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Abstract 

A simple objective screening method for diagnosis of the atrial septal defect (ASD) is needed. 

Acoustic signals were collected from 61 children with ASD and 60 with a physiological 

murmur. The second heart sound (S2) and the spectrum of systolic murmur were analysed. A 

statistical model was designed using stepwise logistic regression analysis. Significant 

variables distinguishing pathological form normal findings were the interval between the first 

heart sound and the beginning of systolic murmur or the respiratory variation of S2, and the 

frequency of the murmur at its maximum intensity. The area under the ROC curve was 0.922; 

indicating very good fit of the model and the confidence interval was 0.872-0.971. The 

sensitivity of the model was 91% and the specificity 73%. The analysis of acoustic findings 

from the heart is a valuable tool in diagnosing ASD. The next step will be automating this 

process. 

 

1. Introduction 

Secundum atrial septal defect (ASD) represents 6-10% of congenital cardiac anomalies (1). 

Many children with this defect are asymptomatic, and so referral to treatment can be 

significantly delayed. Because clinical diagnosis is based on a widely and consistently split 

second heart sound rather than the murmur, many patients are missed in the screening process 

(2, 3). Late diagnosis and delayed management of significant defects may lead to impaired 

exercise tolerance, an increased incidence of pneumonia, cardiac arrhythmia later in life, and, 

in some cases, pulmonary hypertension and shortened life expectancy (4). 

 

Children with ASD are often referred to a cardiac specialist because of a systolic murmur. 

Associated physical findings can usually be used to distinguish a pathological murmur from 

the soft ejection systolic murmur that arises in the right ventricular outflow tract due to a high 



 3

right ventricular output, which is physiological in character (5). However, even given a 

pathological second heart sound (S2), the physical examination, ECG, and chest x-ray could 

be inconclusive. Echocardiography is usually diagnostic, but is also quite expensive when the 

costs of the equipment, the procedure, and the parent’s time are all taken into account. Thus, 

there is a need for a simple, in-office instrument that can be used for primary screening to 

determine which patients should be sent for further cardiologic consultation. This study 

highlights the most important auscultation findings in patients with ASD and the use of time 

interval measurements and signal processing as screening tools for the diagnosis of ASD. 

 

2. METHODS 

2.1 Patients and data collection 

Acoustic signals from the heart with a simultaneous registration of electrocardiography (ECG) 

and phases of respiration were collected from 61 children with ASD and 60 healthy children 

with a physiological murmur. Diagnosis of ASD was based on echocardiographic 

examination of the heart. The recordings were made by a PC-based device developed at 

Helsinki University of Technology (6). 

 

The median age of the patients with ASD was 4 years (range 8 months–17 years) and that of 

the healthy children 5.5 years (range 1 month–13 years). The recordings took place in 

ordinary outpatient clinic rooms without special sound insulation, and were made at 

intercostal spaces 2, 3, and 4 at the left parasternal border, and at the cardiac apex. The 

examination, including the 45-second recording, took 10-12 minutes per child. 

 

Data concerning weight, length, gender, body mass index (BMI), and ECG were collected. 

All children were examined with echocardiography by the same experienced cardiologist 
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(M.E.S.) with either an Acuson Sequoia or a 128 XP echocardiographic system. Heart volume 

was calculated from chest x-rays and adjusted to body surface area (7). The ratio of 

pulmonary flow to systemic flow (Qp:Qs) was measured according to Fick’s principle in 34 

patients during heart catheterisation to evaluate the clinical significance of the ASD.  

 

The study was approved by the Ethics Committee of Lund University Hospital, and informed 

consent to participate was given by either the children or their parents. 

 

2.2 Time interval measurements 

The first heart sound (S1) was defined as the first signal peak after the QRS complex, and the 

second heart sound (S2) as the signal peak after the T-wave in the ECGs. Measurements were 

taken of the following: (a) the width of S2 splitting, i.e. the interval between aortic (A2) and 

pulmonary (P2) valve closing sounds, (b) the interval between the end of S1 and the beginning 

of the systolic murmur (S1SM), and (c) the interval from the end of S1 to the maximum 

intensity in the spectrum of the murmur (Timax). Measurements were taken during both 

inspiration and expiration. The respiratory variation of the width of S2 (ΔS2) and the relative 

variation (the ratio of ΔS2 to the maximal duration of S2) were calculated. Time interval 

measurements are presented in Figure 1. 

 

2.3 Signal analysis 

Sound signals were band-pass filtered using a fourth-order Butterworth filter (cut-off 

frequencies of 40 Hz and 1100 Hz) and processed using the short-time Fourier transform 

(STFT) (8). The lower filtration limit was set to 40 Hz in order to avoid filtration of S1 and S2. 

