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Abbreviations

PF	� Purkinje fibers
CCS	� Cardiac conduction system
PMJ	� Purkinje muscular junctions
MRI	� Magnetic resonance imaging
3D	�T hree dimensional
AV	�A trioventricular
ECG	� Electrocardiogram

1  Introduction

The Purkinje fibers (PF) represent the peripheral part 
of the cardiac conduction system (CCS) and are located 
just beneath the endocardium. Their main role consists in 
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providing rapid and coordinate activation of the ventricular 
myocardium [9], an essential feature for the correct pump-
ing of the blood flow into the arteries. PF are electrically 
connected to the ventricular muscle only at certain inser-
tion sites, called Purkinje muscle junctions (PMJ) [19]. 
From these sites, the depolarization wave enters the ventri-
cle muscle, allowing the ventricular excitation and contrac-
tion [2].

The mathematical and computational models of cardiac 
electrophysiology allow to compute virtually the electrical 
activity in the ventricles [13]. The inclusion of CCS and in 
particular of the PF in such models is therefore essential 
to simulate the ventricular activation. While the anatomi-
cal reconstruction of the heart geometry is possible thanks 
to the modern imaging techniques (such as MRI and CT), 
radiological images do not allow to identify and reconstruct 
the PF. For this reason, the inclusion of the PF in the com-
putational models has been obtained so far either by means 
of surrogates such as the definition of space-dependent con-
duction properties [25], or by means of the automatic gen-
eration of the Purkinje network based on an a priori ana-
tomical knowledge [1, 11, 23]. In the first case, no explicit 
representations of the Purkinje network have been included 
in the computation, whereas in the second case no patient-
specific models have been generated.

In this work, we propose a method for the generation of 
a patient-specific Purkinje network driven by clinical meas-
ures of the activation times on the endocardium of the left 
ventricle during a normal propagation, thus overcoming 
the limitations of the techniques previously described. This 
method is valid only when data on the endocardium related 
to a normal propagation are used and it is very appealing 
since it requires to solve differential problems only on the 
endocardium, thus avoiding the reconstruction of the mus-
cular fibers in the myocardium and the coupling with the 
torso. At the best of the authors’ knowledge, this is the first 
attempt to use clinical data for the explicit construction of 
the PF by means of computational models.

2 � Methods

2.1 � Patient‑specific clinical measurements

2.1.1 � Acquisition of imaging data and reconstruction 
of the endocardium geometry

We considered three subjects characterized by a normal 
electrical propagation. Firstly, they underwent magnetic 
resonance imaging (MrI). Using a 1.5-tesla MrI Unit 
(Magnetom avanto, Siemens Medical Systems, Erlan-
gen, germany) and a eight-channel phased-array torso 
coil, a non-contrast enhanced three-dimensional (3D) 

whole-heart sequence, cardiac and respiratory gated, was 
performed using the following parameters: voxel resolution 
of 1.7 × 1.6 × 1.3 mm; TR (repetition Time) = 269.46 ms;
TE (EchoTime) =  1.46 ms; flip angle =  90°; slice thick-
ness = 1.3 mm with 104 slices per single slab; acquisition
matrix = 256 × 173.

Then, the segmented images of the left ventricle endo-
cardium have been obtained by processing the MRI study 
using the EnSite Verismo™ Segmentation Tool (EnSite 
Verismo 2.0.1), which is based on a threshold method. 
Later, the segmented images have been used to build the 
computational domains in view of the numerical simula-
tions and have been imported into the EnSite NavX system 
to acquire the activation times. In particular, the number of 
vertices in the endocardial meshes was 189,274 points for 
subject 1, 172,290 for subject 2 and 571,382 for subject 3.

