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Abstract This paper reports on performance evaluation

of a preliminary system prototype based on a fabric glove,

with integrated textile electrodes placed at the fingertips, able

to acquire and process the electrodermal response (EDR) to

discriminate affective states. First, textile electrodes have

been characterized in terms of voltage–current characteristics

and trans-surface electric impedance. Next, signal quality of

EDR acquired simultaneously from textile and standard

electrodes was comparatively evaluated. Finally, a dedicated

experiment in which 35 subjects were enrolled, aiming at

discriminating different affective states using only EDR was

designed and realized. A new set of features extracted from

non-linear methods were used, improving remarkably suc-

cessful recognition rates. Results are, indeed, very satisfactory

and promising in the field of affective computing.

Keywords Electrodermal response � Textile electrode �
Affective computing � Biomedical signal processing

1 Introduction

In the last century, emotions (i.e., identification and rec-

ognition) have become one of the most noteworthy

research areas. Recent studies have shown that concepts

like human feelings and mood, and the way which humans

perceive the environment and the others are very inter-

woven in all human activities, mental states, hilliness, etc.

[6, 32]. Even though emotion identification still remains

one of the most controversial concepts to be univocally

defined, many models of emotion have been proposed [14,

33]. However, these emotional models have allowed

researchers to develop systems that try, more or less

automatically, to recognize the affective states by inter-

preting physiological correlate changes following to an

external event. Recently, several engineering approaches

have been used to guarantee acceptable emotion recogni-

tion, along with high accuracy, robustness, and adaptability

to practical applications. An emotion recognition system is

generally composed of two main parts: emotion elicitation

and physiological correlate identification. The first part,

which is very crucial, could be performed through different

perceptual channels, such as audio, visual (image or video)

[13, 19, 38], or using personalized imagery stimuli, [30].

The difficulty associated to the elicitation is related to a

complex interaction between cognition and neurophysio-

logical changes. Circumplex theorists conceptualize the

elicitation of a strong emotion as a neurophysiological state

typically involving the combination of a positive/negative

valence and intense arousal in the central nervous system

(CNS) [32]. This theoretical concept involves the emo-

tional experience, which is a cognitive interpretation of

physiological patterns in the context of eliciting stimuli.

Emotions can therefore be seen as a result of this complex

interaction. In many works, the international affective

picture system (IAPS) photoset [21] is used to elicit target

emotions with variable levels of valence and arousal and

results are widely adopted for psychophysiological studies.

The idea behind the second part of the system is that
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autonomic nervous system (ANS) reflects measurable

changes according to emotional experience [26, 32]. In detail,

many researchers have observed that peripheral physiological

responses to affective stimuli vary incrementally with sub-

jective ratings of valence and arousal. In addition, many

investigators have correlated skin conductance and heart rate

variation with subjective ratings of arousal [34, 37]. Since the

electrodermal responses (EDR) have been shown to be a

powerful signal emotion related [37], this work aims at

investigating the acquisition of EDR by means of a comfort-

able glove which incorporates textile electrodes. Moreover, a

dedicated affective computing experiment was performed,

whose results are reported in terms of capability of discrimi-

nating different levels of arousal.

2 Methods

2.1 The electrodermal response

The EDR represents changes in the skin electrical proper-

ties, i.e., electric impedance, due to psychologically

induced sweat gland activity [39] upon an external stimu-

lus. More specifically, it is strictly related to the activity of

the eccrine sweat glands (located in the palms of the hands

and soles of the feet) and the skin pore size. In a variety of

induction contexts, electrodermal reactivity consistently

varies with emotional intensity. Many studies have found

that skin conductance increases when people view pictures

rated as emotional, compared to neutral, regardless of

whether they are rated pleasant or unpleasant [22, 24, 39].

Moreover, when listening to affective sounds [1], or music

[12], skin conductance activity increases as the acoustic

stimuli are highly rated in emotional arousal. Elevated

electrodermal reactions are also found when people watch

film clips classified as pleasant or unpleasant [4]. The

scientific community has accepted to consider the EDR as

indirect indicator of the sympathetic nervous system [37].

