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Abstract The main motivation of this study is to establish an ambulatory
cardio-respiratory analysis system for the monitoring and evaluation of exer-
cise and regular daily physical activity. We explored the estimation of oxygen
uptake by using non-invasive portable sensors. These sensors are easy to use
but may suffer from malfunctions under free living environments. A promis-
ing solution is to combine sensors with different measuring mechanisms to
improve both reliability and accuracy of the estimation results. For this pur-
pose, we selected a wireless heart rate sensor and a tri-axial accelerometer
to form a complementary sensor platform. We analyzed the relationship be-
tween oxygen uptake measured by gas analysis and data collected from the
simple portable sensors using a multivariable Hammerstein modeling method.
It was observed that the resulting nonlinear multivariable model could not
only achieve a better estimate compared with single input single output mod-
els, but also had greater potential to improve reliability.
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1 Introduction

The main purpose of the paper is to explore the estimation of transient and
steady state oxygen uptake using multiple noninvasive portable sensors. Oxy-
gen uptake is an important physiological parameter for the determination of
functional health status and clinical assessments in normal and pathologi-
cal conditions. The potential application areas arising from this study thus
include but are not limited to training monitoring for elite athletes, the reha-
bilitation of post coronary infarct patients, the health monitoring of patients
with diabetes and heart diseases, and remote health assessment of elderly
patients in telemedicine. Recently, practical portable sensors such as Triax-
ial Accelerometers (TA), pedometers, and heart rate (HR) sensors have been
used for the estimation of fitness and of oxygen uptake during exercises [8] [1].
These sensors provide a potentially portable platform for the reliable estima-
tion of oxygen uptake even under transitory and intermittent sensor failures
or malfunctions which are often encountered for wireless portable sensors.
An example of these sensor failures for a wireless HR sensor are artifacts
generated by high impedance, body movements, and sudden disconnections.
From a data fusion and fault tolerance point of view, the combination of
sensors with different measuring mechanisms, which we call complementary
sensor platforms, have many advantages [3]. By using complementary sensors
we can also determine the fitness of exerciser as discussed in [15].

Based on this consideration, this paper selects the Polar wireless HR sen-
sor and TA to estimate V O2 (oxygen uptake). TA can evaluate the energy
expenditure directly associated with body movement, and facilitate temporal
tracking of the frequency, intensity, and duration of activity. On the other
hand, HR is a measurement of the physiological response to exercise. These
two kinds of sensors are therefore quite different in measurement mecha-
nism. They have their own disadvantages as well. HR reflects the relative
stress placed on the cardiopulmonary system due to activity [22], but it can
also be elevated by emotional stress, which is independent of any change in
oxygen uptake [8]. TA measures exercise intensity but cannot assess physio-
logical responses. The combination of these two kinds of sensors can remedy
these individual shortcomings. Furthermore, these sensors are cost effective
portable sensors and easy to use. Based on the above consideration, we se-
lected HR and TA to estimate V O2 dynamically.

For the modeling of oxygen uptake, relevant papers in current litera-
ture have mainly concentrated on either steady state prediction [7] [9] or
dynamic estimation of onset and offset of exercise [14] [23]. Paper [19] pre-
sented a novel SISO (single input single output) Hammerstein modeling (a
static nonlinear block followed by a dynamic linear system) method to depict
both steady state and transient of oxygen uptake. However, the estimation
of oxygen uptake in paper [19] is based on the information of walking speed
which is obtained from the motor speed of treadmill machine and is not ap-
plicable for free-living conditions. In this study, TA combined with a wireless
HR sensor are used to dynamically estimate V O2 as the replacement of the
recording of walking speed. We also extend the SISO Hammerstein modeling
method in [19] [20] to the multivariable case in order to cope with multiple
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sensor based estimation. Specifically, an exercise protocol based on PRBS
(Pseudo Random Binary Sequence) dynamics was implemented to decouple
the identification of linear dynamics from that of nonlinearities of Hammer-
stein systems. The support vector machine regression was applied to model
the static nonlinearities. Multivariable ARX (Auto Regressive with eXternal
inputs) modeling [12] approach was used for the identification of the dynamic
part of the Hammerstein system.

Due to the total decoupling of the identification of the static part (based
on steady state experiment data) and dynamic part (based on PRBS experi-
ment data), by using the extended multivariable Hammerstein model identifi-
cation approach, it is possible to apply different measurement equipments for
steady state tests and dynamic experiments respectively. As a consequence,
better estimation results are attainable [19].

In this paper, we only estimate V O2 for moderate exercises (less than
100 w). We believe when the V O2 estimation is in a relative wide range, the
nonlinear modeling approach would be much more effective than the linear
one. Some preliminary data from initial study on this topic was presented in
the conference paper [18].

