in contact with heavy metal strips are activated
by ER and WE, while the other transistors remain deactivated. Then, a path is formed between VDD
and GND, and it generates the write current in the heavy metal strip to erase the MTJs to AP states.

Program operation: The program operation is the second step of data writing after the erase
operation. A program operation requires a current from the free layer to the fixed layer in the MTJ, as
shown in Fig. 5b. While programming data (represented as D in Table 1), the circuit should activate the
transistor controlled by WE and the two transistors corresponding to a certain MTJ (for example, R1

and C1 for MTJ1 in Fig. 5b). Then, a path is formed between VDD and GND, which produces a current
inducing the STT to switch the MTJ from AP to P.

Note that the state of an MTJ after finishing the two stages above is determined by the signals sent
from decoders. The signals (R1 to Rn) determine which row performs the program operation. The signals
(C1 to Cm) produced by the column decoder determine whether the program operation is completed.
Noticing the mapping relationship above, we regard generated signals as a map to values that need to be
written into MTJs. The signal Cx(x = [1,m]) equal to “1” results in a successful program operation as
well as the AP-to-P switching in the MTJ. In contrast, the logic 0 in Cx(x = [1,m]) means a blocking
current in the transistor connected with Cx(x = [1,m]), and the MTJ maintains the AP state. Fig. 6
demonstrates the timing diagram of an erase operation followed by a program operation.

Read operation: When performing a typical read operation, a current should be generated in the path
connecting the SA and a certain MTJ, as shown in Fig. 5c. Similar to the program operation, the signals
(R1 to Rn) transmitted by row decoders decide which row of MTJs would be read out. Additionally, ER,

Zhao Y, et al. Sci China Inf Sci 6

DATA MTJ1 FU
Resistance

Comparison
OUT

1 0 1 Rref > Rpath 1

0 1 1 Rref < Rpath 0

1 0 0 Rref < Rpath 0

0 1 0 Rref < Rpath 0

(c)

FU

..

SA

GND

Column Decoder
R

o
w

 D
ec

o
d

er

….

..

GND

….

GND GND

….

ER

WE

REF

C1 Cm

R1

R2

Rn

MTJ1

MTJn

OUT

Rref Rpath

(a)

GND

SA

(b)

Rref

VpathV
ref

GND GND

RE

OUT

Rpath

GND GND

RE

VDD

Figure 4 (a) Schematic of the subarray architecture. (b)

Schematic of the sensing circuit. (c) Possible conditions and

outputs of the SA.

(a)

ER

WE

..

GND GND

Rref

FU

C1

R1

R2

Rn

MTJ1

MTJ2

MTJn

REF

SA

OUT

(b)

ER

..

GND GND

Rref

C1

R1

R2

Rn

MTJ1

MTJ2

MTJn

SA

OUT

WE

(c)

ER

..

GND GND

Rref

C1

R1

R2

Rn

MTJ1

MTJ2

MTJn

SA

OUT

WE

(d)

ER

..

GND GND

Rref

C1

R1

R2

Rn

MTJ1

MTJ2

MTJn

SA

OUT

WE

FUREF FUREF FUREF

Figure 5 The current paths for (a) erase operation, (b)

program operation, (c) read operation, (d) AND operation.

Table 1 Circuit signals for different operations

Operation WE ER C1 R1 FU REF MTJ1) MTJ2) OUT

Erase 1 1 0 0 0 0 / 1 /

Program D 1 0 D 1 0 0 1 D /

Read 0 1 0 1 1 1 D D D

AND 0 1 0 1 W 1 D D W ‘AND’ D

FU and REF need to be set to logic “1” during read operations, and then the states of MTJs can be
indicated by outputs of SAs. An output 0 indicates that the MTJ has a high resistance (AP state) and
stores logic “0”. Conversely, an output “1” refers to an MTJ storing “1” in the P state.

As our subarray structure is different from traditional architectures, the memory access scheme needs to
be modified accordingly. In our design, the erase operation can reset a group of MTJs in a single NAND-
SPIN device and is always followed by a set of program operations for writing data. However, a read
operation does not involve other operations, which causes asymmetry in the read and write operations.
In other words, the subarray writes a row of NAND-SPIN devices with an erase operation and N program
operations (M × N bits in total, where M is the number of columns, N is the number of MTJs in a
NAND-SPIN device, and M ×N is 128× 8 in our design) instead of writing a row of MTJs with a single
write operation like the traditional architecture [31]. Nevertheless, the read operation reads a row of data
out (128 bits in our design) at a time, the same as the traditional architecture.

Due to the introduction of an erase operation before program operations, the write operation latency
would be increased. However, the SOT-induced erase operation could reset multiple MTJs on the same
heavy metal strip, while the program operations set MTJs individually. Therefore, the time consumed
by a erase operation is amortized. In addition, the SOT-induced erase operation is much faster than the
program operation induced by STT, which further offsets the extra latency.

It should be noticed that the read disturb could be significantly mitigated in our design. As the P-to-
AP switching is induced by SOT and the AP-to-P switching is based on STT, the read disturb margin
is related to the read current and the P-to-AP STT switching current. Therefore, we can increase the
P-to-AP STT switching current of MTJs by adjusting the HM dimension to mitigate read disturb issues
and enhance the reliability.

2). CNN Acceleration Mode: In CNN acceleration mode, the AND logic is activated in SAs. As
shown in Fig. 5d, the AND operation has the same current path as the read operation, and the difference
between them lies in FU. FU is always at a high voltage during a read operation, while FU is used
to represent one of the two source operands (represented as W in Table 1) during an AND operation.
Another source operand is supposed to have been stored in the selected MTJ, and the SA finally obtains
the AND operation result. Only when the MTJ is in a low resistance state (storing “1”), FU is under
high voltage (indicating logic “1”), and the resistance of Rpath is smaller than Rref , the SA outputs “1”.
Other situations result in Rpath being larger than Rref , and the SA outputs “0”. Fig. 7 demonstrates

1) The MTJ state before the operation

2) The MTJ state after the operation

Zhao Y, et al. Sci China Inf Sci 7

1

0

-1

P→AP AP→P

2

1

0

2

1

0

2

1

0

2

1
0

0 2 4 6 8 10 12

Erase Program

DATA

R1
(V)

C1
(V)

ER
(V)

WE
(V)

time(ns)

Figure 6 Timing diagram of erase and program operations.