Several approaches are used to measure this signal. In this

work, a small continuous voltage, of 0.5 V, is applied to

the skin and the induced current is measured through two

electrodes positioned at the index and middle fingertips of

the non-dominant hand. The use of continuous or alter-

nating voltage as voltage source in the EDR measurement

is still a controversial issue, even though the first method

allows avoiding possible electrode polarization and skin

electrolysis. As there is no agreement in the literature on

this point, we decided to follow the recommendations

provided by Ref. [10], where an acceptable methodology

for recording the electrodermal activity, reflecting a wide

consensus of experts in the field, is proposed.

The ratio between voltage drop and induced current

represents the skin electric impedance. Electrodermal

response changes depend on the individual physiological

state as well as on interaction with environmental events.

The EDR can be split into two components: tonic and

phasic. Tonic component is the baseline level of skin

conductance (also called skin conductance level—SCL),

whose trend is different from person to person and depends

on both physiological state and autonomic regulation.

Phasic component (also called skin conductance respon-

ses—SCRs), superimposed on the tonic baseline level,

changes with specific external stimuli such as lights,

sounds, smells, etc. or events. In this paper, we focused on

identifying changes in EDR through a textile-based sensing

glove upon emotional stimuli. The use of a wearable textile

system exhibits several advantages in terms of portability

and usability for long-term monitoring, and gives minimal

constraints.

2.2 The glove system

In this work a preliminary system prototype consisting of a

fabric glove, whose textile substrate is lycra, with inte-

grated textile electrodes placed at the fingertips, and a

dedicated electronic card including an analog front-end, a

Fig. 1 Fabric glove including textile electrodes connected to a

dedicated electronic card
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digital block, and a wireless real-time communication

module for data transmission to a remote personal com-

puter (PC), (see Fig. 1) was developed. Due to manufac-

turing reasons, the fabric glove incorporates textile

electrodes at level of the first four fingers, although only

the first two have been used for the experimental session.

This choice was made according to guidelines reported in

Ref. [10]. The analog front-end consists of a DC voltage

source, a Wheatstone bridge followed by a set of filters and

amplifiers. Fig. 1.

2.3 Textile electrode performance assessment

Textile electrodes were first characterized identifying the

current–voltage curve and evaluating the electrode

impedance in terms of magnitude and phase in the band-

width of the EDR. Afterwards, they were used together

with standard electrodes Ag/AgCl in order to acquire

simultaneously EDRs from them and make a quantitative

comparison.

2.3.1 Textile electrode characterization

A suitable electrochemical cell was realized to characterize

textile electrodes (see Fig. 2a). It is composed of a textile

and a reference electrode immersed into a solution of

potassium chloride (KCl) 0.1 M. The electrodes are placed

at a distance of 3 mm, immersed into 0.015 l of solution,

and connected to an external measurement device.

Textile electrodes were provided by Smartex s.r.l., and

have been already described in literature [7, 36]. They are

made up of 80 % polyester yarn knitted with 20 % steel

wire, with a dimension of 1 9 1 cm (see Fig. 2b). The

reference electrode is represented by a standard platinum

electrode of 3 9 4 cm (see Fig. 2c). The reference

electrode size was chosen to be larger than the textile

electrode to minimize border effects.

2.3.1.1 Current–voltage characteristics identification The

current–voltage characteristics were identified by applying a

varying source voltage and determining the current flowing

through the cell. This measurement is performed with the

aim of investigating the electrode reaction due a differential

potential applied between sensing and reference electrodes.

