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Abstract Recordings of brain electrophysiological

activity provide the most direct reflect of neural function.

Information contained in these signals varies as a function

of the spatial scale at which recordings are done: from

single cell recording to large scale macroscopic fields, e.g.,

scalp EEG. Microscopic and macroscopic measurements

and models in Neuroscience are often in conflict. Solving

this conflict might require the developments of a sort of

bio-statistical physics, a framework for relating the

microscopic properties of individual cells to the macro-

scopic or bulk properties of neural circuits. Such a

framework can only emerge in Neuroscience from the

systematic analysis and modeling of the diverse recording

scales from simultaneous measurements. In this article we

briefly review the different measurement scales and models

in modern neuroscience to try to identify the sources of

conflict that might ultimately help to create a unified theory

of brain electromagnetic fields. We argue that seen the

different recording scales, from the single cell to the large

scale fields measured by the scalp electroencephalogram,

as derived from a unique physical magnitude—the electric

potential that is measured in all cases—might help to

conciliate microscopic and macroscopic models of neural

function as well as the animal and human neuroscience

literature.

Keywords Local field potential � Mutiunit activity �
Single unit activity � Electroencephalography �
Electrophysiology � Electrocorticography � Intracranial

EEG

1 Introduction

When Hans Berger reported in 1929 the first measurements

of the brain electrical activity in humans: the electroen-

cephalogram (EEG), he described ‘‘a continuous wave with

continuous oscillations…’’ that he termed the alpha wave.

Faster lower amplitude but also rhythmic activity (beta

waves) substituted alpha waves when subjects opened their

eyes. However, observing dynamic brain phenomena is one

thing and understanding its meaning and functional role

quite another. Indeed, while oscillations are currently

among the most studied aspects of neural activity, still

three major questions continue unanswered today: (1) How

are EEG patterns generated? (2) Why are EEG patterns

often oscillatory but not always? (3) What are oscillatory

patterns useful for?

There is no elementary answer to these questions.

Oscillations likely reflect an emergent property of such a

complex system as the human brain [16]. Yet, the behavior

of a complex system as a whole cannot be easily predicted

or deduced from the behavior of individual lower level

entities such as neurons. Neither is the outcome simply

caused by the summation of its parts, nor is it easy to infer

the behavior of the parts from macroscopic observations of

the system [15]. Spatiotemporal structure can arise from

the interactions of the numerous constituents and
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reductionism, i.e., studying neurons in their isolated state

must be replaced by an integrated view in modern neuro-

science. A fundamental problem of current neuroscience is

then to understand the brain through its organization into

multiple spatial and temporal scales.

The fact that most neurophysiologists considered neurons

as isolated units capable of yielding most of information

needed to code/decode features of external stimuli has

considerably hindered our understanding of the relationship

between electrophysiological signals recorded at different

spatial and temporal scales. While technological advances in

measuring devices, the interest in neuroprosthetics and brain

computer interfaces or the existence of hippocampal place

cells have recently stimulated the interest of researchers in

understanding what is coded at the diverse scales there is still

a huge gap to bridge. Microscopic and macroscopic mea-

surements and models in Neuroscience are often in conflict

which is reminiscent of the state of the Physics at the end of

the nineteenth century. The conflict was solved with the

developments of the statistical physics, a framework for

relating the microscopic properties of individual atoms and

molecules to the macroscopic or bulk properties of materi-

als. Such a framework can only emerge in Neuroscience

from the systematic analysis and modeling of the diverse

recording scales from simultaneous measurements. A first

step, to which this minireview is addressed, is to understand

what are the different electrophysiological signals we have

at our disposal, how are they obtained, what is our current

interpretation about the role of these signals and their bio-

physical origins and which interrelationships between scales

have been already described.

2 From near to far field electrophysiological measures

of neural activity

Nearly in parallel with Berger’s discovery of the EEG,

Lord Adrian developed techniques for extracellular mea-

surements of single-neurons with microelectrodes [1].

Since then, recording technologies for applied and basic

neuroscience applications have significantly improved.