The frequency range for S1 and S2 usually ranged from 40 to100 Hz (8-10). The systolic 

murmur was analysed in regard to its (a) maximum intensity (Imax), (b) mean spectral power 
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(mean sound intensity, MSp), (c) frequency at its maximum intensity in the spectrum (Fimax), 

(d) mean frequency (the mean of the frequencies measured per unit time, Fmean), (e) highest 

frequency (HF) of the sound signal above the intensity of 0.1 dB and 40 Hz, and (f) frequency 

range (FR) (8). Table 1 presents definitions of all parameters derived from time interval 

measurement and signal analysis, along with their abbreviations. 

 

2.4 Statistical analyses 

The data set was divided into two parts; 11 observations from each group (ASD and 

physiological murmurs) were selected at random and used as the prediction set. The 

remaining 99 observations (50 ASD and 49 physiological murmurs) were used for the model-

building set.  

 

A stepwise logistic regression analysis was performed on the model-building set, using the 

SAS software package (version 6.12) and taking ASD or physiological murmurs as the 

dependent variable. The independent variables were those derived from signal processing of 

the murmur, measurement of time intervals, and the standard deviations (SD) of Imax, MSp, 

Timax, Fimax, Fmean, HF, and FR. Sex, age, weight, length, BMI, and proportional heart 

volume were also included as independent variables in the statistical analyses. Because some 

patients with ASD have a systolic murmur starting late in systole, like healthy children with 

physiological murmur, S1SM and ΔS2 were combined into one independent variable. S1SM 

was used as a separate independent variable if its value was 0 (in the presence of systolic 

murmur signal early in systole), while if its value was > 0 then ΔS2 was used instead. In the 

results and discussion, this variable will be referred to as the “designed variable”. Alpha to 

enter and alpha to remove were both set to 0.05. 
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The appropriateness of the fitted model suggested by the stepwise procedure was then 

examined for adequacy. P-values > 0.05 in the Pearson, deviance, and Hosmer-Lemeshow 

goodness-of-fit tests were required for the fitted model to be considered adequate (11, 12). 

Goodness-of-fit tests were performed using the Minitab software package (version 13.2). 

 

In addition, a model with no multicollinearity was to be preferred over a model with 

multicollinearity. The stepwise procedure can exclude variables that might be theoretically 

relevant, due to multicollinearity. If the pairwise correlation among independent variables was 

significant (p<0.05) we inferred multicollinearity. However, multicollinearity could still exist 

even without significant pairwise correlation. To ensure that multicollinearity was not present, 

we manually added and deleted variables to see the effect on the regression coefficients, and 

inferred multicollinearity in the cases where these coefficients were significantly altered  (13). 

 

The percentages of concordant, discordant, and tie pairs were calculated as a measure of 

association between the observed response and the predicted response. A pair (one respondent 

with ASD and one with physiological murmurs) was considered concordant if the fitted value 

for the respondent with ASD was higher than the fitted value for the respondent with 

physiological murmurs. A pair was considered discordant if the opposite was true, and a tie if 

the two fitted values were equal.  

 

An ROC curve was plotted (using SPSS version 11.0.1) to show the prediction power of the 

model graphically. The area under the curve (AUC) was measured by the non-parametric 

method, and the 95% confidence interval (CI) was calculated. AUC measures discrimination, 

or the ability to classify patients correctly. AUC is defined as the number of concordant pairs 

plus half the number of tied pairs divided by all the pairs (the number of pairs equals the 
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number of ASD patients multiplied by the number of non-ASD patients). An AUC of 0.5 

(represented by the 45 degree line in the ROC curve) indicates that the model’s ability to 

correctly classify patients is 50%. An AUC of 0.7-0.8 is considered fair, 0.8-0.9 is considered 

good, and a value above 0.9 is considered excellent (14, 15). 

 

Graphical and visual analysis was performed to evaluate the possible outliers in the model; 

Delta Chi-2 was plotted against the fitted values and Delta Chi-2 was plotted against the 

leverage values. A high delta Chi-2 can result from a high leverage, a high Pearson residual, 

or both. Observations with delta chi-2 greater than 3.84 were considered as a sign of bad fit by 

the model (12). 

 

For prediction purposes, we wanted to minimize the risk of missing patients with ASD, and 

therefore sought to achieve a sensitivity of around 95% at the expense of a lower specificity, 

while still trying to avoid losing too much specificity. To find the best threshold for 

classifying patients with ASD, various cut-off points (ranging from 0.01 to 0.99 in steps of 

0.01) were used to calculate the sensitivity and specificity. A patient was considered to have 

an ASD if the fitted value was greater than the cut-off point. The cut-off point that maximized 

specificity and had sensitivity around 95% was then chosen as the threshold for prediction 

purposes.  