1

0

2

1
0

2

1
0

2

1
0

2

1
0

0 1 2 3 4 5 6

Read AND

OUT

R1
(V)

FU
(V)

REF
(V)

RE
(V)

time(ns)

OUT = “1” OUT = “0” AND “1”

Figure 7 Timing diagram of read and AND operations.

the timing diagram of a read operation and an AND operation, assuming that D = “1” and W = “0”.
While accelerating CNN inferences, data buses are used for transmission of weight and input data, both

of which are considered as collections of source operands (especially for AND operations). The weight
and input data need to be transferred into the buffers and convolution memories (CMs) before the CNN
computation starts. The buffer is used for storing temporary weight data to reduce data movements
and bus occupation. Moreover, the buffer is connected to the data bus through private data ports so
that it does not occupy the bandwidth of the subarray. The bit-counter in each column could count the
non-zero values of all AND operation results obtained in the corresponding SA. The multiplexers are
used to output the data sensed in SAs during normal read operations or the data in the bit-counters
(bit-by-bit for each unit) during convolution operations, as shown in Fig. 3.

4 Implementation

This section first introduces the complex computing primitives in CNN computation, and then shows
how our architecture performs an inference task. As introduced above, the convolutional layer involves
considerable convolution operations, and the pooling layer performs iterative addition, multiplication and
comparison operations to implement average pooling or max/min pooling. Since AND is a universal logic
gate, we use it to implement computing primitives together with bit-counters.

4.1 Building Blocks of CNN

Convolution: Convolution is the core operation of CNN, and it takes up most fraction of computation
resources. We consider I (W) as an input (weight) fixed-point integer sequence located in an input

(kernel) map [30]. Assuming that I =
∑N−1
n=0 cn(I)2n and W =

∑M−1
m=0 cm(W)2m where (cn(I))N−1

n=0 and

(cm(W))M−1
m=0 are bit vectors, the dot product of I and W can be specified in Eq. 1.

I ∗W =

N−1∑
n=0

M−1∑
m=0

2n+mbitcount(AND(cn(I), cm(W))). (1)

Regarding the computationally expensive convolution operation as a combination of rapid and parallel
logic AND, bit-count and shift operations, the PIM architecture commonly converts it into consecutive
bitwise operations. Previously, some schemes first store the weight and input data in the same column,
and then sense the bitwise operation outputs in modified circuits [16, 31]. However, those methods
require additional data duplication and reorganization while the weight matrix slides, which aggravate
the overhead as the time-consuming and power-consuming characteristics of the NVM.

To address this issue, we adopt a straightforward data storage scheme to reduce redundant access
operations. We split both the input and weight data into 1-bit data. For example, an M -bit input matrix
is converted to M 1-bit matrices and stored in M subarrays, and an N -bit weight matrix is decomposed
into N 1-bit matrices and transmitted to each subarray for bitwise convolution. Fig. 8 illustrates the
bitwise convolution of a 2×2 weight matrix and a 2×5 input matrix. In the first step, the first row of the
input matrix in CM is activated, and the first row of the weight matrix in the buffer is connected to SAs
in parallel for AND operations. The results are transferred to and counted in the bit-counter unit of each

Zhao Y, et al. Sci China Inf Sci 8

0

0

1 0 1 0 0

1 0 0 1 1

1 0

0 1×

WeightInput

Sub-
array 1

SA

U
n

it
 1

Convolution
Memory

B
it

-c
o
u

n
te

r

Buffer

U
n

it
 5

SA……

……

……

Step 1

1 0 1 0 0

1 0 0 1 1

1 0

0 1

& & & & &

1 0 1 0

High--bit

Low--bit

1

0

0

0

1

0

0

0

Sub-

array 1

0

0

Step 2

1 0 1 0 0

1 0 0 1 1

1 0

0 1

& & & & &

0 1 0 1

1

0

0

0

1

0

1

0

Sub-

array 1

0

Step 3

1 0 1 0 0

1 0 0 1 1

1 0

0 1

& & & & &

1 0 1 0

0

0

0 0 0

Sub-

array 1

0

0

Step 4

1 0 1 0 0

1 0 0 1 1

1 0

0 1

& & & & &

1 0 1 0

0

0

0

0

0

0

1

0

Sub-

array 1

Period 1

Period 2
(Reset Bit-counter to “0” first)

Sub-

array 2

U
n

it 1
U

n
it 2

U
n

it 3
U

n
it 4

U
n

it 2
U

n
it 3

U
n

it 4
U

n
it 5

= 1 0 2 1

+ + + +

in-memory
addition

Sub-

array 2

+ + + +

1 0 2 1

0 0 0 0

1 0 1 1

0 0 0 0

0 0 1 0

SAs work in
AND function

in-mat data
movement

0 0 0 0

Figure 8 Bitwise convolution operation.

column. By repeating the above processes for the second row of matrices, the second step obtains the
counting results in bit-counter units. Those units transfer their contents to Subarray 2 through in-mat
data movement, and they would be reset to zero at the end of first period. The second period slides the
weight matrix to the next position to work out another set of bit-counting results. Finally, Subarray 2
perform in-memory addition (will be discussed later) to get the bitwise convolution results.

Note that our design improves parallelism by greatly reusing the weights instead of duplicating the
inputs in subarrays. In addition, the introduction of the buffer reduces the overhead of in-memory
data movement. Requiring only one writing operation into the buffer, the 1-bit weight matrix would be
used during the bitwise convolution operations of the entire 1-bit input matrix in this subarray, which
significantly reduces data movements and dependence on the data bus. Since the buffer only needs to
hold one bit of each weight matrix element, it does not require much capacity.

Addition: Unlike convolution, addition employs a data allocation mechanism that stores data element-
by-element vertically [6]. Before addition starts, all bits of the data elements are transposed and stored
in the CM. One type of conventional design paradigm generally selects two rows of data simultaneously
and performs addition operation using a modified sense amplifier. However, the process variation may
cause logic failures, making it hard to guarantee reliability. Our design uses bit-counters to count the
non-zero data in each bit-position from the least significant bit (LSB) to the most significant bit (MSB).
Fig. 9 shows the data organization and addition work steps of two vectors (vector A and B, both are
2-bit numbers). The numbers in circles indicate the execution order of the involved operations in each
step. The two vectors that are going to be added together are put in the same column of the CM. There
are 3 empty rows reserved for the sum results. In each step, the bits of the two vectors at the same
bit-position are read out by read WLs (RWL) and bit-countered (BC) in bit-counter units. The LSBs of
the count results are written back through a write WL (WWL), and the other bits of the count results
are right-shifted as the initial state of the next step. As demonstrated in Fig. 9, the LSBs of the count
results generated in the second and third steps are stored back as the second and third bits of the sum
results. Moreover, the addition operation can be extended to the case where multiple source operands
are added, as long as these operands are in the same column.