Nowadays, we can record electrical activity at different

levels ranging from the intracellular space to the scalp

surface, using arrays of hundreds of electrodes and

amplifiers [10, 73] that cover a wide range of frequencies

from ‘‘resting’’ or standing (DC) up to several (50) kHz.

A common factor linking most electrophysiological

recordings is the physical magnitude that is measured: the

voltage or electrical potential, i.e., the electric potential

energy per unit charge, typically expressed in joules per

coulomb or simply volts. Note that since the zero of

potential can be chosen at any point, the difference in

voltage is the quantity which is physically meaningful, i.e.,

potential is always measured with respect to some

reference.

Electrophysiological measurements are commonly sub-

divided into two categories, near field (intracellular or

extracellular) measurements and far field measurements.

These terms derive from electrodynamics, where near field

and far field are used to denote the different behaviors of

the electromagnetic radiation that emanate from an

antenna. Note, however, that electromagnetic radiation is

not expected to arise at the ultra-low range of frequencies

of the electromagnetic fields generated by the brain.

2.1 Near field measurements

2.1.1 Intracellular recordings

Mainly destined to measure voltage (or currents) across the

membrane of a cell, the tip (\1 lm) of a sharp micro-

electrode is used to puncture the membrane without

destroying the cell. Voltage is measured with respect to a

reference electrode placed within the electrically conduct-

ing extracellular fluid that surrounds the cell.

Intracellular potentials are the most sensitive measure to

action potentials (APs), i.e., short-lasting (typically less

than one ms), uniform pulses (all-or-nothing) of electrical

activity used for communication with other neurons and for

transmitting information to other body tissues such as

muscles and glands. APs are generated when the membrane

potential of a neuron reaches a threshold value. They travel

down the axon toward synapses terminating at postsynaptic

neurons, where they initiate postsynaptic currents (PSCs)

that summate to trigger (or inhibit) new APs [40].

2.1.2 Extracellular recordings

Typical near-field extracellular measurements are per-

formed by amplifying the potential difference between the

microelectrode tip, placed at the extracellular space, and a

reference electrode located within a few millimeters. These

recordings are usually broken into two components by

filtering (Fig. 1): The local field potential (LFP) corre-

sponds to coherent and relatively slow frequency changes

in membrane potential (typically\300 Hz but ranges vary

from lab to lab) associated with synaptic currents as well as

other sources in cell aggregates, while the higher frequency

signal (300–10,000 Hz) consists mostly of multi-unit

activity (MUA) resulting from APs in several nearby

neurons. By considering the morphology of APs contained

in the MUA signal it is possible to isolate the contribution

of APs arising from each individual neuron to obtain the

single unit activity (SUA). Note that the distinction

between LFPs and MUA/SUA is somehow arbitrary as it

depends on the frequency cut-offs (e.g., 300 or 500 Hz)
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used by each laboratory. While there is a consensus that

SUA/MUA activity is spatially localized, over up to

100 lm for the single-unit signals or several hundreds of

microns for the multi-unit signals, there are divergent

results concerning the spatial extent of LFPs. While some

authors consider that the LFP signals can extend over a few

millimeters [26] some more recent studies attribute most

(95%) of the LFPs signals to local effects generated within

the range of some hundreds of microns [49].

LFPs are thought to represent the summed extracellu-

larly recorded voltage fluctuations in the membrane

potentials of neuronal population and associated glia cells.

LFPs originate from excitatory and inhibitory postsynaptic

potentials (EPSP/IPSP), mainly as a result of AP input and

therefore provide information about the spatiotemporal

activity of afferent, associational, and local operations in a

particular brain structure [2].

2.2 Far field measurements

Due to the conducting properties of the extracellular space

(volume conduction properties), field potentials propagate

throughout the extracellular media and neural tissue and

can be measured at the scalp surface or with large elec-

trodes inserted at the extracellular space. This gives rise to

the so-called far field measurements encompassing both,

invasive and non invasive recordings of neural function:

the intracranial EEG, the electrocorticogram (ECoG), or

the scalp (EEG). Additionally, magnetic field recordings

can also be measured on the scalp using magnetoenceph-

alography (MEG). For the sake of brevity we exclusively

focus here on electrophysiological measurements.