 

We applied this threshold to the prediction set and calculated the sensitivity and specificity. 

The sensitivities and specificities were then compared between the model-building set and the 

prediction set. 
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3. RESULTS 

3.1 Time interval measurements 

The width of S2 could be measured in all records. The calculated ΔS2 was small, ≤ 14 ms, in 

all records when Qp:Qs was more than 1.5:1 and in 25 of 60 records from healthy children. 

Only 57% (35 of 61) of patients with ASD had a systolic murmur. The S1SM interval could 

always be measured in association with a systolic murmur, and ranged from 0 ms to 55 ms 

(median = 0 ms, mean = 13 ms). The relative spectral frequency of the murmur was low in 

children with a physiological murmur. Hence, 43% (26 of 60) of the physiological murmurs 

were filtered out by a 40 Hz high-pass filter. In the 34 remaining records, S1SM could be 

measured, and ranged from 0 ms to 108 ms (median = 48 ms, mean = 46 ms).  

 

3.2 The statistical model and the ROC curve 

The stepwise logistic regression procedure suggested a model with the designed variable 

(S1SM or ΔS2) and Fimax (p<0.001 for both variables). The goodness-of-fit tests for this 

model showed p-values greater than 0.05, indicating an adequate fit (Table 2).  

 

The correlation between the two selected independent variables was not significant (P>0.05), 

indicating no sign of multicollinearity (Pearson correlation between the designed variable and 

Fimax = 0.032, p = 0.752).  Manual investigation of different possible models did not reveal 

any sign that the final model presented by the stepwise logistic regression procedure was a 

result of multicollinearity. 

 

The percentages of concordant, discordant, and tie pairs are shown in Table 3, and the ROC 

curve and the area under the curve (AUC=0.922) are shown in Figure 2. The confidence 

interval for the AUC was 0.872-0.971.  
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The graphical analysis did reveal seven observations with a high delta Chi-Square (3 of 50 

cases with ASD and 4 of 49 cases with physiological murmur). The cases with ASD were the 

ones which were misclassified by our model. Two of the three cases had a measured small 

and clinically insignificant shunt, Qp:Qs 1.5:1 and 1.1:1. The third false negative had long 

S1SM (31 ms); atypical for ASD, the Qp:Qs was not measured, but according to 

echocardiography the right ventricle was not enlarged, which indicates a small shunt. The 

children that were misclassified as having ASD had either a small absolute ΔS2  (0, 4, and 7 

ms in three children) or a short S1SM (0 ms in one child). The relative ΔS2, the ratio of ΔS2 to 

the maximal duration of S2, was small (0.06, 0.24, and 0.31), but within lower normal range 

(normal range 0.06 – 1, mean 0.4). 

 

The cut-off point that gave sensitivity close to 95% and maximized the specificity was found 

to be 0.27. At this cut-off point, the sensitivity was 94% and the specificity was 71%. The cut-

off points and the resulting pairs of sensitivities and specificities close to a sensitivity of 95% 

are presented in Table 4. Sensitivity and specificity for all cut-off points are presented in 

Figure 3. When applying the chosen cut-off point, 0.27, to the prediction set, we achieved 

91% sensitivity and 73% specificity.  

 

4 DISCUSSION 

Our statistical model distinguishes very well between patients with ASD and healthy children 

with physiological murmur, and can thus serve as a good backup for the clinical diagnosis of 

ASD. Three patients in the model-building set were misclassified as healthy; however, they 

had a small shunt, for which treatment is not indicated. The small additional burden of the 

false positives is more than offset by the accrued benefits of simplified screening, automated 
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diagnostic approach, and reduction in total referrals. The sensitivity (91%) and specificity 

(73%) for the prediction set was about the same as for the model-building set, supporting the 

conclusion that the model has an excellent predictive power. 

 

Numerous methods can be applied when classifying data. One of our criteria was that the 

model must give a probability of class membership. Models that do not give a probability (for 

example, support vector machines) were therefore not considered. Logistic regression, k-

nearest neighbours, and decision trees are examples of methods that can be applied (10).  

The probability for a given observation is calculated as the ratio of members of class y among 

the k nearest neighbours of the given observation. The value k takes can greatly affect the 

result. Another difficulty with k-nearest neighbour arises when many variables are included. 

If the relative importance of variables is not weighted, then data from irrelevant variables 

have an equal impact to data from an important variable (16). Since no prior knowledge 

existed about which variables to include or how different weights should be created, this 

method was not applied. However, this approach could be considered in future analysis when 

more knowledge exists about which variables should be included for prediction of patients 

with ASD (17).  