Multiplication: Multiplication has a data allocation mechanism similar to addition. The difference
between them lies in that the AND function is activated in SAs to generate bit multiplication results. We
show how multiplication works using an example of a 2-bit multiplication in Fig. 10. The multiplication
starts with initializing all bits of two vectors (A and B) in the CM and the buffer, and there are 4 empty
rows reserved for the product results. The multiplication algorithm generates the product results bit-by-
bit from the LSB to the MSB. In each step, each bit of the product is produced by bit-counting all the
single-bit products that corresponding to this bit-position. For example, since the LSBs of the products
are determined by the bit multiplication results of the LSBs of two vectors (A and B), the LSBs of two
vectors A and B are read out simultaneously to perform bit multiplication in the first step. Considering
two bits read out as operands, the SAs perform parallel AND operations and transfer the results to

Zhao Y, et al. Sci China Inf Sci 9

Vector A

Read

1 1

0 1

U
n

it 1

U
n

it 2

SA SA

Sum

W
o

rd
 1

W
o

rd
 2

Vector B
0 1

1 1
RWL

②

1 1

0 1

1 0

0 1

U
n

it 1

U
n

it 2

SA SA

1 0

W
o

rd
 1

W
o

rd
 2

0 1

1 1

RWL

①

BC

①②

WWL

③

1 1

0 1

0 1

U
n

it 1

U
n

it 2

SA SA

1 0

W
o

rd
 1

W
o
rd

 2

0 1

1 1

SA SA Read

RWL

②

1 1

0 1

0 1

U
n

it 1

U
n

it 2

SA SA

1 1

1 0

W
o

rd
 1

W
o
rd

 2

0 1

1 1

RWL

①

BC

①②

1 1

0 1

1 1

0 1

U
n

it 1

U
n

it 2

1 1

1 0

W
o

rd
 1

W
o

rd
 2

0 1

1 1

WWL

①

1 1

0 1

0 1

U
n

it 1

U
n

it 2

SA SA

0 1

1 1

1 0

W
o

rd
 1

W
o

rd
 2

0 1

1 1

WWL

③

Read

CM

Shift Shift

Initial Step 1 Step 2 Step 3

Bit-counter

Figure 9 Computation steps of the addition operation.

SA SA

Vector A

Logic
AND

1 1

0 1

U
n

it 1

U
n

it 2

SA SA

Product

W
o

rd
 1

W
o

rd
 2

1 1

0 1

0 0

U
n

it 1

U
n

it 2

SA SA

0 0

W
o

rd
 1

W
o

rd
 2

RWL

①

BC

①

1 1

0 1

0 0

0 0

U
n

it 1

U
n

it 2

0 0

W
o

rd
 1

W
o

rd
 2

1 1

0 1

0 0

0 0

U
n

it 1

U
n

it 2

SA SA

0 0

W
o

rd
 1

W
o

rd
 2

SA SA

1 1

0 1

0 0

U
n

it 1

U
n

it 2
SA SA

0 1

0 0

W
o

rd
 1

W
o

rd
 2

RWL

②

BC

②

1 1

0 1

0 1

0 0

U
n

it 1

U
n

it 2

0 1

0 0

W
o

rd
 1

W
o

rd
 2

WWL

②

1 1

0 1

1 1

0 0

U
n

it 1

U
n

it 2

SA SA

1 1

0 1

1 1

W
o

rd
 1

W
o

rd
 2

Logic
AND

CM

Bit-counter Shift Shift

Buffer

1

0
Vector B

1

0

1

0

1

0

1

0

1

0

1

0

RWL

①

BC

①

WWL

③

RWL

①
1 1

0 1

0 0

U
n

it 1

U
n

it 2

SA SA

0 0

1 1

0 1

1 1

W
o

rd
 1

W
o

rd
 2

1

0

Shift

WWL

②

WWL

①

Logic
AND

Logic
AND

BC

①

Initial Step 1 Step 2 Step 3 Step 4

① ①

② ①

Figure 10 Computation steps of the multiplication opera-

tion.

Vector A

Bit-counter

1 0

1 0

0 0

0 0

U
n

it 1

U
n

it 2

SA SA

0 0

0 0

Result

Tag

W
o

rd
 1

W
o

rd
 2

Vector B
0 0

1 1

1 0

1 0

0 0

0 0

U
n

it 1

U
n

it 2

SA SA

0 0

0 0

W
o

rd
 1

W
o

rd
 2

0 0

1 1

1 0

1 0

1 0

0 0

U
n

it 1

U
n

it 2

SA SA

0 0

0 0

W
o

rd
 1

W
o

rd
 2

0 0

1 1

CM

0 0

0 0

0 0

1 1

0 0

1 1
Buffer

Read

RWL

①②

RWL

①②

WWL①

WWL②
Invert

RWL①

RWL②

Logic
AND

BC

①②

1 0

1 0

0 0

0 0

U
n

it 1

U
n

it 2

SA SA

0 0

1 0

W
o

rd
 1

W
o

rd
 2

0 0

1 1

0 0

1 0

BC

③④

1 0

1 0

0 0

0 0

U
n

it 1

U
n

it 2

SA SA

0 0

1 0

W
o

rd
 1

W
o

rd
 2

0 0

1 1

1 0

0 1WWL③

RWL④

RWL③

Step 1Initial Step 2

‘00
00’

1 0

1 0

1 0

0 0

U
n

it 1

U
n

it 2

SA SA

0 0

0 0

W
o

rd
 1

W
o

rd
 2

0 0

1 1

0 0

1 0

Logic
AND

BC

④

RWL④

RWL④ WWL①

RWL④

RWL③

Reset ②

WWL⑤

WWL⑥

WWL⑦

Read

Invert

1 0

1 0

0 1

0 0

U
n

it 1

U
n

it 2

SA SA

0 0

1 0

W
o

rd
 1

W
o

rd
 2

0 0

1 1

1 0

0 1
RWL

②③

RWL②

RWL③

Logic
AND

BC

②③

1 0

1 0

0 1

0 0

U
n

it 1

U
n

it 2

SA SA

0 0

1 1

W
o

rd
 1

W
o

rd
 2

0 0

1 1

1 0

0 1

BC

③④

1 0

1 0

0 1

1 1

W
o

rd
 1

W
o

rd
 2

0 0

1 1

WWL④

RWL④

RWL③

Step 4

1 0

1 0

1 1

0 0

U
n

it 1

U
n

it 2

SA SA

0 0

1 0

W
o

rd
 1

W
o

rd
 2

0 0

1 1

1 0

0 1

Logic
AND

BC

⑤

RWL⑤

RWL⑤
WWL①

RWL④

RWL③

WWL⑤

RWL

⑥⑦

Logic
AND

Logic
AND

Result = “0”