2.2.1 Deep electrodes EEG (depth-EEG)

The depth-EEG [55] is recorded by electrodes implanted

directly inside the brain of patients typically suffering

from: (1) medically intractable epilepsy and (2) Parkinson

disease. Typically oriented to detect the anatomical origin

of seizures onset or the structure to be lesioned/chronically

stimulated, the spatial resolution of depth-EEG depends on

the impedance and size of the electrical contacts along the

electrodes and also on the volume conduction properties in

the piece of brain tissue around the electrode and the

placement of the reference [55]. Some recent estimates

reviewed in [55] support the view that depth-EEG mea-

sures the LFP generated within a centimeter radius.

2.2.2 ECoG

During the recording of the ECoG, epi, or subdural arrays

of electrodes are used to record field potentials from the

cerebral cortex.

Despite cumulated evidence about a functional role and

neural origin of high frequency oscillations on scalp EEG

(see below), it is typically assumed that far field mea-

surements basically contain significant low-frequency

components. Depending on the location and size of the

recording and reference electrodes, far field measurements

will integrate neural activity over a range of spatial scales

that defines its spatial resolution, thought to be better for

the deep electrodes EEG, intermediate for the ECoG and

worst for the EEG.

2.2.3 EEG

The EEG is certainly the oldest neuroimaging technique and

is likely to be the most direct correlate of neural activity that

can be obtained non-invasively together with the magneto-

encephalogram (MEG). The MEG will not be further dis-

cussed here as the focus is on electrophysiological signals

and the interested reader is referred to [38]. The EEG can be

seen as a rough spatial average of microscopic field poten-

tials (LFPs) that are further attenuated by the skull and scalp.

Due to the attenuation by the skull and scalp and spatial

filtering by volume-conduction in the brain, the spatial res-

olution of these recordings is presumed to be considerably

poorer than near-field recordings.

Compared to the size of the tip of electrodes used for

LFP recordings nowadays (a few micrometers in diameter),

Fig. 1 Near field recordings. Near field potential measurements are

currently done using broad band recordings from which field

potentials and spiking activity can be obtained by filtering
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the size of sensors used for most clinically oriented inva-

sive recordings in humans is fairly large (2–4 mm in

diameter). It becomes therefore difficult to find a rela-

tionship between the LFPs and the spiking activity of

populations as larger electrodes lump together electric

fields from increasingly larger number of neurons. This is

why the ECoG and the scalp EEG reflect spatially

smoothed versions of the LFPs at numerous contiguous

sites and have relatively poor relationship with spiking

activity of individual neurons [15, 26].

Examples of simultaneously recorded electrophysio-

logical signals in rats illustrating the different spatial scales

are given in Fig. 2. The picture shows 1.5 s of EEG

recordings (lower most) from an electrode placed directly

above the barrel cortex at the exposed dura (Dura-EEG).

On top, we show the three signals that are typically

extracted through standard filtering operations from the

voltage recorded by an extracellular electrode inserted

within the rat somatosensory (barrel) cortex (C-MUA,

C-EEG(500–2000) Hz, CEEG (0–300) Hz). These opera-

tions give rise to three signals, namely, (1) The slow fre-

quency part of the voltage corresponding to the LFP signal

obtained after bandpass filtering within the 0–300 Hz

range, (2) The high frequency part (500–2000 Hz) of the

extracellular potentials that contains most of the APs

generated in the neighborhood of the electrode tip, and (3)

a binary signal (MUA) that indicates the time of onset of

APs detected at the extracellular space after thresholding

the high frequency part of the recorded voltage.

The perils of restricting the analysis and interpretation of

neural data to a single recording scale are clearly illustrated

in Fig. 2. The continuous EEG traces show a rich temporal

variation that is missed by any analysis that exclusively

considers the timing and frequency of APs. For instance,

there is no apparent reflect on the cortical data of the

activity seen in dura during the periods marked by the thick

black arrows. On the other hand, the C-EEG (0–300) Hz

and the dura EEG are dominated by the low frequency

components—due to their large amplitude—which obscure

the contribution of multiple or single cells. Coding mech-

anisms in the CNS, discussed next, might combine features

contained in signals at different recording levels. Focusing

exclusively on single or multiple cell activity as the ele-

ments of the code automatically implies assuming that the

well organized oscillations commonly seen in the EEG

recordings in animals and humans are noise.