2.1.2 � Acquisition of electrical data

The activation time in a point is defined as the time differ-
ence between a selected fiducial point on the body surface 
electrocardiogram (ECG) and the steepest negative intrinsic 
deflection in the unipolar intracardiac electrogram recorded 
from the tip of a mapping catheter, signifying that the acti-
vation front has reached the subjacent muscle. The Ensite 
NavX system is capable of accurately locating any elec-
trode catheter within a 3D navigation field, allowing the 
reconstruction of the geometry of any cardiac chamber and 
providing accurate, real-time catheter navigation to guide 
mapping of the activation times. In particular, the map-
ping catheters could be moved along a chamber’s surface 
to record local endocardial electrogram amplitudes, while 
simultaneously recording location points to generate a 3D 
geometry of the chamber. NavX system allows to simulta-
neously display multiple catheter positions in real time. The 
system consists of three pairs of patches placed on the body 
surface in orthogonal axes. A low-power 5.7-kHz electrical 
potential is generated across each pair of patches, and the 
voltage gradient from each axis generates the three-dimen-
sional navigation field. Based on this, the system measures 
the local voltage of any electrode that is placed within the 
navigation field, and thus accurately measures the related 
electrical activation time. The EnSite NavX technology 
provides an algorithm for compensation of catheter shifts 
due to respiratory motion. It is based on the identification 
of breathing-dependent changes of transthoracic imped-
ances. The current version of digital image fusion function 
of the EnSite NavX system allowed the segmented endo-
cardium to be displayed side by side and synchronously 
rotated with the constructed geometry. As for the accuracy 
of this system, we mention [22], where the authors showed 
through in vivo experiments that this system enables accu-
rate and reproducible real-time localization of electrode 



positions with a precision of 0.7 ± 1.5 mm, and [31], where
the application of this system has been showed to not dis-
tort the quality of the local ECG. For further details on the 
EnSite NavX system, we refer the reader to [4, 10]. We 
observe that this procedure is not repeatable, in the sense 
that another acquisition would lead to different acquisition 
points.

In our cases, for all the three subjects, the left ventricular 
mapping has been performed in the context of a bi-ventric-
ular mapping. To this aim, a 7-Fr deflectable electro-cathe-
ter has been inserted through the right femoral artery with 
a retrograde trans-aortic approach (Medtronic Enhancr II 
5523/Medtronic Conductr). All these subjects were charac-
terized by a normal electrical propagation. In particular, we 
acquired the measures in 186 points for subject 1, in 156 
points for subject 2 and in 284 points for subject 3.

2.2 � Patient‑specific generation of the Purkinje fibers 
network

The normal electrical activity of the left ventricle is charac-
terized by a front propagating through the Purkinje network 
and then within the ventricle muscle. In particular, in the 
normal propagation, the front starts from the atrioventricu-
lar (AV) node and propagates in the proximal part of the PF 
with a velocity in the range 3–4 m/s [15]. At the mid-antero-
septal level, located on the endocardium, the PF start to be 
connected with the ventricular muscle cells through the PMJ. 
In this way, the electrical signal enters the ventricle muscle 
and propagates in the whole myocardium, with a reduced 
conduction velocity in the range 0.3–0.8 m/s [15].

2.2.1 � General overview of the algorithm

The starting point of our method is the use of a fractal law 
to generate a tentative Purkinje network as proposed in [1, 
11, 23]. Then, such a network is corrected using the data of 
the normal activation acquired with the EnSite NavX sys-
tem, allowing to obtain a patient-specific network. In partic-
ular, our method can be summarized in the following steps:

Generation of the patient-specific Purkinje network 
using data of a normal propagation and computation of the 
activation times in the left ventricle:

1. Manually design of the bundle of His and of the main
bundle branches;

2.	G eneration of a tentative Purkinje network without
using the clinical data;

3. Computation of the activation times in the tentative
network and in particular at the PMJ;

4. Computation of the activation times on the endocar-
dium of the left ventricle using as input the activation
times at the tentative PMJ computed at step 3;

5. Comparison between the activation times computed at
step 4 and the measured data;

6.	G eneration of the patient-specific Purkinje network as
a correction of the tentative one, driven by the discrep-
ancies between the computed and the measured data 
obtained at step 5;

7. Computation of the activation times in the patient-spe-
cific network and in particular at the PMJ;

8. Computation of the activation times in the endocar-
dium (or in whole left ventricle) using as input the acti-
vation times at PMJ computed at step 7.