Result = “1”

Vector A >= B

Vector A <= B

Max = A

Min = B

Max = B

Min = A

Step 3 Step 5

‘00
00’

Reset ①

‘00
00’

Reset ②

Figure 11 Execution steps of the comparison operation.

bit-counter units for counting. Then, the LSBs of those units report the LSBs of the product and are
stored back in CM (product part) accordingly by a WWL operation. The other bits of the count results,
which record the carry-in information, are right-shifted as the initial state of the next step. Obviously,
the second step requires more cycles to count two partial AND operation results than the first step. It
should be noted that the buffer capacity is limited, so it is not wise to set a different multiplier for the
multiplicand in each column. Therefore, our architecture is suitable for multiplicative scaling with the
same scale factor.

Comparison: Max/Min extraction is a common operation in the max/min pooling layer. We demon-
strate how to compare two sets of data (vector A and B) and select the max/min using the method
shown in Fig. 11. Initially, two vectors are stored bit-by-bit in the vertical direction along the BL. In
addition, two extra rows of storage (Result and Tag) are both reset to 0, where Result row indicates the
comparison results and Tag row is used as identifiers. In the first step, the row of Tag is read out by an
RWL, and then two WWLs are activated to write the Tag row and its inverted values into the buffer.
The second step activates two RWLs to read out the MSBs of the two vectors (A and B) on the same BL,
and the SAs simultaneously perform AND operations considering the second row of the buffer as another
operand. The outputs of SAs are subsequently bit-counted in the bit-counter. Then the LSB of each unit
indicates the comparison result of two vectors. The LSB of the unit equaling 1 means that the two bits
read out are different. Subsequently, we write the LSBs into the second row of the buffer and update the
bit-counter with the ’AND’ operation results between the first row of the buffer and the Tag row. Next,
the LSBs of bit-count units are written into the Tag row, and all bit-counter units are reset to zero. In
step 3, as shown in Fig. 11, two more AND operations are performed, where the MSBs (vector B), the
Result row and the buffer are considered as operands. So far, the LSBs of bit-count units represent the
comparison results only considering the first bit of each vector. We store the results in the Result row
and start the next bit comparison process. The data in the Result and Tag rows are gradually updated
as each bit is compared from MSB to LSB. If the final data located in the Result row is 1, vector A is

Zhao Y, et al. Sci China Inf Sci 10

Sub-
array 2

Sub-
array 4

Sub-
array 1

Sub-
array 3

Mat

1 0

0 1

W[1]

W[2]

Data
Storing

1 0 1 0 0

1 0 0 1 1

1 0

0 1

1 0

0 1

1 0

0 1

Period 1 Period 2R1 R2 R3 R4

5 7 13 7

Sub-
array 4

R
1

R
2

R
3

multiplication

I[1]

W[1]

0 0 1 0

1 1 1 1

0 1 0 1

1 1 1 1
Q

1

Q
2

Q
3𝑸𝟏=

𝑹𝟏−𝝁

𝝈𝟐+𝝐
𝜸 + 𝜷

in-memory
computing

addition

W

…

Input Weight
C

R

S

B

Convolution

Sub-
array 5

Activation

Q1 Q2 Q3

in-memory
computing

addition/
multiplication

(average pooling)

comparison
(max/min pooling)

Pooling

Batch
Norm.

D
a

ta
 S

to
ri

n
g

C
o

n
vo

lu
ti

o
n

A
ct

iv
a

ti
o

n

B
a

tc
h

 N
o

rm
.

P
o

o
li

n
g

10 01 10 00 01

11 00 01 11 10

10 01

00 11

splitting

1 0 1 0 0

1 0 0 1 1

I[1]

I[2]

1 0 1 0 0

1 0 0 1 1

1 0

0 1

AND

Bit-
counting

p
su

m
1

p
su

m
2

p
su

m
3

p
su

m
4

p
su

m
5

p
su

m
6

p
su

m
7

p
su

m
8

p
su

m
9

p
su

m
1

0

Sub-
array 1

0 1 0 0 1

1 0 1 1 0

1 0

0 1

1 0

0 1

1 0

0 1

Period 1 Period 2

I[2]

W[1]
1 0

0 1

p
su

m
1

p
su

m
2

p
su

m
3

p
su

m
4

p
su

m
5

p
su

m
6

p
su

m
7

p
su

m
8

p
su

m
9

p
su

m
1

0

Sub-
array 2

I[1] W[1]

AND

Bit-
counting

I[2] W[1]

0 1 0 0 1

1 0 1 1 0

… …

I[1]W[1]

I[2]W[1]

p
su

m
1

p
su

m
2

p
su

m
3

p
su

m
4

p
su

m
2

p
su

m
3

p
su

m
4

p
su

m
5

p
su

m
6

p
su

m
7

p
su

m
8

p
su

m
9

p
su

m
7

p
su

m
8

p
su

m
9

p
su

m
1

0

writing in

parallel

I[1] W[2]

I[2] W[2]

Subarray 3

+ + + +in-memory
addition

=×

shift

R1 R2 R3 R4

0101 0111 1101 0111

R
4

Q
4

Q4

Output

H

0
1

0
0

0
1

0
1

0
0

0
0

0
0

0
1

0
1

0
1

0
0

0
0

0
0

0
0

0
0

0
1

Output

Figure 12 Data organization and computation steps of CNN.

greater than or equals to vector B, and A/B stands for the max/min of the two. Conversely, the binary
data 0 means that B/A is the max/min.

4.2 CNN Inference Accelerator

In realistic scenarios of mainstream CNNs, it is hard to store all the data of one layer in a limited-capacity
PIM platform. Therefore, reducing data duplication enables the memory array to accommodate more
data. Fig. 12 shows the data organization and computation steps of CNNs. Initially, the input matrix is
split and organized in different subarrays in a mat. To perform CNN inference tasks, the weight matrix
is decomposed and transferred into multiple subarrays for parallel bitwise convolution. Although there
is still massive necessary data movements, our design tends to exploit the internal data buses, which can
reduce the dependence on the external buses. The operations of each layer are described below.