In particular, an offset-free voltage varied from 1 to 20 peak-

to-peak volts, with an increasing step of 1.2 V, at frequency

of 0.1 Hz, has been applied. Experimental measurements

were fitted using the Butler–Volmer equation, which is

defined as:

j ¼ j0 eazF
RTg � e�ð1�aÞzF

RTg
� �

ð1Þ

where j is the electrode density current (A m2), j0 is the

exchange density current (A m2), g is the over-potential

(Volt), T is the absolute temperature (K), F is the Faraday

constant, R is the universal gas constant, z is the valence of

the ion, and a is the transfer coefficient. By analogy with

Ohm Law (V = IR) and for small overpotentials the

gradient of the relation between g and j can be

interpreted as the equivalent resistance per unit area of

the charge-transfer process on the electrode and is called

the charge transfer resistance RT [31]. RT can be obtained

as:

RT ¼
og
oj
¼ TR

azFj0

ð2Þ

To evaluate the agreement of our experimental

measurements with the Butler–Volmer equation, a non-

linear least square fitting method was used. The goodness

of fit was evaluated by calculating the well-known statistic

index Adjusted R-square.

Fig. 2 Electrolytic cell (a),

textile electrode (b), platinum

reference electrode (c)
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2.3.1.2 Surface electric impedance evaluation The elec-

trode was also characterized by estimating the trans-surface

electric impedance. This measurement is used to investigate

how the phase and amplitude of the electrode impedance

change in the frequency domain. The impedance of electrodes

in ionic liquids has been currently investigated experimentally

and theoretically [15]. Figure 3a shows an equivalent circuit

that models the relevant phenomena. In our experimental

characterization, the same electrochemical cell is used with

the same solution. The amplitude of the voltage applied

between the electrodes was fixed while its frequency was

varied in the range of the EDR bandwidth (from 0.01 to 2.1 Hz

with a step of about 0.13 Hz). In this equivalent circuit, CH is

the interface capacitance per area unit, which consists of the

series combination of the Helmholtz double layer and the

diffuse layer where Zw is the Warburg impedance, RT is the

charge-transfer resistance and Re is the spreading resistance.

The Warburg impedance is reported as follows:

Zw ¼
x�

1
2

A

k

1þ j
ð3Þ

where A is the electrode area and k Xs�
1
2cm2

h i
is constant.

The low frequency of EDRs implies, according to previous

works [28], that both Warburg and interface capacitance

terms are important for this characterization.

All the experiments were carried out at 25 �C and

pressure of 1 atm.

2.3.2 Textile-based EDR validation

Textile-based EDR was further validated by simulta-

neously acquiring EDR through textile and standard Ag/

AgCl electrodes. Both signals were acquired using the

MP35 Biopac system with a sampling frequency of 1 kHz.

It was found in the literature that skin conductance

activity is greater at distal than medial site of fingers, and is

attributable to a greater number of active (open) sweat

glands at distal sites [11]. To minimize artifacts due to the

different concentrations of sweat glands at the distal and

medial sites, we placed electrodes in a crossed configura-

tion, as shown in Fig. 3b. Both the signals were filtered

with a 2.5 Hz low-pass finite impulse response filter

approximated by a Butterworth polynomial. To consider

only the variation of both textile and standard EDRs, data

were normalized to the maximum value. The comparison

was performed by means of a non-parametric coefficient,

Spearman correlation [12], due to non-gaussianity of EDR

signals. Moreover, a ten-level wavelet decomposition was

applied to the EDR to obtain tonic and phasic signals using

the Daubechies 5 function. The approximation at level 1 is

tonic, and the details from levels 2 to 8 are phasic. We

decided to apply wavelet decomposition, because it is a

powerful tool for analyzing the components of a non-sta-

tionary signal. The Spearman correlation was calculated for

both tonic and phasic signals.

2.4 Psycho-physiological evaluation: experimental

setup

Data were acquired by means of the glove shown in Fig. 1

using only the index and middle fingers. The experimental

setup is structured into the following phases: recruitment of

eligible subjects, affective state elicitation, and acquisition

and processing of the physiological signal set.

