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ABSTRACT

To tackle challenging combinatorial optimization problems, analog computing machines based on
the nature-inspired Ising model are attracting increasing attentions in order to disruptively overcome
the impending limitations on conventional electronic computers. Photonic spatial Ising machine has
become an unique and primitive solution with all-to-all connections to solve large-scale Max-cut
problems. However, spin configuration and flipping requires two independent sets of spatial light
modulators (SLMs) for amplitude and phase modulation, which will lead to tremendous engineering
difficulty of optical alignment and coupling. We report a novel quadrature photonic spatial-Euler
Ising machine to realize large-scale and flexible spin-interaction configuration and spin-flip in a
single spatial light modulator, and develop a noise enhancement approach by adding digital white
noise onto detected optical signals. We experimentally show that such proposal accelerates solving
(un)weighted, (non)fully connected, 20736-node Max-cut problems, which offers obvious advantages
over simulation and heuristic algorithm results in digital computers.

1 Introduction

The Max-Cut problem is one of fundamental NP-hard problems in combinatorial optimization, which can describe
the practical applications such as date clustering, machine scheduling and image recognition. This problem can be
formulated into an equivalent Ising model without local fields, given by H = −

∑
<l,k> Jl,kxlxk where Jl,k is the

interaction between spins and binary spin state xl ∈ {1,−1}. And photonic Ising machines are designed to search
for ground state of the Ising model by either iterative sampling or directly evolving the ensemble energy regarding
the established mapping of a particular combinatorial problem [10, 2, 3, 4]. Among these solutions, spatial photonic
Ising machines encoding the spins as a phase matrix in spatial light modulators (SLMs), translate the Ising model into
another form as

H = −
∑

<l,k>

εlεkxlxk (1)

in which the interaction coefficient Jl,k is set by the amplitude modulation εl and εk [2]. This scheme is highly suitable
for solving large-scale Max-Cut problems that exhibit fully connected interactions, owing to its superior connectivity
and scalability [3]. However, several proposed Ising machines tend to focus on solving the benchmark unweighted
Max-Cut problems, as they can be easily mapped onto the Ising model with Jl,k taking values of {0,±1} while the
weighted ones are more practical and complex.

In this paper, we successfully solves 20736-node weighted Max-Cut problems with the quadrature photonic spatial
Ising machine(Q-SIM). To configure the weights, we perform intensity configuration based on Euler’s Formula by
extending the quadrature phase configuration in previously proposed architecture [4]. Furthermore, we extend our
experiments to instances of dense graphs and compare our results with those obtained through numerical simulations
and other reviewed methods. Our experimental results show a 33% improvement in the maximum cut value over the
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Figure 1: (a) The schematic and principle of Q-SIM with phase-to-amplitude configuration. (b) Experimental (orange
line) and simulated (blue line) evolution of the cut value. The light orange region represents the interval of the result
distribution from the ten experiments, with the mean indicated by the orange line. (c) Final experimental spin states in
(b). (d) Final experimental phase mask in (b). (e) Experimental results for Max-Cut problems with graph densities of
[0.5, 1.0].

simulation results and a 34% improvement over the standard Sahni-Gonzales (SG) algorithm. Moreover, our approach
provides a substantial overall speed-up.

2 Architecture and principle

As shown in Fig.1(a), an extended coherent light source shines on the SLM screen. The phase mask of SLM is
composed of four parts that encode both the interaction coefficients and the spin states, allowing for a spin with
amplitude information to be represented by four distinct components: ei(ϕk−αk), ei(θk−βk), ei(ϕk+αk), ei(θk+βk). Here,
ϕk ∈ {0, π} and θk ∈ {π2 ,−

π
2 } are two sets of mutually orthogonal phases to construct the Q-SIM, as demonstrated in

our previous work[4]. These orthogonal phases allow for flexible configurations of low-rank matrices, overcoming the
inherent restriction of rank=1 imposed by the form of Eq.1. In addition, some non-fully-connected Ising models with
negative amplitudes are successfully configured with this architecture. On the other hand, the sum of ei(ϕk−αk) and
ei(ϕk+αk) can form the amplitude of the spin, according to Euler’s formula