This paper is organized as follows. The extended multivariable Hammer-
stein model identification method and its associated experimental arrange-
ments are introduced in Section 2. Modeling results and discussions are pre-
sented in Section 3. Section 4 gives conclusions.

2 Methodology

2.1 Subjects

Six untrained normal male subjects (aged 28 ± 5.5yr, height 176 ± 5cm, body
weight 70 ± 11kg) participated in the experiments. All the subjects knew the
protocol (approved by the Ethics Committee of the University of New South
Wales) and the potential risks, and had given their informed consent.

2.2 Experimental equipments and data acquisition system

We need to accurately measure oxygen uptake, heart rate and body move-
ment during treadmill exercise.

The measurement of oxygen uptake (either averaged or breath by breath)
is implemented by using the AEI (Applied Electrochemistry Inc. USA) Moxus
Metabolic Cart. Specifically, we use S−3A/1 Oxygen Analyzer to continuous
measure oxygen concentration. The instrument has a sensitivity of 0.001%
and time constant of 25− 40 milliseconds. Minute ventilation was measured
during inspiration using a Turbine Flow TransducerK520 − C521 (AEI). It
can measure the flow range from 50 ml/sec to 16.5 L/sec. Before each in-
dividual exercise test, the turbine meter was calibrated using a 3.0 liters
calibration syringe.

Heart rate was monitored beat by beat using a wireless Polar system.
Body movement was monitored by using a triaxial accelerometer. The
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Fig. 1 A typical experimental senario.

core part of TA was the ADXL210 (Analog Device, Inc.), a piezoresistive
accelerometer supplied by Analog Electronics. The ADXL210 has a range of
±10g, a frequency range of 0-50 Hz.

The treadmill used in the system is the Powerjog ”G” Series manufactured
by Sport Engineering Limited, England. A computer control system was
established for the treadmill. It can control the speed of the treadmill with
a response time of less than 3 seconds, which is approximately twenty times
faster than the increase in oxygen consumption that follows an increase in
workload. This system can generate PRBS exercise protocol on treadmill.
During experiments, all signals are synchronized with the PRBS signal.

2.3 Experimental procedure

A typical experimental scenario is shown in Fig.1. Initially, the subjects were
asked to walk for about 10 minutes on the treadmill to familiarize themselves
with the experiment. The subjects were then requested to walk at six levels of
different speeds (2, 3, 4, 5, 6 and 7 km/h). Each level took a total period of 5
minutes, and was followed by a 10 minute resting period. The oxygen uptake
was recorded and averaged every two minutes. In order to identify linear
dynamic part of the Hammerstein system, subjects were also requested to
walk on the treadmill under a PRBS exercise protocol. The breath by breath
tidal volume and the concentration of oxygen were recorded to calculate
breath by breath oxygen uptake. Throughout the experiments, the outputs
of the TA and Polar HR sensor were also recorded.

2.4 Data pre-processing

The discussion about data pre-processing in this study mainly relates to
wireless portable TA. The TA that were used are particularly suitable for
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detection of human movement due to their sensitivity to very low frequen-
cies [4]. The TA was attached to the lower back close to the subject’s centre
of gravity. Accelerations were measured in a body-fixed axis system with
measurement directions in antero-posterior (x), medio-lateral (y), and verti-
cal (z). Individual outputs from the three measurements are high pass (0.11
Hz) and low-pass (20 Hz) filtered outputs to suppress the DC-response and
other high frequencies that cannot be expected to arise from human move-
ment. Filtered acceleration signals were calculated to produce accelerometer
output variables Iax

,Iay
, Iaz

and Ia [5]:
{

Iai = 1
T

∫ T

t=0
|ai|dt, i ∈ {x, y, z},

Ia = Iax
+ Iay

+ Iaz
,

(1)

where the integration interval T is selected as 5 seconds for the processing
of dynamic experimental data (PRBS exercise protocol). For steady state
experimental data, T is selected as 2 minutes (the last 2-minute interval at
the end of each walking stage). As the outputs of TA, ai (i ∈ x, y, z), are
digitized (200 Hz), the integration in equation (1) is implemented simply
using summation.

2.5 Multivariable modeling

2.5.1 SVR based nonlinearity identification method

In [2], Bai showed that the identification of linear part of a Hammerstein
model can be decoupled from the nonlinear part with the help of the PRBS
input. The reason is that any static nonlinearity can be exactly characterized
by a linear function when the input has a binary nature, such as PRBS. Thus,
the identification of Hammerstein model can be obtained by the identification
of the static nonlinearity and the linear dynamic part separately.