Fig. 3 Equivalent electric model of electrode (a), electrode placement in crossed configuration (b)
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2.4.1 Recruitment of eligible subjects

A group of 35 healthy subjects, i.e., not suffering from

evident mental pathologies, was recruited to participate in

the experiment. Their age ranged from 21 to 24, and were

naive to the purpose of the experiment.

2.4.2 Stimulation protocol

The affective elicitation is performed by projecting a set of

images to a PC monitor. These images are chosen from the

official IAPS database. In this work, the slideshow was

projected in a properly room equipped with dedicated

monitor and headset to acoustically insulate from external

noise. The slideshow comprises nine sessions of images N,

A1, N, A2, N, A3, N, A4, N where N is a session of six

neutral images (mean valence rating 6.49, SE = 0.87,

range = 5.52 7 7.08; mean arousal rating = 2.81,

SD = 0.24, range = 2.42 7 3.22), and Ai (with i going

from 1 to 4) are sets of 20 images eliciting increasing level

of arousal. Detailed values are reported in Table 1. The

overall protocol utilizes 110 images. Each image is pre-

sented for 10 s for a total duration of the experiment of

18 min and 20 s.

The EDR signal acquired during the IAPS elicitation is

then segmented and filtered. Afterwards, the most signifi-

cative features are extracted and classified using various

machine-learning methods [17]. In particular, we tested

several classifiers such as linear discriminant classifier

(LDC), mixture of gaussian (MOG), k-nearest neighbor

(k-NN), Kohonen sel- organizing map (KSOM), multilayer

perceptron (MLP), and quadratic discriminant classifier

(QDC). Among these, QDC has shown the highest recog-

nition accuracy and consistency in both arousal and

valence multiclass. According to that and for the sake of

brevity we will report and discuss here only results from

the QDC.

2.4.3 Signal acquisition and processing

In this work, all the features were calculated for each

neutral session as well as for each Ai session. In this work

we used two big categories of features: the most commonly

used standard features, and features extracted from non-

linear dynamic techniques. In detail, 41 standard features

and 12 extracted from non-linear methods are used (see

Table 2). In the literature, different definitions of the fre-

quency ranges of tonic and phasic components can be

found. While it is widely accepted that the tonic component

is the background level changing very slowly and the

phasic component varies with the external stimulus, the

upper cut-off frequency of the tonic component is contro-

versial. Here, we used a frequency bandwidth separation

proposed in [16], and the signal was analyzed in following

bands: 0–0.05 Hz, 0.05–1 Hz, and 1–2 Hz.

2.4.3.1 Feature extraction Several features, described in

detail below, can be extracted from the EDR using standard

and non-linear methods.

1. Standard feature set: Standard features are derived

from time series, statistics, frequency domain, geometric

analysis for the whole set of physiological signals. The

whole signal was segmented in consecutive time windows

W, in which a wide set of standard features, including mean

and standard deviation of first (MFD and SDFD, respec-

tively) and second derivative (MSD and SDSD, respec-

tively), mean and standard deviation (SD) of the amplitude

[22], standard error of the mean (SEM), were calculated.

Table 1 Rating of IAPS

images used in this work

Sess. session, N.I number of

images, N neutral, V valence,

A arousal, A1 arousal 1,

A2 arousal 2, A3 arousal 3,

A4 arousal 4

Sess. N.I. V. rating V. range A. rating A. range

N 6 6.49 ± 0.87 5.52 7 7.08 2.81 ± 0.24 2.42 7 3.22

A1 20 / 2.87 7 7.63 3.58 ± 0.30 3.08 7 3.98

A2 20 / 1.95 7 8.03 4.60 ± 0.31 4.00 7 4.99

A3 20 / 1.78 7 7.57 5.55 ± 0.28 5.01 7 6.21

A4 20 / 1.49 7 7.77 6.50 ± 0.33 5.78 7 6.99

Table 2 The whole feature sets used as input to the classifier

Feature set Analysis Signals

Standard Frequency domain (power in 0–0.1 Hz,

0.1–0.2 Hz, 0.2–0.3 Hz, 0.3–0.4 Hz,

rate)