2.3 What information is coded at each level

of recording?

Understanding the neural code, i.e., how do single cells or

populations determine the stimuli and lead to timely

response constitutes an extensively debated and fascinating

problem that will prove fundamental in trying to under-

stand how the brain processes information [4, 48]. At the

near field level, there is considerable experimental evi-

dence supporting the idea that sequences or trains of APs

represent somehow the features of the stimuli in sensory

cortices or specify the kinematics or dynamics of motor

actions. Nevertheless, the nature of this representation is

still unclear in most sensory systems as trains of APs show

considerable trial to trial variability in the presence of

identical stimuli or responses. Coding mechanisms seem

even more complex within association cortices or subcor-

tical structures that might apparently represent more

abstract concepts such as for instance the anticipated

reward [68].

The idea that the primary function of a neural population

is to convey information about the stimulus have been

questioned by authors who argue that cortical circuits show

complex dynamics even in the absence of sensory stimu-

lation [3, 15, 26, 50]. Indeed, part of the variability across

trials observed in neural responses might have its origin in

the state of the network before the stimulus is presented.

Favoring this interpretation, there is experimental evidence

showing that ongoing activity that precedes sensory stim-

ulation plays an important part in shaping neural activity

during stimulus presentation [26, 31]. Consequently, it

might be more accurate and fruitful to understand the

neural code to regard sensory stimuli as modulating the

ongoing neural dynamics, rather than deterministically

leading to established response patterns of APs that encode

all physical features of the stimuli [15].

Understanding what is coded in field potentials recorded

in the near or far field has proven even more difficult than

understanding the code in single cells or populations. The

fact that the exact relationship between the LFP and MUA

is still far from clear [14, 54, 58] do complicate things. One

of the most widespread models presupposes that LFP

mainly reflects postsynaptic potentials and therefore rep-

resents the input to a neuronal network and MUA the

spiking output [58]. According to this hypothesis, the LFP

supplies the external drive and the MUA is a response to

that drive through the filtering of the thresholds of the cells

and spike-firing mechanisms [13, 14, 57]. This hypothesis

has been recently questioned [13] as the coherence between

LFP and MUA remains weak on fine temporal scales

suggesting that the relation between MUA and the LFP

may be more complex than simply the input to and output

from the locally recorded network. Nevertheless, most of

the studies hitherto done rely on finding dependencies

between MUA and LFP recorded within the same elec-

trode. However, experimentally testing if the aforemen-

tioned input (LFP)/output (MUA) interpretation is correct

is likely to require recordings on two different areas that

are synaptically connected. In fact, we should expect that if
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the hypothesis is true, the MUA (output) from the area that

supplies the external drive and sent afferent information,

correlates with at least part of the LFPs (input) in the area

receiving the information. To our knowledge, this analysis

is still missing.

In line with the reductionism that permeated neurosci-

ence until the 1980s, many researchers are still skeptical

about whether neural oscillations, even if a hallmark of

cortical network dynamics [16], play a functional role or

are a mere byproduct of other more important neural

mechanism. The main argument against synchrony, i.e., the

simultaneous firing of several neurons, is that it occurs over

short time windows as to reliably encode anything. Irre-

spective of the functional role that oscillations and syn-

chrony might play it is interesting to learn that the default

pattern of single neurons isolated from network connec-

tions is oscillatory. Indeed, pharmacologically blocking the

receptors responsible for excitation and inhibition in the

hippocampus [15, 19], lead to much higher rates and more

rhythmic firing in individual neurons. In humans, the

largest amplitude and most regular spontaneous oscilla-

tions in the cerebral cortex occur during sleep, anesthesia,

in newborns, or when the brain is disengaged from the

environment and body, i.e., when cognitive operations and

sensory input/output are reduced to a minimum (e.g.,

strong alpha oscillations are recorded at the occipital cortex

upon closing the eyes, see Fig. 3) and are modulated by

cognitive operations and even unperceived sensory stimuli.