We notice that the algorithm for the patient-specific 
Purkinje network generation involves only steps from 1 to 
6. Here, we have added also steps 7 and 8 for the computa-
tion of activation times in the endocardium or even in the
whole left ventricle, since this was the final goal of the PF
generation. We also observe that at steps 3–4 and 7–8 we
firstly solved the network solely (steps 3, 7), and then, we
used this solution evaluated at the PMJ as sources for the
computation of the muscular activation (steps 4, 8). This is
an explicit solution strategy, since it does not account for
the feedback of the muscular activation on the Purkinje net-
work. This choice was justified by the fact that for a normal
electrical activity the propagation in the PF is not influ-
enced by the muscular propagation (see also [24]).

2.2.2 � Modeling the electrical activity

We illustrate now the mathematical models used to com-
pute the activation times (steps 3, 4, 7 and 8 in our algo-
rithm). One of the most widely used models for the 
description of the electrical activity in the myocardium is 
the so-called bidomain equation, obtained by considering 
a propagation both in the extra- and in the intra-cellular 
spaces [8, 14, 30]. However, if one is interested only in the 
activation times, then the simpler Eikonal equation could 
be considered [6, 12]. This is a steady model that allows 
to recover for any point of the computational domain the 
time at which the potential reaches the value (Wr + Wp)/2,
where Wr is the minimum of the potential and Wp the value 
reached at the plateau. This simple model has been often 
used for clinical applications, see, for example, the recent 
work [28].

As observed, the patient-specific clinical data were 
available only on the endocardium. For this reason, in view 
of the comparison between computed and measured data at 
step 5 of our algorithm, we needed to know the computed 
activation times on such a surface. Then, we decided to 
consider the mathematical model for the electrical propa-
gation only on the endocardium (and not in the whole 
myocardium) given by the isotropic version of the Eikonal 
model, which reads



where ue(x) is the unknown activation time at a point of 
the endocardium with coordinates x, Ωe is the computa-
tional domain representing the endocardium, Γe is the set 
of points generating the front, that is, the PMJ, ue,0(x) is the 
value of the activation times in Γe, and Ve is the velocity of 
the front, tuned in the range 0.3–0.8  m/s maximizing the 
agreement with the clinical measures. We observe that Ωe 
is a surface, so that the gradient has to be intended as the 
projection of the gradient onto the tangential plane at x.

For the solution of Eq. (1) at step 4 of the algorithm, one 
needs to know the source term ue,0 that represents the acti-
vation times at the PMJ. To obtain such values, the activa-
tion times in the Purkinje tentative network must be known 
(steps 3). Analogously, to compute the final electrical activ-
ity (step 8), one needs to know the activation times in the 
patient-specific network to provide the source terms to 
Eq. (1) (step 7). Therefore, we needed to introduce a math-
ematical model to compute the activation times also in a 
Purkinje network. With this aim, we considered again an 
isotropic Eikonal model, more precisely

where up(x) is the unknown activation time at the point of 
the network with coordinates x, Ωp is the computational 
domain representing the network, Γp is set of points gen-
erating the front (in the normal propagation the AV node), 
up,0(x) represents the activation times in Γp, and Vp is the 
velocity of the front, supposed to be constant and tuned in 
the range 3–4 m/s, maximizing the agreement with the clin-
ical measures. We observe that the computational domain 
Ωp in this case is a line, so that the derivatives have to be 
intended as directed along the tangent s.

For the numerical solution of the Eikonal Eqs.  (1) and 
(2), we considered the fast marching method [26], imple-
mented in the software VMTK (www.vmtk.org).

2.2.3 � Details of the patient‑specific generation of the 
Purkinje network

We provide here a few details of the algorithm described 
above.

2.2.3.1  Generation of a tentative network  At step 1, the 
bundle of His and the main bundle branches were manu-
ally designed, according to anatomical a priori knowledge 
[1, 23]. At step 2, a tentative network as a fractal tree was 
generated. The growing process followed the ‘Y’ produc-
tion rule, similar to the one implemented in [1, 11, 23]. In 