Phasic EDR

Frequency domain (Rate) Tonic EDR

Statistics (SEM, Mean, SD, MFD,

SDFD, MSD, SDSD skewness,

kurtosis)

Tonic and

Phasic

EDR

Statistics (max peak, latency, MAD,

MDNV, PNSDAS)

Phasic EDR

High-order spectra (MBI, VBI, MMB,

PEB, NBE, NBSE)

Tonic and

phasic

EDR

Non-linear

methods

Deterministic chaos (m, D) Phasic EDR

Recurrence plot (DLE, RR, DET, LAM,

TT, RATIO, ENTR, Lmax)

Phasic EDR

Detrended fluctuation analysis (a1, a2) Phasic EDR
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Other higher-order statistical features, such as skewness

and kurtosis, are calculated. In the frequency domain, Rate is

calculated as the frequency corresponding to the maximum

spectral magnitude. Some features are extracted only from the

phasic component of EDR: maximum peak and the relative

latency from the beginning of each image, mean of absolute of

derivative (MAD), mean of derivative for negative values

(MDNV), proportion of negative samples in the derivative

versus all samples (PNSDAS). In the frequency domain,

spectral power in the bandwidths 0–0.1 Hz, 0.1–0.2 Hz, 0.2–

0.3 Hz, and 0.3–0.4 Hz are also calculated [20].

Standard features from higher-order spectra: In addition

to the above-mentioned standard techniques, high-order

spectra (HOS) is also examined, which is defined as Fourier

transform of moments or cumulants of order greater than two.

In particular, we used the two-dimensional third-order

cumulant Fourier transform, called bispectrum [25, 27]:

Bðf1; f2Þ ¼
ZZþ1

t1;t2¼�1

c3ðt1; t2Þexp�jð2pf1t1þ2pf2t2Þdt1dt2 ð4Þ

with the condition: jx1j; jx2j � p for x = 2pf
The c3(t1, t2) variable represents the third-order cumu-

lant, which is defined as follows:

c3ðt1; t2Þ ¼ Efsðt1Þsðt2Þsðt1 þ t2Þg ð5Þ

where s(t) is a square integrable stationary signal with zero

mean. Bispectrum, indeed, measures the correlation among

three spectral peaks, x1, x2 and (x1 ? x2) and estimates

the phase coupling. A previous study demonstrated that

bispectrum has several symmetry properties [27] and

divides the (f1, f2) plane in eight symmetric zones. Bi-

spectrum of a real signal is uniquely defined by its values in

the triangular region of computation, 0 B f1 B f2 B f1 ? f2
B 1, provided there is no bispectral aliasing [2]. The bi-

spectral feature set consists of: mean and variance of bi-

spectral invariants (MBI and VBI), i.e., mean and variance

of P(a), mean magnitude (Mmean) of bispectrum (MMB)

and phase entropy Pe (PEB), normalized bispectral entropy

P1 (NBE) and normalized bispectral squared entropy P2

(NBSE). All the features are calculated within the region

defined by Chang et al. [3], and Chua et al. [5].

2. Non-linear dynamic methods for feature extraction:

Here we propose a new set of features extracted from non-

linear methods and applied to phasic components of the

EDR signal. A powerful technique used for analysis of

complex dynamical systems is the so-called embedding

procedure. Embedding of a time series xt = (x1, x2,…,xN)