In summary, rhythmic patterns of discharges spontane-

ously emerge in isolated cells and populations and can be

measured in near and far field recordings. However, it is

not yet completely clear why engaging into certain net-

works computations tends to abolish this spatiotemporal

structure. The book ‘‘Rhythms of the brain’’ [15] consti-

tutes an excellent review on the roles proposed to be

accomplished by network oscillations, namely, (1) bias

input selection, (2) temporally link neurons into assem-

blies, and (3) facilitate synaptic plasticity. Another excel-

lent review in this issue can be found in Engel [26].

In what concerns the study of the functional role of

oscillatory activity detected in far field recordings in

humans, research has mainly focused on relatively slow

oscillatory activity within conventionally predefined fre-

quency bands: theta 4–8 Hz, alpha 8–12 Hz, beta 13–25 Hz,

and gamma 26–80 Hz. For the sake of brevity we will not

further discuss here main findings concerning slow oscilla-

tions and refer the interested readers to: [52, 61, 74].

We prefer to briefly focus on the so called epsilon neural

oscillations [27] above 100 Hz, as the topic has been much

less investigated and fast oscillations are more likely to

encode information about physical features of the stimuli on

highly dynamic processes.

Fig. 2 Simultaneously recorded electrophysiological signals at dif-

ferent spatial scales. (Data courtesy of Prof. F. Panetsos). The low

trace (Dura EEG) is the EEG recorded from an electrode placed at the

exposed dura (D) directly over the rat barrel cortex. On top of it we

show the signals derived from extracellular recordings at one

electrode within the barrel cortex (C-MUA and C-EEG) trough the

standard filtering operations described in Fig. 1. C-EEG

(500–2000)Hz and C-EEG (0–300) Hz traces represent the

extracellular data filtered within the LFP band and MUA band using

a bandpass filter. The uppermost trace indicates the MUA obtained

after thresholding the extracellular signal filtered in the high

frequency range. Note that there are long periods where no action

potentials are recorded by the extracellular electrode but still

consistent fluctuations on the EEG activity at dura are seen (indicated

by arrows)
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The observation of neural epsilon oscillations is a rela-

tively new finding. Initially observed in rat’s hippocampus

during sleep [17], they were coined ripples and are supposed

to elicit the information transfer between the hippocampus

and neocortex [69]. In rats [5] high frequency oscillations in

the somato-sensory cortex of around 200 Hz are supposed to

extract features of an object under exploration. In humans,

evidence for very high frequency oscillations comes from

intracranial recordings in epileptic patients [11, 25] and

scalp EEG/MEG [20, 21, 34]. Interestingly, in a recent

intracranial study, only the high gamma and epsilon band

activities (60–200 Hz) were able to distinguish the two

different roles of the premotor cortex, that is, to separate

motor intention from attention/memory. Also in humans,

Canolty and co-workers [18] showed coupling between the

power of high frequency epsilon oscillations around 150 Hz

and theta oscillation power and phase. The observed cou-

pling varied with the behavioral task leading the authors to

conclude ‘‘that cross-frequency coupling between distinct

brain rhythms facilitates the transient coordination of cor-

tical areas required for adaptive behavior in humans’’.

Simultaneous MUA and LFPs in monkeys’ inferior-tem-

poral cortex revealed that LFP oscillations in the range

100-300 Hz are the ones that best correlate with MUA [53].

Finally, several observations suggest that spontaneous very

high frequency oscillations are not present in developing

networks [56]. In rat pups, physiological ripple oscillations

[140 Hz are observed in vivo in the hippocampus only after

the end of the second postnatal week [12].

The relationship between the low frequency part

(0–300 Hz) of the LFPs and MUA remains much less

studied and understood. It is, however, clear that that

neurons, apart from generating fields, are also sensitive to

them [45, 75]. In other words, cells are sensitive to changes

in the extracellular fields and therefore the weak electric

fields that are generated endogenously by physiological

network activity have a significant effect on the constituent

neurons [28, 59]. Intracellular recordings have shown that

on isolated cultures [67] or during for example anesthesia

or slow-wave sleep [36, 41] membrane potentials switch

between de- and hyperpolarized levels—the cortical UP

and DOWN states—and SUA or MUA elicited by sensory

stimuli fluctuates with these states [28]. Consequently,

network activity likely to be reflected in the slow frequency

part of LFPs modulates high frequency activity (SUA/MUA).