 

The decision tree is built up of nodes, where the main node is the dependent variable. Data is 

split into groups with the goal of maximizing the separation of the data. Some prior 

knowledge regarding best and second best variables to include in the tree is necessary to apply 

this method. Additionally, when working with continuous variables, a definition of how to 

split them into groups is needed in order to obtain the nodes. Since this was an explorative 

study, we did not have any prior knowledge of which variables to include or how the 

independent variables should be split, and so chose not to apply this method. (18). 
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The reason for selecting the logistic regression model was that it gave us not only a 

probability of class membership but also a chance to study the impact of different variables 

through its coefficients. The stepwise procedure is also convenient when it comes to choosing 

variables to include in an explorative study. Additionally, there exist several known tests for 

evaluation of models. 

 

Patients with ASD do not always have a systolic murmur; only 57% of our patients had it. A 

large flow through a normal pulmonary valve may cause a murmur with physiological quality. 

The frequency of the systolic murmur at the point of maximum intensity in the spectrum 

(Fimax) was spectrally higher in patients with ASD than in healthy children, due to a higher 

blood flow velocity. The intensity of the murmur was also greater, apparently for the same 

reason. Analysis of the signal spectrum and its intensity will make it possible to differentiate 

the ejection systolic murmur in patients with ASD from other physiological murmurs. 

 

The model given by the stepwise logistic regression analysis showed an adequate fit. There 

was no significant correlation between the two independent variables (the designed variable 

and Fimax), and the predictive ability of the model was excellent (AUC=0.922). However, 

future studies with a larger prediction set could help further to investigate the predictive 

power of this suggested model. Yet another interesting aspect for further analysis would be to 

test how stable the regression coefficients are when the sample size increases.  

 

5. CONCLUSIONS 

The combination of time interval measurements and signal processing provides a diagnostic 

method for a haemodynamically significant ASD, differentiating pathological from normal 
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findings. When encapsulated in a tool for primary care physicians, referral of children to heart 

specialists can be minimized without endangering the safety of the patients. This would result 

in significant savings for the health care system, decreasing patient and family anxiety and 

expense.  

 

This study has demonstrated the potential power of automated analysis as a tool for ASD 

diagnostic screening.  Nevertheless, further studies are required to develop a fully automated 

system. 
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Figure legends 

Figure 1: Measurements of time intervals. 

 

Figure 2: 

Receiver-operating characteristic (ROC) curve. The area under the curve is 0.922, standard 

error is 0.025 under the non-parametric assumption. The 95% confidence interval is 0.872-

0.971. Null hypothesis: true area = 0.5  (p ≤ 0.01). 

 

Figure 3 

The sensitivity and specificity at different cut-off points. The figure illustrates the trade-off 

between sensitivity and specificity for various cut-off points. 
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Figure 1 
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Figure 2 
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Figure 3 
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Table 1. Parameters used in statistical comparisons, and their abbreviations. 

 

Variable definition Variable abbreviation and units 

The interval between the end of S1 and the beginning of 

the systolic murmur 

S1SM, ms 

The respiratory variation of the splitting of S2 ΔS2 

Combination of S1SM and ΔS2 The designed variable* 

Mean spectral power or mean sound intensity Sp, dB  

Mean frequency, the mean of the frequencies measured per 

unit time  

Fmean, Hz 

The interval from S1 to the point of maximum intensity in 

the spectrum 

Timax, ms 

The frequency at the point of maximum intensity in the 

spectrum 

Fimax, Hz* 

The maximum intensity of the systolic murmur Imax, dB 

Highest frequency HF 

Frequency range FR 

* Significant variables in the logistic regression analysis. 
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Table 2 
 
Results of goodness-of-fit tests. 
 
 

Method Chi-Square Degrees of freedom p-value 

Pearson 72.099 96 0.967 

Deviance 70.002 96 0.979 

Hosmer-Lemeshow 3.634 8 0.889 

 

 
Table 3 
Number of concordant and discordant variables and ties. 
 
Pairs Number Percentage 
Concordant 2258 92.2% 
Discordant 190 7.8% 
Ties 2 0.1% 
Total 2450 100% 
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Table 4: 

The cut-off points, sensitivities, and specificities around a sensitivity value of 95%. 

* indicates the best cut-off point according to our restriction of maximizing specificity while 

at the same time achieving a sensitivity of around 95%. 

 

Potential cut-off point Sensitivity Specificity

0.18 0.98 0.59184 

0.19 0.96 0.61224 

0.2 0.94 0.61224 

0.21 0.94 0.63265 

0.22 0.94 0.65306 

0.23 0.94 0.65306 

0.24 0.94 0.65306 

0.25 0.94 0.67347 

0.26 0.94 0.69388 

0.27* 0.94 0.71429 

0.28 0.92 0.71429 

0.29 0.92 0.71429 

0.3 0.92 0.71429 

 