Convolutional layer: In this layer, the subarrays are configured to generate partial-sums through
bitwise convolution operations. The partial-sums are summed, and then sent to the activation function.
To maximize parallelism, we adopt a cross-writing scheme during convolution operations. This scheme
guarantees that the bit-counting results produced by different subarrays during the same period are not
crossed. For example, as shown in Fig. 12, during the Period 1, Subarray 1 and 2 obtain the bit-counting
results, which are not crossed and therefore could be written into different columns of the Subarray
3. Thus, the partial-sums are written in parallel without cache operations. In addition, since the bit-
counting results are read out bit-by-bit from LSBs to MSBs, the shift operation can be realized by simply
writing them to different rows in the vertical direction in Subarray 3.

In CNN, calculations with high-precision numerical values require significant computational power and
storage resources. Quantization is the transformation process of lessening the number of bits needed to
represent information, and it is typically adopted to reduce the amount of computation and bandwidth
requirement without incurring a significant loss of accuracy. Several works have shown that the quanti-
zation to 8-bit can achieve comparable prediction accuracy as 32-bit precision counterparts [30, 44]. In
our design, we perform the quantization using the minimum and the maximum values of the given layer.
The transformation, which quantizes the input Qi to a k-bit number output Qo, is as follows:

Qo = round((Qi −Qmin)
(2k − 1)

Qmax −Qmin
). (2)

Qmax and Qmin are the minimum and maximum values of the layer in the training phase. Therefore, the

part (2k−1)
Qmax−Qmin

could be calculated in advance, and this formula can be performed through in-memory
addition and multiplication in subarrays.

Batch normalization is the following process that can recover the quantization loss and retain the
accuracy of the model. The batch normalization transformation makes the data set have zero mean and
one standard deviation [45], and given below:

Zhao Y, et al. Sci China Inf Sci 11

Table 2 Simulation parameters

Spin Hall angle 0.3 Exchange bias 15 mT

Gilbert damping 0.02 TMR 120%

Resistance-area product 5 Ω · µm2 Tunneling spin polarization 0.62

Saturation magnetization 1150 kA/m Heavy metal thickness 4 nm

Ratio of damping-like SOT to field-like SOT 0.4 Uniaxial anisotropy constant 1.16 ×106J/m3

Io =
Ii − µ√
σ2 + ε

γ + β, (3)

where Io and Ii denote the corresponding output and input of the transformation, respectively. σ and µ
are two statistics of the training model, γ and β are trained parameters used to restore the representation
power of the network, and ε is a constant added for numerical stability. The aforementioned parameters
are calculated and stored in advance, so that the above formula can be parallel performed through
in-memory addition and multiplication in subarrays, similar to quantization. In addition, the ReLU
activation function is achieved by replacing any negative number with zero. The MSB of the input is
read out first and used to determine whether to write zero.

Pooling layer: Average pooling and max/min pooling are the two main types of pooling layers.
Average pooling computes the average of all input values inside a sliding window. We support average
pooling by summing the input values in a window and dividing the sum by the window size. Max/min
pooling calculates the max/min of all the inputs inside the window and is accomplished by iterative in-
memory comparison. In each iteration, the input for the comparison is selectively copied from max/min
in the previous iteration.

Fully-connected layer: It has been concluded that the fully-connected layers can be implemented
by convolution operations using 1×1 kernels in networks [30,31]. Therefore, we treat the fully-connected
layer as convolutional layer.

5 Evaluation

5.1 Platform Configurations

To compare our design with other state-of-the-art solutions, we adopted a device-to-architecture evalua-
tion along with an in-house simulator to evaluate the performance and energy benefits. We first charac-
terized the hybrid circuit using a 45nm CMOS PDK and a compact Verilog-A model that is based on the
Landau-Lifshitz-Gilbert equation [19]. Table 2 lists some key device parameters used in our experiments.
The circuit level simulation was implemented in Cadence Spectre and SPICE to obtain the performance
parameters of basic logic operations. The results showed that it costs 180 fJ to erase an NAND-SPIN
device with eight MTJs, with average 0.3 ns for each MTJ, and 840 fJ to program an NAND-SPIN
device, with 5 ns for each bit. And the latency and energy consumption were 0.17 ns and 4.0 fJ for a
read operation. The bit-counter module was designed based on Verilog HDL to obtain the number of
non-zero elements. We synthesised the module with Design Compiler and conducted a post-synthesis
simulation based on 45nm PDK. Secondly, we modified NVSim simulator [46], so that it calibrates with
our design while performing access and in-memory logic operations. After configuring NVSim based on
the previous results, the simulator reported the memory latency, energy and area corresponding to the
PIM platform. Finally, for the architecture level simulation, we simulated the CNN inference tasks with
an in-house developed C++ code, which simulates the data movement and in-memory computation in
each layer.

5.2 Experimental Setup

Both the memory capacity and bandwidth can affect the peak performance of the CNN accelerator. We
evaluated these impacts on the basis of fixed memory structure. In our design, we assumed that there are
4×4 subarrays with 256 rows and 128 columns in each mat, and 4×4 mats were considered as a group.

Obviously, enlarging the memory capacity brings a higher performance owing to the increase in the
number of computation units. Fig. 13a indicates the relationship between the performance and memory

Zhao Y, et al. Sci China Inf Sci 12

（a）

16 32 64 128 256600

900

1200

1500

1800

Capacity (MB)

Pe
ak

Pe
rf

or
m

an
ce

(G
O

PS
/m

m
2)

1434 GOPS/mm2

383 GOPS/W

150

300

450

600

750

Po
w

er
Ef

fic
ie

nc
y

(G
O

PS
/W

)

32 64 128 2560

500

1000

1500

2000

Bus Width (bit)

Pe
ak

Pe
rf

or
m

an
ce

(G
O

PS
/m

m
2)

0

25

50

75

100

R
es

ou
rc

e
U

til
iz

at
io

n
ra

tio
(%

)

（b）

Figure 13 (a) The effect of the capacity on the peak performance and energy efficiency. (b) The effect of the bus width on the

peak performance and resource utilization ratios.

capacity. We observed that the peak performance normalized to the area tended to increase slowly with
the expansion of the memory capacity, and it reached a regional peak at 64 MB. Nonetheless, the power
efficiency dropped because of the increasing energy consumption of peripheral circuits.

Due to the bandwidth limitation, the architecture exhibited a relationship between the performance
and the bandwidth as shown in Fig. 13b. In addition, the weight data were transferred to subarrays
through the bus and buffered in the buffer. Obviously, the peak performance normalized to the area rose
linearly as the bandwidth increases. This mainly arises from that the higher bandwidth provided more
data for computation units, which could also be verified from the view of hardware utilization ratios.