For instance, UP/DOWN states in deep cortical layers of rat

primary auditory cortex (A1) are predictable from the phase

of LFP at low frequencies (\4 Hz) and the likelihood of a

given state varies sinusoidally with the phase of LFP at these

frequencies [66].

Our understanding on the information encoded in field

potentials has been stimulated by research in the neuro-

prosthetic field. In neuroprosthetics, the main goal is to

decode the intentions of a subject on the only basis of his/

her neural signals as to allow for the precise control of

interfaces bypassing the traditional communication path-

ways via muscles. Since information needs to be decoded

in real time and therefore on single trials there have been

an urge—on non-invasive human neuroscience—to aban-

don the most traditional averages over many repetitions

(event related potentials or ERPs) replacing them by mul-

tivariate pattern recognition (MPR) approaches. In parallel,

invasive neuroprosthetics has started to investigate how to

better exploit the information contained in LFPs for device

control as these signals are easy to record, and more stable,

with invasive multielectrode arrays (MEA) than MUA/

SUA. Studies in animals using intracerebral invasive

recordings of LFP show that reproducible information

about neural processes is coded within the temporal

structure of LFPs in the form of oscillatory activity. This

information has been shown to be as efficient as the

information carried by the spike rate of individual neurons

in predicting animal behavior [60, 64] or cognitive states

[29, 64]. Non invasive studies in humans that rely on a

combination of MPR and the non-invasive estimation of

depth-EEG/LFP from scalp recorded data [22, 30, 31, 35]

have shown that perceptual [32] or behavioral [34] states of

the subjects can be accurately decoded on a single trial

basis from the OA estimated within the brain on the basis

of short (200–500 ms) analysis windows. Moreover, a

similar procedure allowed to shed light on the implicit

perceptual capabilities and pathways involved in

Fig. 3 Ongoing EEG oscillations in the alpha band are modified by

non-consciously perceived stimuli. The figure shows single trial EEG

traces recorded at the occipital cortex while a subject waits (in the

whole darkness) for the onset of a visual stimuli. The stimulus

(presented at 0) consists on a controlled pulse of photons of 1 ms

duration. The data shown correspond to a trial where the subject

failed to perceive the flash. Note that the ongoing alpha oscillations

are modified by the onset of the flash even if there is no conscious

perception
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discriminating facial expressions in blindsight patient able

to identify (above chance) the affective content of faces

without awareness [33].

3 Modeling across scales

Literature in neuroscience that tries to frame into models

the relationships between the microscopic (most near field)

and macroscopic (far field) scales is relatively scarce.

Models describing the generation of macroscopic fields as

measured by the EEG, the intracerebral field potentials

(LFPs), and the MEG can be encompassed into two broad

classes: (1) neural mass models or network models [23, 43,

46, 47] that aim to describe the complex connectivity of

neural networks and their excitatory and inhibitory inter-

connections and (2) electromagnetic models (EM models)

that rely on the macroscopic version of Maxwell equations

and are typically used for source imaging and modeling of

field propagation in neural tissue. Neural mass models

emphasize the local effects of the neural circuitry on the

network dynamic but often disregard the long distance

effects of macroscopic fields. As seen next, most EM

models are physically inconsistent since electromagnetic

wave (EMW) propagation is completely incompatible with

the quasi-static approximation they rely on.

Contrarily to microscopic models of the membrane

potential based on Hodking-Huxley equations which have

traveling waves as solutions [39] or the neural mass models,

the EM models for EEG/MEG/LFPs preclude it. The cor-

nerstone of current EM models is indeed the quasi-static

approximation (QSA) [65] of Maxwell equations where a

snapshot of the source distribution determines the field

distribution at the same instant without regard for what the

sources of fields were an instant earlier. A direct conse-

quence of working under the quasi-static regime is that there

is no EMW propagation [44], leading to a conflict between

the microscopic and macroscopic formulations. This con-

tradiction between the models ruling electromagnetic phe-

nomena at different spatial scales is deeply disturbing.