εkxk =
1

2
[ei(ϕk−αk) + ei(ϕk+αk)] (2)

where εk = cosαk. This approach simplifies the step of amplitude configuration while eliminating the limitation of
non-negative amplitude. Then, after the two-dimensional Fourier transform by the lens, the central intensity detected by
the CCD Camera is given in the form of

I(0, 0) = (xT ε+ yT η)(εTx+ ηT y) (3)

A specific derivation procedure regarding the principle of the quadrature photonic spatial Ising machine and the intensity
configuration method based on Euler’s formula is provided in Appendices A and B.

Now the weighted Max-Cut instances can be mapped to the Ising model for solution. When a cut is defined, the
corresponding cut value can be written as W = 1

2

∑
<l,k> wl,k(1− xlxk), in which wl,k is the edge weight between

the l-th node and the k-th node. The related Hamiltonian we use is H =
∑

<l,k> wl,kxlxk and the weight can be
expressed as wl,k = cosαl cosαk ± cosβl cosβk. Hence we can search for the maximum cut value by maximizing
the central intensity during the experiment. Here, we calculate the Euclidean distance ∥IT − I∥2 between the initial
detected intensityI and target intensityIT as a cost function of the simulated annealing (SA) algorithm, thus generating
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a new phase mask to refresh SLM screen. This procedure is continuously cycled to govern the Hamiltonian evolution
until the system stabilizes to the ground state. Details about the experimental setup and the operational procedures
based on the SA algorithm are demonstrated in Appendices C and D.

3 Experiments and Discussion

Given that the exact solvers generally fail with 1000 nodes, we need to perform a reference calculation on the
conventional electrical computing platform. To tackle larger instances, we opt to utilize a classical greedy heuristic
algorithm known as the SG algorithm [10]. On average, it requires 11 hours to execute the SG algorithm on CPUs
(Intel i9-13900K, 5.8 GHz) for addressing the Max-Cut problems of 20736 nodes. In the case of an all-to-all Max-Cut
problem, the SG method generates a maximum cut value of 1.178× 108, while our method produces a higher cut value
of 1.759× 108 with a 122 times speedup, as shown in Fig. 1 (b). Additionally, we conduct simulations to emulate the
functioning of the photonic Ising machine. Notably, our findings reveals that the simulation results are also inferior to
the experimental results.

Finally, we extrapolate our experiments and simulations for the Max-Cut problem with graph densities of [0.5, 1.0]
compared with the SG algorithm. The results are shown as Fig. 1 (e), which statistically demonstrate that our scheme
offers compelling advantages for handling large-scale Max-Cut problem that outweighs electronic computers, in
comparison with both simulations and the SG algorithm. The experimental maximum cut values exceed the SG
algorithm by an average of 34% and achieve a maximum of 49% with the graph density of 1.0, which precisely captures
the inherent advantage of fully connected systems. Additionally, the experimental results routinely outperform the
simulated results by roughly 33%. These will be illustrated in the computational results given in Appendix E. We
speculate that the detection susceptible to noise may cause some perturbation in experiments, making it easier to
jump out of the local energy minima. This intrinsic property fits better with the SA algorithm and thus improves the
machine performance. In fact, a related work reported that noise-enhanced photonic Ising machines can be used to
solve large-scale combinatorial optimization problems[5].

4 Discussion and conclusion

We conduct a comparative analysis of our system performance, as elaborated in Appendix F, in solving Max-Cut
problems against other Ising machines and identify the following advantages: (1) Efficient resolution of large-scale
Max-Cut problems. (2) Flexible mapping capabilities for (non)fully connected Max-Cut problems, allowing for arbitrary
amplitude assignments. (3) An uncomplicated and cost-effective experimental setup.