With reference to the above results, we configured our PIM architecture with a 64 MB memory array
and a 128-bit bandwidth in subsequent simulations.

5.3 CNN Acceleration Performance

For comparison with state-of-the-art CNN accelerators, we regard the designs based on DRAM (DRISA
in [36]), ReRAM (PRIME in [42]), STT-RAM (STT-CiM in [16], MRIMA in [31]), and SOT-RAM
(IMCE in [21]) as counterparts. Among various benchmarks, we validated the AlexNet/VGG19/ResNet50
models on the ImageNet dataset for a comprehensive evaluation. At runtime, the execution of convolution
accelerators depends on the reasonable data flows and the control signals. The inputs and weights of each
model were transferred to and initialized in subarrays. The complex logic operations in each layer were
decomposed into a series of simple logic operations which were performed sequentially. Temporary results
at runtime were transferred to each other across the buses between modules. Considering the uniqueness
of those CNN models in depth and structure, the architectures had unique timing control signals to
schedule the computations and communications for different models. In addition, the accelerators would
split multi-bit data for fine-grained computations, when there was a mismatch between the data matrices
and subarrays in size.

Energy efficiency: We obtained the energy efficiency normalized to area results in different bit-
width (precision) configurations 〈W : I〉 in three models. As shown in Fig. 14, our design offered energy
efficiency superior to those of the other solutions. In particular, the proposed method achieved 2.3×
and 12.3× higher energy efficiency than DRAM- and ReRAM-based accelerators on average, mainly for
four reasons: 1) Part of the energy-intensive calculation was converted to efficient AND and bit-count
operations. 2) The introduction of the buffer reduced data movements and rewrite operations within the
memory, which increased the data reuse while reducing the energy consumption. This also contributed
greatly to the superiority of our method to the SOT-based solution (∼2.6× energy savings on average).
3) By exploiting the characteristics of the SOT mechanism and implementing the customized storage
scheme, our architecture achieved lower energy consumption for data writing than all counterparts, even
STT-CiM (∼1.4× energy savings). 4) The elimination of complex functional units, such as ADCs/DACs
in the ReRAM crossbar, also resulted in favorable energy efficiency. Although there were some adders
and bit-counters in our design, the scheme in which different significant bits were separately processed
dramatically reduces the number of accumulations. This is also why the improvement in the energy
efficiency of our design becomes increasingly evident when 〈W : I〉 increases.

Speedup: The performance of each accelerator in different bit-width (precision) configurations 〈W : I〉
is presented in Fig. 15. Among all solutions, our design obtained the highest performance normalized
to area, with a 6.3× speedup over the DRAM-based solution and an approximately 13.5× speedup over

Zhao Y, et al. Sci China Inf Sci 13

<1:1> <1:2> <1:4> <1:8>
1E-02

1E-01

1E+00
A

le
xN

et

(f
r./

J/
m

m
2)

Proposed MRIMA STT-CiM IMCE ReRAM DRISA

En
er

gy
Ef

fic
ie

nc
y/

A
re

a

<1:1> <1:2> <1:4> <1:8>
1E-03

1E-02

1E-01

V
G

G
19

(f
r./

J/
m

m
2)

En
er

gy
Ef

fic
ie

nc
y/

A
re

a

<1:1> <1:2> <1:4> <1:8>
1E-03

1E-02

1E-01

R
es

N
et

50

(f
r./

J/
m

m
2)

En
er

gy
Ef

fic
ie

nc
y/

A
re

a

Proposed MRIMA STT-CiM IMCE ReRAM DRISA

Figure 14 Comparison of the architecture efficiencies for

different 〈W : I〉 ratios across various CNN models.

<1:1> <1:2> <1:4> <1:8>
1E-01

1E+00

1E+01

Proposed MRIMA STT-CiM IMCE ReRAM DRISA

A
le

xN
et

(f
r./

s/
m

m
2)

Pe
rf

or
m

an
ce

/A
re

a

<1:1> <1:2> <1:4> <1:8>
1E-02

1E-01

1E+00

(f
r./

s/
m

m
2)

Pe
rf

or
m

an
ce

/A
re

a
V

G
G

19

(f
r./

s/
m

m
2)

Pe
rf

or
m

an
ce

/A
re

a

<1:1> <1:2> <1:4> <1:8>
1E-02

1E-01

1E+00

R
es

N
et

50

(f
r./

s/
m

m
2)

Pe
rf

or
m

an
ce

/A
re

a

Figure 15 Comparison of the architecture performance for

different 〈W : I〉 ratios across various CNN models.

Table 3 Comparison with related in-memory CNN accelerators

Accelerator DRISA [36] PRIME [42] STT-CiM [16] MRIME [31] IMCE [21] Proposed

Technology DRAM ReRAM STT-RAM STT-RAM SOT-RAM NAND-SPIN

Throughput (FPS) 51.7 9.4 45.6 52.3 21.8 80.6

Capacity (MB) 64 64 64 64 64 64

Area (mm2) 117.2 78.2 57.7 55.6 128.3 64.5

the ReRAM accelerator. The improvement in our design comes from several aspects: 1) The parallel
execution of logic operations and the pipeline mechanism for implementing accumulation fully utilized
the hardware resources to complete efficient convolution calculation. 2) The participation of the buffer
in PIM effectively reduced the in-memory data movements, data congestion, and bus competition, all of
which reduce the waiting time. 3) There were no need for complex peripheral circuits in our design, such
as ADCs/DACs in the ReRAM crossbar, which could reduce the area overhead to a certain extent. In
addition, the results showed that our design is on average 2.6× and 5.1× faster than the STT-CiM and
IMCE, mainly because of the efficient and parallel logic operations.

Table 3 shows the area efficiency comparison of related in-memory CNN accelerators. We observed
that STT-CiM and MRIMA show better area efficiency, which mainly comes from the high integration
density of STT-MRAM-based memory designs. The SOT-MRAM-based architecture took the largest
area, even more than the DRISA solution that embeds complex logic circuits in chips as the result of
two transistors in a single cell. The proposed NAND-SPIN accelerator was not the most area-efficient
architecture, but it offered the highest throughput by exploiting the data locality and benefiting from
excellent characteristics of NAND-SPIN devices in memory arrays.