The QSA is an approximation of the physical reality

aimed to simplify Maxwell equations and which has been

omnipresent in the modeling of macroscopic EEG (and

MEG) phenomena since its original formulation [65]. As

an approximation, it is of limited validity and should be

probably abandoned since incompatible with both, exper-

imental evidence and microscopic models.

There is a second simplification in current EM models at

all recording scales, i.e., from LFPs to EEGs, that consist in

assuming that sources of the fields are embedded in

piecewise homogeneous and isotropic media. Under this

approximation extracellular potentials should not exhibit

any frequency-dependent attenuation with distance [7].

However, as argued before, experimental results suggest

that the spatial extent of SUA/MUA is smaller than that of

the slower LFPs which is in contradiction with this model.

On the other hand, modeling results show that the extra-

cellular potential can display frequency-dependent attenu-

ation, but only if the extracellular conductivity is non-

homogeneous [7], and as a consequence there is induction

of non-homogeneous charge densities which may result in

a low-pass filter. Therefore, the assumption of a piecewise

homogeneous medium is probably too simplistic to cor-

rectly reproduce the experimentally observed frequency-

dependency properties of LFPs and in particular the

induced electric fields in the non-homogeneous extracel-

lular tissue [8] and requires further consideration.

A promissory model has been recently developed [6]

which still relies on Maxwell equations but which naturally

incorporate macroscopic measurements of permittivity and

conductivity. This study stressed the importance of ionic

diffusion to reproduce the decrease in power with

increasing frequency (‘‘1/f’’) dependence of electric

parameters observed experimentally. Accounting for ionic

diffusion, even if still limited to the near field measured

LFPs, is already a way to partially restore the compatibility

between microscopic and macroscopic models as temporal

dependencies—in the form of derivatives with respect to

time—cannot be anymore ignored.

4 Wave phenomena in neural tissue

Synaptic transmission (ST) remains the most widespread

and better studied mechanism of neural communication. ST

operates over short spatial scales transmitting information

between neighboring cells. Despite substantial progress in

understanding the CNS achieved in the last decades, we are

still missing some pieces of the puzzle. Spatially segre-

gated brain areas simultaneously process diverse aspects of

sensory stimuli. How is this scattered information coordi-

nated and bound together to give rise to coherent percepts

and actions?

Neural synchrony in cortical networks has been pro-

posed as a general mechanism for the coordination of

distributed neural activity patterns. While there is little

doubt that oscillations and synchrony are ubiquitous phe-

nomena in the CNS, the issue of long range communication

and particularly that of zero lag synchrony is not yet solved

by this proposal. Long distance synchrony among spatially

segregated areas cannot be driven by local oscillations

alone. We need a mechanism that explains the nearly

instantaneous transport of information across the space so

that cells in distant and often unconnected areas become

synchronized. EMW propagation in neural tissue could

solve this issue.
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Electromagnetic waves and neural oscillations (e.g., in

the theta, alpha, or gamma range) are not the same even if

the terms are often intermingled in the literature. Oscilla-

tions measured in field potential recordings tell us that the

local sources of the field are varying in time. The neural

mechanisms behind the temporal variations can be very

diverse and reflect a purely local phenomenon, the coor-

dinated action of an interconnected brain network or the

effects of an EMW that travels in the medium.

Oscillations per se do not transmit information in space or

necessarily reflect any action at a distance. In contrast, an

EMW affects its surroundings as it travels throughout it

carrying energy and momentum. When a wave travels

through a medium (as for example neural tissue), the

bounded particles (molecules bounded to the cell mem-

brane) cannot move along with it as free molecules do [71].

The EMW polarizes the bounded molecules creating a net

dipolar moment and a displacement current. Displacement

currents are essential to EMW propagation. Bounded mol-

ecules vibrate about their equilibrium position, and the

energy is transmitted over long distances through the inter-

action of neighboring particles. The vibration of the particles

around equilibrium is perceived as an oscillation. Evidence

for the existence of bounded molecules and the creation of

dipolar moments in the CNS is relatively old. For example, it

has been shown that a large fraction of the total capacitance

measured in the squid giant axon membrane arises from

reorientation of charged or dipolar groups residing in the

membrane itself [72]. Variations in these dipolar groups

from cell to cell might explain that synchronization becomes

selective and does not involve cells in the whole brain.