In summary, we performed extensive experiments of the Q-SIM with the phase-to-amplitude configuration applied
to the instance of the Max-Cut problem. This system effectively addresses weighted problems with dense graphs of
up to 20736 nodes, resulting in over 30% enhancements compared to classical solvers. Consequently, our proposal
showcases superior optimization performance and rapid computational speed within the optical computing paradigm,
making it a highly competitive solution for addressing large-scale NP problems.
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A Demonstration of the quadrature photonic spatial Ising machine

In a spatial photonic Ising machine, the electric field after amplitude modulation and phase encoding is

Ek =

N∑
k

εkxkrectW (x− xk) (4)

where xk = eiϕk ∈ {−1, 1}. The electric field at the back focal plane of the lens corresponds to the Fourier transform
of Ek.

Ẽk =

N∑
k

εkxkδW (x− xk) (5)

Therefore, the central intensity detected by the CCD is

I(0, 0) = xT εT εx (6)

where xN ∈ {−1, 1}N .

In the quadrature photonic spatial Ising Machine, the SLM is configured with two simultaneous Ising models of the
same scale. The spin values (xN , yN ) are updated simultaneously and determined by a relationship matrix A

y = Ax (7)

where A = diag(a1, a2, ..., aN ), ak ∈ {−i, i}. The two sets of phases encoded on the SLM are mutually orthogonal:
ϕk(x) ∈ {0, π}, ϕk(y) ∈ {π2 ,−

π
2 }. Similar to Eq.6, the detected intensity image on CCD is

I(0, 0) = (xT εT + yT ηT )(εx+ ηy) (8)

Thus, the interaction matrix is given in the form of

J = εT ε± ηT η (9)

In this equation, the combination of free parameters εk and ηk determines the value of Jk as positive or negative,
achieving the flexible configuration of the low-rank matrix.

B Detailed deduction of amplitude configuration method based on Euler’s formula

A beam of incident light after amplitude modulation shines onto the SLM, and its transverse electric field can be
expressed as Eq.4. As a corollary to Euler’s formula ei cos

−1 ε′ +e−i cos−1 ε′ = 2ε′, let α = cos−1 ε′, then the amplitude
normalized to [−1, 1] is expressed as

ε′ =
eiα + e−iα

2
(10)

Substituting Eq.10 in Eq.4, we have

Ek =

N∑
k

1

2
[ei(ϕk−αk) + ei(ϕk+αk)]rectW (x− xk) (11)

Eq.11 can be rewritten as

Ek =
1

2

N∑
k

[ei(ϕk+(−1)2k−1αk) + ei(ϕk+(−1)2kαk)]rectW (x− xk) (12)

The set {l|l = 2k − 1, k = 1, 2...N} and {l|l = 2k, k = 1, 2...N} can be combined into a single set {l|l = 1, 2...2N},
so Eq.12 can be simplified as

El =
1

2

2N∑
l

[ei(ϕl+(−1)lαl)]rectW (x− xl) (13)

Eq.13 satisfies the form of the electric field after phase modulation, eliminating the requirement of amplitude modulation.
To do so, twice the number of pixels is required and the phase on the SLM ϕl,SLM = ϕl + (−1)lαl.
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Figure 2: The cut value of 20736-node Max-Cut problem as a function of the number of spins flipped
per iteration. (a) Simulated evolution of the cut value at some specific numbers of spins flipped per iteration
(f = 1, 10, 100, 1000, 10000) and random numbers (f_random). (b) Details on the optimizing results between the
large fixed numbers and random numbers of flips.