is done by creating a set of vectors Xi such that

Xi ¼ ½xi; xiþD; xiþ2D; . . .;xiþðm�1ÞD� ð6Þ

where D is the delay in number of samples and m is the

number of samples (dimension) of the array Xi. The

number of samples in the embedded vector is usually

chosen to be large enough to cover the dominant frequency

in the time series, but m should not be so large that the first

and last values in the epoch are practically unrelated. The

evolution of the system can be now represented by the

projection of the vectors Xi onto a trajectory through a

multidimensional space, often referred to as phase space or

state space. Moreover, recurrence plot (RP) [23] is a graph

showing all the times at which a state of the dynamical

system recurs, i.e., all the times the phase space trajectory

visits roughly the same area in the phase space. Eckmann

et al. [9] proposed a tool enabling to investigate the

m-dimensional phase space trajectory through a two-

dimensional representation of its recurrences. When a state

at time i recurs also at time j, the element (i, j) of a squared

matrix N 9 N is set to 1, 0 otherwise. Recurrence plot can be

also represented according to this scheme and can be

mathematically expressed as

Ri;j ¼ H ei � jjxi � xjjj
� �

where xieRm, i. j = 1,…N; N is the number of considered

states xi, ei is a threshold distance, jj:jj a norm and H :ð Þ the

Heaviside function which is defined as:

HðzÞ ¼ 1; if z� 0

0; if z\0

�
ð7Þ

In this work we chose the optimal value of ei [35] as:

ei ¼ 0:1� APD ð8Þ

where APD is averaged phase space diameter of data xi.

Following the above description, the recurrence quan-

tification analysis (RQA) [40] is a method of non-linear

data analysis which quantifies the number and duration of

recurrences of a dynamical system presented by its state

space trajectory. Quantification of recurrence plots can be

based either on evaluating diagonal lines to estimate chaos-

order transitions or on vertical (horizontal) lines to estimate

chaos–chaos transitions. In this work the following features

are calculated: recurrence rate (RR), determinism (DET),

laminarity (LAM), trapping time (TT), ratio (RATIO),

averaged diagonal line length (L), entropy (ENTR), and

longest diagonal line (Lmax). In stochastic processes, chaos

theory and time series analysis, detrended fluctuation

analysis (DFA) is a method for determining the statistical

self-affinity of a signal. The DFA method has proven useful

in revealing the extent of long-range correlations in time

series [29]. In brief, the time series to be analyzed (with N

samples) was first integrated, then divided into boxes of

equal length n. In each box of length n, a least squares line

fits the data (representing the trend in that box). The y

coordinate of the straight line segments is denoted by yn(k).

Next, we detrended the integrated time series, y(k), by

subtracting the local trend, yn(k), in each box. The root-
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mean-square fluctuation of this integrated and detrended

time series was calculated as

FðnÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X
k¼1

N

yðkÞ � ynðkÞ½ �2
vuut ð9Þ

2.4.3.2 Feature reduction Since a large number of fea-

tures are calculated, a reduction of the feature space

dimension is necessary. We chose the widely used princi-

pal component analysis (PCA), which is able to project

high-dimensional data to a lower dimensional space with a

minimal loss of information [18].

2.4.3.3 Classification In this work results from QDC are

shown. It is a parametric classifier based on Bayesian

decision theory, and allowed us to minimize the overall

risk, guaranteeing the lowest average error rate. After the

training process, the performance of the classification task

is commonly evaluated using the confusion matrix. The

generic element rij of the confusion matrix indicates how

many times in percentage a pattern belonging to the class i

was classified as belonging to the class j. A more diagonal

confusion matrix corresponds to a higher degree of clas-

sification. The matrix has to be read by columns. The

training phase is carried out on 80 % of the feature dataset

(subset from 28 subjects) while the testing phase to the

remaining seven subjects. We performed 40-fold cross-

validation steps in order to obtain unbiased classification

results, i.e., it allowed us to consider the gaussian distri-

bution of classification results, which can be therefore

described as mean and standard deviation among the 40

confusion matrix obtained. Quadratic discriminant classi-

fier [8] uses a supervised learning method which deter-

mines the parameters based on available knowledge. We

assume that the input training data is a finite set

C x1;y1

� �
; . . .; xl;yl

� �� 	
containing pairs of observations

xi 2 Rn and corresponding class labels yi 2 Y : Basically,

statistical classifiers use discriminant functions fyðxÞ; 8y 2
Y ¼ f1; 2; . . .;cg for c classes input dataset and x is a