Different dipolar groups might have different resonance

frequency preferences as a function of the physical proper-

ties of the membrane-bound charged molecule and therefore

selectively sustain oscillations only when driven by inputs

near their resonant frequency [42]. Wave propagation in

neural tissue can therefore open the door to selective non-

synaptic information transmission [24, 45], i.e., to the

exchange of information between distant areas that are not

necessarily hard-wired [63]. Because neural tissue is highly

inhomogeneous, wave scattering is very likely to occur.

Mechanisms like resonance or oscillation can therefore

operate over a vast range of time scales and a vast range of

distances.

Developments in neuroimaging modalities such as

optical imaging are leading to an accumulating body of

evidences supporting the existence of EMW propagation

phenomena in the brain [23, 46, 62]. However, the exis-

tence of EMW was postulated long time ago by researchers

studying the dynamic of the EEG [62].

Probably, the earliest experimental evidences for EMW

propagation in the brain can be traced back to 1944 in the

so-called cortical spreading depression (SD) [70]. At the

core of SD is a rapid and nearly complete depolarization of

a sizable population of brain cells with massive redistri-

bution of ions between intracellular and extracellular

compartments, which evolves as a regenerative, ‘‘all-or-

none’’ type process and propagates in the manner of a wave

through gray matter. A similar response occurs in cerebral

gray matter a few minutes after interruption of the blood

flow or of the supply of oxygen.

In the last 4 years, ample evidence for a link between

EMW waves in visual areas and visual processing has been

uncovered. EM brain waves are seen already at the level of

the retina [51]. Standing, traveling, or reflected EMW have

been observed in the visual cortex of cats [9] and rats [37,

76] in response to visual stimuli and seemingly represent

functional neurocircuitry.

5 Discussion

In this paper we briefly review diverse electrophysiological

measures of neural activity in an attempt to integrate them

across spatial recording scales. Some of the main experi-

mental findings concerning the information encoded at

each scale are described to support the idea that large scale

fields are not a byproduct of single cell activity but rather

reflect the structure imposed by the large scale organization

of the brain into functional networks and the dynamic

interaction of these networks with the neural tissue.

We sustain here the view that the lack of models of the

brain electromagnetic activity able to fuse spatial scales

hinders a unified picture of electrophysiology across scales

and species. A first step is to understand that a unique

physical quantity—the electric potential—is measured and

that Maxwell equations in its full extent provide the ade-

quate conceptual framework to start developing models.

However, a unified picture cannot emerge if the main

assumptions behind microscopic and macroscopic models

are in contradiction. We here uncover one contradiction

between quasi-static macroscopic models of EEG/MEG/

LFPs on the one hand and the microscopic models and the

experimental evidence for wave propagation on the other.

We believe that the solution to this contradiction passes by

developing a physically sound model describing how

microscopic ionic currents (as in the Hodking-Huxley for-

mulation) interact with the neural tissue to lead to macro-

scopic fields. This proposal restores the compatibility of the

microscopic and macroscopic formulations of electromag-

netic brain phenomena on the one hand and the experimental

evidences for EMW propagation in neural tissue on the

other.

It is likely that the development of unified models helps

to solve one of the long standing question for the Neuro-

sciences. Unified models could help to determine if (and if
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ever how) the brain exploits the diverse wave propagation

phenomena (e.g., traveling, standing, or reflected waves)

for non-synaptic information transmission. Waves might

provide a natural explanation for experimental findings in

neuroscience such as the persistently observed inverse

relationship between the spatial extent of field potential

oscillations and their frequencies. According to the dis-

persion relations, in waves, higher spatial frequencies must

accompany higher temporal frequencies. Importantly,

progresses in developing models passes by obtaining a

much better characterization of the electrical parameters of

neural tissue and their variations with frequency as they are

the basis of the constitutive relationships in Maxwell

equations that relate macroscopic to microscopic fields.
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