C Experimental setup

To be specific, we use a stabilized red HeNe laser (Thorlabs’ Stabilized Helium Neon Laser) with a center wavelength
of 632 nm as the light source. When the laser operates in intensity-stabilized mode, its output power remains constant at
1.2 mW with an intensity stabilization of ±0.2%, thus avoiding the degradation of power fluctuation on the experimental
results. A 40X beam expansion and a rectangular aperture are arranged sequentially behind the laser to generate
a rectangular spot large enough to cover the employed reflective phase-only SLM (HOLOEYE LETO-3-CFS-127,
1920×1080 pixels, pixel pitch of 6.4 µm) entirely. Therefore, all the pixels are activated to maximize pixel utilization
while minimizing modulation-related pixel alignment issues. Additionally, we chose 10×10 pixels as a spin unit for
uniform modulation in order to reduce position deviation. To separate the incident and reflected optical paths of SLM,
we place a beam splitter (BS) in the optical path. A lens (focal length f = 150 mm) placed at one arm of the BS
performs a 2D Fourier transform of the optical field from the SLM. In the rear, the charge-coupled device (CCD, QSI
660i, 2758×2208 pixels, 16bit digital resolution) camera detects the intensity of the light at the back focal plane of
the lens. Theoretically, the light intensity at the center location comprises sufficient information for the measurement.
However, the single-pixel light intensity is susceptible to fatal errors caused by positional deviation and a full-pixel
image would contain more noise coming from higher-order diffracted light as well as natural light. Hence, we finalized
a detection area of 10 × 10 pixels with its 4.54 µm pixel. Moreover, we detect 5 times in each iteration and average the
results, with a one-second time interval between the two detections.

D Algorithm and operation

Using the SA algorithm, we search the solution for Max-Cut problem through the following steps.

Input: spin number N , weighted vector w, n×n Ising interaction matrix J = wT ∗ w, annealing coefficient λ, end
temperature Tend, target intensity IT

Output: optimal spin vector xend ∈ {−1, 1}N , maximum cut value Wend

Initialization: random spin vector x ← x0 ∈ {−1, 1}N , cut value W ← W0, Hamiltonian H ← H0, annealing
temperature T ← T0

While T > Tend

Randomly flip several spins to generate the new spin state;

Update SLM;

Detect the intensity Inew by CCD;

Calculate Wnew, Hnew;

If ∥IT − Inew∥2 < ∥IT − I∥2

5



Table 1: Experimental, simulated, SG results for Max-Cut problems

Density Experiment Simulation SG Increase rate (vs SG)
max ave max ave

0.5 153704302 153039395 116980988 117136449 31.22% 30.65%
0.6 151121359 150150495 114841395 114847656 31.58% 30.74%
0.7 157960371 156723864 119879172 119899908 31.74% 30.71%
0.8 166267212 164785788 124132477 126118964 31.83% 30.66%
0.9 181297365 179571382 134334306 137372580 31.97% 30.72%
1.0 176701819 175863542 130222153 117751430 50.06% 49.35%

x← xnew;

W ←Wnew;

H ← Hnew;

Else

If rand(0, 1) < e−
H−Hnew

T

x← xnew

W ←Wnew

H ← Hnew

End if

End if

T ← λ ∗ T
End while

Return x,W

The only nontrivial part is that the number and order of spins flipped are randomly generated, different from other
reported schemes that flip only one spin at a time[1, 2, 3]. This is because flipping one spin at a time cannot efficiently
ensure fast convergence for large-scale problems. Our scheme reduces the dependence of the search results on the initial
values and improves the convergence speed noticeably. The effect of the number of flips per iteration on convergence
rate was compared in Fig. 2. Flipping one spin at a time evidently impedes the fast convergence. A fixed number of
flips may also restrict the search space and consequently restrict to a local optimal solution. The figure clearly shows
that the random flip is more conducive to achieving problem convergence and optimization.

E Experimental and simulated results

The instances of Max-Cut problem consist of graphs of 20736 nodes with random integer weights of floating-point
numbers chosen from interval [-10,10] and the graph density d ∈ {0.5, 1}, referring to Rudy-generated instances[4].
We applied the SG algorithm, numerical simulations and experiments to solve these problems, and the results are shown
in Table 1.