d-component feature vector. The classifier is said to assign

a feature vector x to class yi if:

fiðxÞ[ fjðxÞ 8 j 6¼ i ð10Þ

A Bayes-based classifier is viewed as a network or

machine that computes c discriminant functions and selects

the category corresponding to the largest discriminant. For

the general case with risks, we can let fiðxÞ ¼ �R aijxð Þ,
since the maximum discriminant function will then

correspond to the minimum conditional risk. For the

minimum-error-rate case, we can take fiðxÞ ¼ P yijxð Þ, so

that the maximum discriminant function corresponds to the

maximum posterior probability. The effect of any decision

rule is to divide the feature space into c decision regions,

<1; . . .;<c: If fiðxÞ[ fjðxÞ 8 j 6¼ i, then x is in region <1,

and the decision rule assigns x to fi. The regions are

separated by decision boundaries, surfaces in feature space

where ties occur among the largest discriminant functions.

The structure of a Bayes classifier is determined by the

conditional densities P xjyið Þ as well as by the prior

probabilities, according to the Bayes theorem:

P yijxð Þ ¼ P xjyið ÞP yið Þ
P xð Þ ð11Þ

where P(yi) and P(x) are the prior probabilities. Assuming

that the minimum-error-rate classification can be achieved

by using the discriminant functions [8]:

fiðxÞ ¼ lnP xjyið Þ þ lnP yið Þ ð12Þ

If the densities P xjyið Þ are multivariate normal, i.e.

P xjyið Þ : N li;Rið Þ where li is the d-component mean

vector and Ri is the d-by-d covariance matrix, we obtain:

fiðxÞ ¼ �
1

2
x� lið ÞtR�1

i x� lið Þ � d

2
ln2p� 1

2
lnjRij

þ lnP yið Þ ð13Þ

where x� lið Þt is the transpose of x� lið Þ matrix. In the

general multivariate normal case, the covariance matrices

are different for each category. The only term that can be

dropped from the above equation is the d
2

ln2p term, and the

resulting discriminant functions are inherently quadratic

with respect to the input vector x 2 Rn:

fyðxÞ ¼ xt � Ayxþ byxþ cy; 8y 2 Y

The quadratic discriminant function fy is determined by:

Ay ¼ �
1

2
R�1

i ð14Þ

by ¼ R�1
i li ð15Þ

cy ¼ �
1

2
lt

iR
�1
i li �

1

2
lnjRij þ lnP yið Þ ð16Þ

Of course, if the distributions are more complicated, the

decision regions can be even more complex, though the

same underlying theory holds there too.

3 Results

3.1 Results of the assessment of the textile electrode

performance

The experimental results, of the textile electrode perfor-

mance, are presented here for both textile electrode char-

acterization and EDR evaluation. Figure 4 shows the

experimental data fitting the Butler–Volmer equation, from
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which a (transfer coefficient) was 3.022 9 10-2, j0
(exchange current density) was 3.639 9 10-4 A/m2, and

RT (charge transfer resistance) was 2358.78 X 9 m2.

In addition, outside the region of validity of the Butler–

Volmer equation, a limiting current density JSAT was

experimentally detected and resulted to be 0.0103 (A/m2).

The goodness of fit was about of 0.969, calculated by

Adj(R2), which confirmed the good agreement between

theoretical and experimental data. Figure 5 reports the

magnitude (Fig. 5a) and phase (Fig. 5b) of the textile

electrode impedance calculated in the frequency bandwidth

of the EDR, where the impedance magnitude decreases as

frequency increases and phase is pretty linear implying a

constant group delay and no distortion introduction.