Energy/Latency breakdown: Fig. 16 shows the latency and energy breakdown of our accelerator
for ResNet50 model. In Fig. 16a, we observed that loading data and distributing them into arrays is the
most time-consuming part, accounting for 38.4%. This was mainly because writing data into NAND-
SPIN device took more time than reading. The time spending on convolution and data transfer took
33.9% and 4.8% of the time respectively. In addition, 13.2% of the time was spent on data comparison
operations in the process of determining the maximum in pooling layers. The remaining parts were for
batch normalization (4.4%) and quantization (5.3%).

As shown in Fig. 16b, the convolution, corresponding to numerous data reading and bit-counting
operations, consumed the most energy up to 35.5%. Due to the high writing energy consumption of
NAND-SPIN device, loading data consumed nearly 32.6% of the total energy consumption. Transferring
data contributed to 4.9% of the energy consumption, and 15.4% of the energy was spent in pooling layers.
The other parts included batch normalization (5.1%) and quantization (6.5%).

Zhao Y, et al. Sci China Inf Sci 14

38.4%

33.9% 4.4%

5.3%

13.2%

data loading

convolution

batch normalization

quantization

pooling

4.8%
data transferring 32.6%

35.5% 5.1%

6.5%

15.4%

data loading

convolution

batch normalization

quantization

pooling

4.9%
data transferring

(a) (b)

Figure 16 Breakdown of (a) latency and (b) energy.

9%

21%

13%

4%
6%

9%
14%

24%
47%

driver

controller

decoder

buffer
misc

shifter
accumulator

bit-counter

Figure 17 Area overhead breakdown.

Area: Our experiments showed that our design imposes 8.9% area overhead on the memory array.
The additional circuits supported the memory to implement in-memory logic operations and cache the
temporary data in CNN computation. Fig. 17 shows the breakdown of area overhead resulted from the
add-on hardware. We observed that up to 47% area increase was taken by added computation units.
In addition, approximately 4% was the cost of the buffer, and other circuits, such as controllers and
multiplexers, incurred 21% area overhead.

6 Conclusion

In this paper, we propose a memory architecture that employs NAND-SPIN devices as basic units.
Benefiting from the excellent characteristics such as low write energy and high integration density, the
NAND-SPIN-based memory achieves a fast access speed and large memory capacity. With supportive
peripheral circuits, the memory array can work as either a normal memory or perform CNN computa-
tion. In addition, we adopted a straightforward data storage scheme so that the memory array reduces
data movements and provides high parallelism for data processing. The proposed design exploits the
advantages of PIM and NAND-SPIN to achieve high performance and energy efficiency during CNN
inferences. Our simulation results demonstrate that the proposed accelerator can obtain on average
∼2.3× and ∼1.4× better energy efficiency, and ∼6.3× and ∼2.6× speedup than the DRAM-based and
STT-based solutions, respectively.

Acknowledgement

This work is supported in part by the National Natural Science Foundation of China (No. 62072019,
62004011, 62171013), the Joint Funds of the National Natural Science Foundation of China (No. U20A20204),
and the State Key Laboratory of Computer Architecture (No. CARCH201917).

References

1 Shafique M, Hafiz R, Javed M U, et al. Adaptive and energy-efficient architectures for machine learning: Challenges, op-

portunities, and research roadmap. In: Proceedings of IEEE Computer society annual symposium on VLSI, Bochum, 2017.

627–632

2 Luo L, Zhang H, Bai J, et al. SpinLim: Spin orbit torque memory for ternary neural networks based on the logic-in-memory

architecture. In: Proceedings of Design, Automation and Test in Europe Conference and Exhibition, 2021. 1865–1870

3 Cai H, Guo Y, Liu B, et al. Proposal of analog in-memory computing with magnified tunnel magnetoresistance ratio and

universal STT-MRAM cell. 2021. ArXiv: 2110:03937

4 Liu J, Zhao H, Ogleari M A, et al. Processing-in-memory for energy-efficient neural network training: A heterogeneous

approach. In: Proceedings of the 51st IEEE/ACM International Symposium on Microarchitecture, Fukuoka, 2018. 655–668

5 Song L, Zhuo Y, Qian X, et al. GraphR: Accelerating graph processing using ReRAM. In: Proceedings of IEEE International

Symposium on High Performance Computer Architecture, Vienna, 2018. 531–543

6 Eckert C, Wang X, Wang J, et al. Neural cache: Bit-serial in-cache acceleration of deep neural networks. In: Proceedings of

ACM/IEEE 45th Annual International Symposium on Computer Architecture, Los Angeles, 2018. 383–396

7 Hao Y, Xiang S, Han G, et al. Recent progress of integrated circuits and optoelectronic chips. Science China Information

Sciences, 2021, 64: 1–33

8 Papandroulidakis G, Serb A, Khiat A, et al. Practical implementation of memristor-based threshold logic gates. IEEE

Transactions on Circuits and Systems I: Regular Papers, 2019, 66: 3041–3051

9 Xue C X, Chen W H, Liu J S, et al. 24.1 a 1mb multibit ReRAM computing-in-memory macro with 14.6 ns parallel MAC

computing time for CNN based AI edge processors. In: Proceedings of IEEE International Solid-State Circuits Conference,

San Francisco, 2019. 388–390

10 Li B, Song L, Chen F, et al. ReRAM-based accelerator for deep learning. In: Proceedings of Design, Automation and Test in

Europe Conference and Exhibition, Dresden, 2018. 815–820

Zhao Y, et al. Sci China Inf Sci 15

11 Yuan Z, Liu J, Li X, et al. NAS4RRAM: neural network architecture search for inference on RRAM-based accelerators.

Science China Information Sciences, 2021, 64: 1–11

12 Kim T, Lee S. Evolution of phase-change memory for the storage-class memory and beyond. IEEE Transactions on Electron

Devices, 2020, 67: 1394–1406

13 Ambrogio T, Narayanan P, Tsai H, et al. Equivalent-accuracy accelerated neural-network training using analogue memory.

Nature2018, 558: 66–67

14 Guo Z, Yin J, Bai Y, et al. Spintronics for energy-efficient computing: An overview and outlook. Proceedings of the IEEE,

Proceedings of the IEEE, 2021, 109: 1398-1417

15 Apalkov D, Dieny B, Slaughter J. Magnetoresistive random access memory. Proceedings of the IEEE, 2016, 104: 1796–1830

16 Jain S, Ranjan A, Roy K, et al. Computing in memory with spin-transfer torque magnetic RAM. IEEE Transactions on Very

Large Scale Integration Systems, 2017, 26: 470–483

17 Wang M, Cai W, Zhu D, et al. Field-free switching of a perpendicular magnetic tunnel junction through the interplay of

spin-orbit and spin-transfer torques. Nature Electronics, 2018, 1: 582–588

18 Cai W, Shi K, Zhuo Y, et al. Sub-ns field-free switching in perpendicular magnetic tunnel junctions by the interplay of spin

transfer and orbit torques. IEEE Electron Device Letters, 2021. 42: 704–707

19 Wang Z, Zhang L, Wang M, et al. High-density NAND-like spin transfer torque memory with spin orbit torque erase operation.