The detection susceptible to noise may cause some uncertainty in experiments and we speculate that it is the discrepancy
that makes it easier to jump out of the local optimum and fit better with the SA algorithm, resulting in a better solution.
In fact, several related works have reported that noise-accelerated, noise-enhanced and noise-induced photonic Ising
machines can be used to solve large-scale combinatorial optimization problems [5, 6, 7]. We add digital white noise to
our experiments thereby accurately controlling the noise, the noise level being determined by the normalized noise
variance. Taking the Max-Cut problem with a graph density of 0.5 as an example, Fig. 3(a) shows the results obtained
by solving it using our Q-SIM under different noise levels. And the complete evolution of the cut value under optimal
noise level in Fig. 3(a) is illustrated in Fig. 3(b).
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Figure 3: The influence of injection noise on Q-SIM performance. (a) Experimental results for 20736-node Max-cut
problems (density=0.5) with digital noises in the level of 0-0.1. The result in the optimal noise level is marked as orange
bar. (b) Experimental evolution of the cut value in the noise level of 0.05.The light orange region represents the interval
of the result distribution from the ten experiments, with the mean indicated by the orange line.

Table 2: Performance comparison between our Q-SIM based phase-to-amplitude modulation based and other approaches
for solving Max-Cut problems.

Ising machine Implementation Problem Type Problem Scale Time to Resolution
8-FPGA SB machine [8] Easy All-to-all,Weighted 16,384-node 1.2 ms

PRIS [9] Easy All-to-all,Unweighted 100-node 63 ns per-step
CIM with DOPO [10] Very hard All-to-all,Unweighted 100000-node 785 µs
CIM with OEPO [11] Hard Sparse,Unweighted 56-node 4.5 µs

D-wave 2000Q [12, 13] Very hard Sparse,Weighted 2500-node > 104 s (for 55 nodes)
Q-SIM (our method) Easy All-to-all,Weighted 20000-node 325 s

F Discussion on the SIM performance of solving the Max-Cut problems

We compare the performance of the Q-SIM based phase-to-amplitude modulation in solving Max-Cut problems to
other Ising machines in Table 2. We evaluate relevant metrics, such as implementation, problem type and scale, time to
resolution (or speed) and obtain the following conclusions:

1. Efficiently solving large-scale Max-Cut problems. Compared to most solutions [8, 9, 11, 12], we comfortably
solve Max-Cut problems with size over 20,000, approaching the highest reported record so far [10]. In fact,
we take the adjacent 10×10 pixels as an operation unit for the same encoding to ensure the consistency of the
Ising system in our experiments, thus do not maximise the use of all pixel points. With further optimisation of
the alignment and detection capabilities, it is feasible to scale up the problem hundredfold.

2. Flexible mapping of (non)fully connected Max-Cut problems with arbitrary amplitude. Considering experi-
mental setups, many schemes prefer to demonstrate the process of solving the benchmark sparse unweighted
Max-Cut problem [9, 10, 11]. Obviously, being unweighted reduces the complexity, and fully connected
problems are of more practical value and harder to implement than sparse ones [8]. As a result, many designs
take great efforts to achieve fully connection. Quantum annealers sacrifice scale, and CIMs also address this
deficiency by various schemes. And achieving weighted is even harder. However, it is where SIM excel
and our design further magnifies this advantage by liberal switching between fully and non-fully connected,
weighted and unweighted problems.

3. Simple and cost-effective experimental construction. Large power consumption and high costs are required
by quantum annealers because of the cryogenic environment. Even CIMs impose rigorous experimental
requirements. Fiber oscillators of tens of kilometres are applied to keep optical loss and optical gain within
thresholds and thus guarantee spin-to-spin coupling, bringing fairly large roundtrip loss. In contrast, our
approach based on a simple SLM is superior in terms of experimental cost and manoeuvrability.

Despite the fact that different Ising machines demonstrate their respective attractions in tackling Max-Cut problems, such
as ultra-large scale [10], ultra-high speed [9], high stability [11], and arbitrary Max-Cut problem mapping [8, 9], our
design, by adopting a more economical experimental architecture, achieves the magnitude adjacent to the largest scale
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and free mapping of (non)fully connected, (un)weighted Max-Cut problems, which has greater practical implications
for solving NP-hard problems. Although the design leaves much to be desired in terms of computational speed, which
is constrained by the optoelectronic transmission of data and the refresh frequency of the SLM, it still exhibits speed
advantages over electrical computation and even quantum annealing.
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