Spearman correlation coefficient was calculated

between signals coming from standard and textile elec-

trodes for tonic and phasic components of EDR as well as

for the whole signal. Spearman correlation for tonic and

phasic skin conductance were 0.957 ± 0.024 and

0.995 ± 0.001, respectively. In addition, the correlation for

the whole EDRs in crossed-finger configuration was

0.960 ± 0.031. Although physical properties of the textile

fibres used to realize the electrodes, e.g., diameter, number

of fibers per unit of area, geometry, manufacturing methods

(knitting, embroidery, and sewing) can affect the electrical

performance a detailed study on that goes beyond the purpose

of this manuscript. In our experiment we used textile elec-

trodes made up of stainless steel based fibres and yarns. The

yarns are produced by Schoeller, with a composition of 80 %

polyester and 20 % stainless steel. A performance evaluation

of this typology of textile electrodes has been carried out and

results, as shown above, confirm that there is not relevant

difference between textile and standard electrodes while

measuring the electrodermal activity.

3.2 Results of the psycho-physiological evaluation

Experimental psycho-physiological evaluation results from

the QDC are shown in Table 3 in the form of confusion

matrix when using only standard features (a), only features

extracted from non-linear methods (b), and when using

both together (c). It is obtained by the cross-validation

technique, which is an average of 40 confusion matrix

calculated on a randomly shuffled dataset. In each element

constituting the diagonal it has been reported mean value

and standard deviation of the classification result for that

class, respectively. In all other elements the error of clas-

sification is reported as well. Each principal component,

obtained from applying the PCA algorithm to the feature

sets, accounts for a given amount of the total variance. We

stopped the reduction process when the cumulative vari-

ance reached 95 %. Therefore, the number of principal

components is different for standard dataset and the joint

dataset (see caption of the table for further details).

4 Discussion

In this paper, we explored the possibility of using a fabric

glove including textile electrodes to acquire EDR. Firstly,

textile electrodes have been electrically characterized;

then, they are used to acquire EDR in a dedicated affective

computing experiment. More specifically, a set of featuresFig. 4 Fitting of Bulter–Volmer equation

Fig. 5 Fit of the magnitude of the textile electrode impedance (a), Phase of the textile electrode impedance (b)
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was extracted from the EDR and used as input to a clas-

sifier to recognize five arousal classes. Electrode charac-

terization has been performed calculating the voltage–

current characteristics as well as the electric impedance of

the textile electrode and finding that the electric behavior is

comparable with standard electrodes. In addition, we have

designed and realized an acquisition protocol, where sig-

nals from textile and standard electrodes are simulta-

neously acquired, in order to verify if textile electrodes

were suitable for EDR acquisition. The results have been

very satisfactory and showed that textile electrodes can be

used likewise standard electrodes without loss of infor-

mation. A dedicated affective computing experiment was

designed, where 35 healthy subjects wearing the glove

were presented with sets of images gathered from IAPS.

Rows a in Table 3 show how standard features, used alone,

are able to recognize with an acceptable percentage only

the neutral class, while is less effective for the other clas-

ses. Rows b show the percentages of recognition of each

class that when features extracted from non-linear methods

are used. Results are satisfactory and all the classes can be

discriminated with a low error. Rows c refer to the results

obtained when both features extracted from standard and

non-linear methods are used. It is worthwhile that the

classifier is able to discriminate the classes with satisfac-

tory percentages of successful recognition. Slightly higher

performance can be achieved when the classifier uses the

feature set c. However, we can conclude that the contri-

bution provided by the features extracted from non-linear

methods is essential to attain much better results.

Nevertheless, to have more statistical significance the

number of subjects could be increased. This problem is

partially overtaken doing a cross validation in the classi-

fication process, i.e., randomizing the subjects for training

and test set. It makes the classification independent from

the sequence of the involved subjects. Results are very

promising and open up new scenarios in the field of

emotion recognition during activity. Indeed, a sensing

glove allows us to investigate emotion fluctuations during

naturalistic elicitation. Next works will aim at evaluating

the movement artifact effect on the quality of the EDR

acquired during dynamic tasks.
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