IEEE Electron Device Letters, 2018, 39: 343–346

20 Shi K, Cai W, Zhuo Y, et al. Experimental demonstration of NAND-like spin-torque memory unit. IEEE Electron Device

Letters, 2021, 42: 513–516

21 Angizi S, He Z, Parveen F, et al. IMCE: Energy-efficient bit-wise in-memory convolution engine for deep neural network. In:

Proceedings of the 23rd Asia and South Pacific Design Automation Conference, Jeju, 2018. 111–116

22 Angizi S, He Z, Rakin A S, et al. CMP-PIM: an energy-efficient comparator-based processing-in-memory neural network

accelerator. In: Proceedings of the 55th Annual Design Automation Conference, San Francisco, 2018. 1–6

23 Cai H, Liu B, Chen J, et al. A survey of in-spin transfer torque mram computing. Science China Information Sciences, 2021,

64: 1–15

24 Fong X, Kim Y, Venkatesan R, et al. Spin-transfer torque memories: Devices, circuits, and systems. Proceedings of the IEEE,

2016, 104: 1449–1488

25 Rho K, Tsuchida K, Kim D, et al. 23.5 a 4Gb LPDDR2 STT-MRAM with compact 9f2 1T1MTJ cell and hierarchical bitline

architecture. In: Proceedings of IEEE International Solid-State Circuits Conference, San Francisco, 2017. 396–397

26 Peng S, Zhu D, Li W, et al. Exchange bias switching in an antiferromagnet/ferromagnet bilayer driven by spin–orbit torque.

Nature Electronics, 2020. 1–8

27 Yu Z, Wang Y, Zhang Z, et al. Proposal of high density two-bits-cell based NAND-like magnetic random access memory.

IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68: 1665–1669

28 Shafiee A, Nag A, Muralimanohar N, et al. ISAAC: A convolutional neural network accelerator with in-situ analog arithmetic

in crossbars. In: Proceedings of ACM/IEEE 43rd International Symposium on Computer Architecture, Seoul, 2016. 14–26

29 Yang J, Fu W, Cheng X, et al. S2Engine: a novel systolic architecture for sparse convolutional neural networks. IEEE

Transactions on Computers, 2021

30 Zhou S, Wu Y, Ni Z, et al. DoReFa-Net: Training low bitwidth convolutional neural networks with low bitwidth gradients,

2016. arXiv:1606.06160

31 Angizi S, He Z, Awad A, et al. MRIMA: An MRAM-based in-memory accelerator. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 2019, 39: 1123–1136

32 Ghose S, Boroumand A, Kim J S, et al. Processing-in-memory: A workload-driven perspective. IBM Journal of Research and

Development, 2019, 63: 3:1–3:19

33 Imani M, Gupta S, Kim Y, et al. Floatpim: In-memory acceleration of deep neural network training with high precision. In:

Proceedings of ACM/IEEE 46th Annual International Symposium on Computer Architecture, Phoenix, 2019. 802–815

34 Wang X, Yang J, Zhao Y, et al. Triangle counting accelerations: From algorithm to in-memory computing architecture. IEEE

Transactions on Computers, 2021

35 Chen Y H, Krishna T, Emer J S, et al. Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural

networks. IEEE Journal of Solid-State Circuits, 2017, 52: 127–138

36 Li S, Niu D, Malladi K T, et al. DRISA: A DRAM-based reconfigurable in-situ accelerator. In: 2017 50th Annual IEEE/ACM

International Symposium on Microarchitecture, Cambridge, 2017. 288–301

37 Wang X, Yang J, Zhao Y, et al. TCIM: Triangle counting acceleration with processing-in-MRAM architecture. In: Proceedings

of the 57th ACM/IEEE Design Automation Conference, San Francisco, 2020. 1–6

38 Yang J, Wang P, Zhang Y, et al. Radiation-induced soft error analysis of STT-MRAM: A device to circuit approach. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2015, 35: 380–393

39 Cai W, Wang M, Cao K, et al. Stateful implication logic based on perpendicular magnetic tunnel junctions. Science China

Information Sciences, 2022, 65: 1–7

40 Li S, Xu C, Zou Q, et al. Pinatubo: A processing-in-memory architecture for bulk bitwise operations in emerging non-volatile

memories. In: Proceedings of the 53rd Annual Design Automation Conference, Austin, 2016. 1–6

41 Tang T, Xia L, Li B, et al. Binary convolutional neural network on RRAM. In: 2017 22nd Asia and South Pacific Design

Automation Conference, Tokyo, 2017. 782–787

42 Chi P, Li S, Xu C, et al. PRIME: A novel processing-in-memory architecture for neural network computation in ReRAM-based

main memory. ACM SIGARCH Computer Architecture News, 2016, 44: 27–39

43 Zhang D, Zeng L, Gao T, et al. Reliability-enhanced separated pre-charge sensing amplifier for hybrid CMOS/MTJ logic

circuits. IEEE Transactions on Magnetics, 2017, 53: 1–5

44 Colangelo P, Nasiri N, Nurvitadhi E, et al. Exploration of low numeric precision deep learning inference using Intel FPGAs.

In: Proceedings of the 26th Annual International Symposium on Field-Programmable Custom Computing Machines, Boulder,

2018. 73–80

45 Ding P L K, Martin S, Li B. Improving batch normalization with skewness reduction for deep neural networks. In: Proceedings

of the 25th International Conference on Pattern Recognition, Milan,2021. 7165–7172

46 Eken E, Song L, Bayram I, et al. NVSim-VXs: An improved NVSim for variation aware STT-RAM simulation. In: Proceedings

of the 53nd ACM/EDAC/IEEE Design Automation Conference, Austin, 2016. 1–6

	1 Introduction
	2 Preliminary and Motivation
	2.1 MRAM
	2.2 CNN
	2.3 PIM Architectures

	3 Proposed Architecture
	3.1 Architecture
	3.2 Microarchitecture

	4 Implementation
	4.1 Building Blocks of CNN
	4.2 CNN Inference Accelerator

	5 Evaluation
	5.1 Platform Configurations
	5.2 Experimental Setup
	5.3 CNN Acceleration Performance

	6 Conclusion