For the identification of the nonlinearity, the so called ε-insensitivity Sup-
port Vector Regression (SVR) [21] is employed, which is convex and very
efficient in terms of speed and complexity:

Let {ui, yi}N
i=1 be a set of inputs and outputs data points (ui ∈ U ⊆ Rd,

yi ∈ Y ⊆ R, N is the number of points). The goal of the support vector
regression is to find a function f(u) which has the following form

f(u) = w · φ(u) + b, (2)

where φ(u) represents the high-dimensional feature spaces which are nonlin-
early transformed from u. The coefficients w and b are estimated by mini-
mizing the regularized risk function:

1
2
‖w‖2 + C

1
N

N∑

i=1

Lε(yi, f(ui)). (3)

The first term is called the regularized term. The second term is the empirical
error measured by ε-insensitivity loss function:

Lε(yi, f(ui)) =
{ |yi − f(ui)| − ε, |yi − f(ui)| > ε

0, |yi − f(ui)| ≤ ε
(4)



6

This defines an ε tube. The radius ε of the tube and the regularization con-
stant C are both determined by user. By solving the above constrained op-
timization problem, we have

f(u) =
N∑

i=1

βiφ(ui) · φ(u) + b. (5)

By the use of kernels, all necessary computations can be performed directly
in the input space, without having to compute the map φ(u) explicitly. After
introducing kernel function k(ui, uj), the above equation can be rewritten as
follows.

f(u) =
N∑

i=1

βik(ui, u) + b. (6)

Where the coefficients βi corresponding to each (ui, yi). The support vectors
are the input vectors uj whose corresponding coefficients βj 6= 0.

There are a number of kernel functions which have been found to provide
good generalization capabilities, such as polynomials, radial basis function
(RBF), sigmoid. The RBF kernel is given as follows:

k(u, u′) = exp(−‖u− u′‖2
2σ2

). (7)

Additional details about SVR, such as the selection of radius ε of the
tube, kernel function, and the regularization constant C, can be found in
[13] [17] [21].

2.5.2 Multivariable ARX modeling

The general structure of a discrete time ARX model (with two inputs and
one output) can be described as follows:

A(q)y(t) = B1(q)u1(t− nk1) + B2(q)u2(t− nk2) + e(t), (8)

where ui(t), y(t) and e(t) are input, output and noise respectively, and

{
A(q) = 1 + a1q

−1 + · · ·+ anaq−na ,
Bi(q) = 1 + bi1q

−1 + · · ·+ bnbi
q−nbi , i ∈ {1, 2}. (9)

If model order is determined the parameters of the model can be identified
by using a least-square identification algorithm [12].
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3 Results of multivariable modeling

3.1 Modeling of static nonlinearity

For the prediction of steady state oxygen uptake, book [9] proposed a fa-
mous linear static model to approximately estimate oxygen uptake in a given
walking speed ranges. Paper [7] provided simple static nonlinear (polynomial)
models. However, these models need walking speed information which is hard
to measure accurately in free living conditions. In this study we establish not
only a SISO model (HR vs V O2, and TA vs V O2), but also a multivariable
model (HR&TA vs V O2) based on SVR. The estimation results are shown
in Fig.2 and 3. In Fig.2, the continuous curve stands for the estimated input
output steady state relationship. The dotted lines indicate the ε-insensitivity
tube. The plus markers are the points of input and output data. The circled
plus markers are the support points. In Fig.3 a, the solid circle stands for the
estimated value and solid arrow stands for the measured value.

In terms of curve fitting results (in the sense of root mean square (rms)
error with unit [ml · min−1 · Kg−1]), SVR regression is generally better
than linear regression (LR). The best estimation is the multivariable model
(SV Rrms = 1.4 and LRrms = 1.8). TA based estimation (SV Rrms = 1.7
and LRrms = 1.8) is less accurate than the multivariable model, but is much
better than HR sensor based model (SV Rrms = 2.7 and LRrms = 3.0).

We are not trying to prove that the multivariable model is better than
SISO models or that TA based SISO models are better than HR based SISO
models. To do so, more experiments would be needed to validate the identi-
fied models. However, the multivariable model does have advantages over the
SISO model in that both TA and HR, which are both closely correlated to
V O2, can be used to identify abnormal states arising both from physiological
factors as well as sensor malfunction. As discussed before, the HR sensor is
a measurement of the physiological response to exercise while TA measure
body movement. In normal conditions, the outputs of TA and HR should
be closely correlated [16]. The data displayed in Fig. 4 was obtained under
restricted conditions for healthy subjects. We applied ε-insensitivity SVR
and identified the relationship between HR and TA. In Fig. 4, we marked
the region of ε-tube as the normal zone, and the areas which are 3ε (as a
threshold) away from regression curve as abnormal zone. The 3ε threshold
selected in this paper, could also be replaced by other statistical parameters
such as standard deviation or 95 % confidence limits. Note that under nor-
mal conditions almost all the data falls within the normal zone as shown in
Fig. 4. Therefore, under normal conditions, using either a TA or HR SISO
model can provide a good estimate of oxygen uptake. However, when an ab-
normal physiological condition unrelated to the exercise protocol occurs (for
example arrhythmia or tachycardia) or a sensor malfunction happens, the
multisensor, multivariable approach has the potential to detect the
abnormality and still provide a reasonable estimation.
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Fig. 2 SISO SVR regression: a) HR vs V O2 (left). b) TA vs V O2 (right).
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Fig. 3 Multivariable SVR regression for V O2 estimation based on TA and HR
signals: a) 3D plot (left). b) Contour plot (right).
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3.2 Modeling of dynamical part

In order to avoid coupling errors, a well designed PRBS exercise protocol
is implemented in the automated treadmill system [19]. A PRBS has two
levels (a+ and a−) and switches from one level to the other at constant time
intervals ∆. The PRBS is periodic with a period T = ∆N , where N = 2n−1
and n is an integer. In order to avoid nonlinear behavior, the difference of
the two levels of PRBS should be as close as possible. However, it is also
required that the output responses under these two levels of inputs should
be noticeably different (good signal to noise ratio) to ensure a reasonable
parameter estimation results. For the selection of ∆ and N , we need to com-
promise with the complexity of the selected model, response time of the
system, noise level, and the total experimental time which the subjects can
tolerate. In this study, we select a+ = 6km/h, a− = 4km/h, N = 7 and
∆ = 150 seconds after several pre-experiments and detailed analysis of the
modeling output.

Papers [6] [10] [11] often select first order exponential, with no time de-
lays to describe the dynamics of oxygen uptake. In our previous study [19],
we also confirmed that the exponential rise in oxygen uptake directly reflects
the rate of rise and drop in leg muscle oxygen uptake at the onset and offset
of exercises. Therefore, we select a first order ARX model (without delay)
for the estimation of oxygen uptake. Based on the averaged data of two
periods of 7 bit PRBS experiments, we identified the parameters of three
individual models by using Matlab System Identification Toolbox. The pre-
diction results are shown in Fig.5. In terms of the “fit” [12], the best fit for
V O2 transient estimation is the multivariable ARX model (77%). For the TA
based model, fit = 75% , which is much better than the HR based model
(fit = 53%). Fig.5 graphically shows that the multivariable model achieves
the best transient predictions. The heart rate response to exercise has
a large time constant. In contrast the TA response to exercise is
almost instantaneous. It is therefore not surprising that the dy-
namic model that incorporates both the TA and the HR response
provides a much better fit and better matches the high frequency
components. This is clearly demonstrated in Fig.5.

4 Conclusion

In this study, we estimate oxygen uptake dynamically under free living con-
ditions by using portable wireless sensors. We extended the Hammerstein
model identification method proposed in our previous work [19] to the multi-
variable case. By using the data of a well designed PRBS type experiments,
the identification of static nonlinear part and dynamic linear part is totally
decoupled. The identified models can be applied in both steady state and dy-
namic analysis of human cardio-respiratory responses to exercises. Excellent
fits and very low residual errors were obtained for the multivariable models
incorporating both HR and TA data.

The results suggest that oxygen uptake during exercise can be estimated
with an adequate degree of accuracy and sufficiently low complexity to be
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incorporated into wearable equipment. Such wearable monitors could be used
to assess levels of health and fitness, improve training regimes for both the
average person and high performance athletes, and to design training proto-
cols that minimize exercise risk for patients undergoing post cardiac infarct
rehabilitation.

Noninvasive portable wireless sensors can be prone to malfunctions and/or
failures (such as, artifacts generated by environmental EMI and disconnection
of electrodes). Another purpose of this study is to provide an efficient way
to diagnose and compensate for sensor malfunctions and/or failures based
on these identified models. Taking a multi-sensor, multivariable approach
also reduces the impact of external factors on the overall estimation accu-
racy. Specifically, incorporating a triaxial accelerometer in addition to heart
rate for estimating oxygen uptake from heart rate alone provides additional
robustness to the estimation process, as heart rate is influenced by many
parameters unrelated to external work. Furthermore, if multiple sensors are
used, by checking the relationship of their outputs (e.g. Fig. 4), it is possible
to detect physiologically abnormal functions. V O2 estimation error can thus
be significantly reduced by using an additional sensor not directly related to
the physiological response (e.g. TA sensor).
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