(1)
Ve|∇ue| = 1 x ∈ Ωe,

ue(x) = ue,0(x) x ∈ Γe

(2)
Vp

∣

∣∂up/∂s
∣

∣ = 1 x ∈ Ωp,

up(x) = up,0(x) x ∈ Γp

our approach, at each level of the generation, we identified 
active branches and leaves. An active branch can generate 
other branches, whereas the leaves terminate at their end 
points which are identified with the PMJ. In this way, the 
branches could be characterized by a different number of 
levels. To ensure a correct distribution of the PMJ on the 
endocardium, we described the process of generation of a 
leaf by means of a Bernoullian probability, where the prob-
ability to generate a leaf, p, is a function of the tree level. In 
particular, we have

where j is the current level and M is the maximum number 
of levels, so that p is small for the first levels and grows up 
for the successive levels. To obtain a more realistic pattern 
of PF, we described the lengths Ll and Lr and the branch-
ing angle α of the new fibers by means of Gaussian vari-
ables, with mean value 4.0 ± 0.3 mm for the lengths and
60 ± 1.8° for the angle [22], see Fig. 1.

The active branches stopped to generate new branches 
when one or more of the following conditions were 
satisfied:

1.	T he active branches intersected other branches;
2.	T he active branches reached the zone identified either

with the basis or with the upper areas of the mid-
antero septum (these regions being not reached by the 
Purkinje network [24]);

3.	T he maximum number of levels M defined by the user
has been reached.

p =

√

j

M

Fig. 1   Schematic representation of the generation of two new 
branches in the Purkinje network. Ll, Lr and α indicate Gaussian vari-
ables

http://www.vmtk.org


This algorithm produces a front of active branches 
which propagates and eventually reaches all the regions of 
the endocardium covered by the Purkinje fibers (formed by 
all the endocardium apart from the basis and the upper part 
of the septum). Since the length of the branches is always 
described by a Gaussian law with the same mean and 
standard deviation, we noticed that after a finite number of 
levels the density of leaves per unit area does not change 
anymore in the regions already reached by the front. Thus, 
the number of levels of the tree M was determined for each 
patient with a trial-and-error procedure so that the front has 
reached all the regions of interest.

The procedure described above allowed to generate a 
network which in what follows has been referred to as ten‑
tative network.

2.2.3.2  Computation of the discrepancy between measured 
and computed data  The activation times on the PMJ were 
then computed by solving the 1D Eikonal Eq. (2) in the ten-
tative network (step 3). These activation times were then 
used as sources for the Eikonal problem (1) on the endo-
cardium (step 4), allowing to obtain a tentative activation 
map which was then compared with the experimental data 
(step 5).

2.2.3.3  Generation of  the patient‑specific network  The 
algorithm passed then to the final stage, represented by 
step 6 and consisting in adapting the tentative network to 
the clinical data using the discrepancies computed at step 
5. Accordingly, the leaves of the network were moved or
deleted in order to satisfy the data. This is a completely new
step with respect to previous works in the generation of PF
and allowed to obtain a patient-specific Purkinje network. In
particular, for each point xj where the measures were avail-
able, we defined its region of influence as the set Sj of PMJ
which were possible sources determining the activation time 
tj in xj when solving the 2D Eikonal Eq. (1). In other words, 
PMJ not belonging to Sj did not contribute in determining 
the solution in xj. To obtain such regions, we proceeded as 
follows:

(a) We solved a 2D backward Eikonal problem using the
measures in xj as sources;

(b)	G iven a PMJ Pi located in yi, we concluded that Pi

belonged to Sj if it has been activated at step (a) by the
source located in xj.

This allowed to associate to any PMJ Pi an activation 
time τ, solution of the backward problem, which is noth-
ing but the boundary condition which would guarantee 
that Pi activates the point xj at time tj (see Fig.  2a). We 
then compared the activation time τ in Pi obtained by solv-
ing the backward problem with τi obtained by solving the 

1D Eikonal problem in the network. If these two values 
were in agreement (in our case, we considered a threshold 
equal to 15 %), we concluded that PMJ Pi is able to acti-
vate the measure located in xj and then Pi does not need to 
be moved or deleted. Otherwise, we moved Pi in order to 
minimize the mismatch between τ and τi (see Fig. 2b). In 
particular, we located Pi on the line joining the base Zi of 
the leaf with the measure located in xj and we looked for 
the position which guarantees, among all the points on such 

Fig. 2   a The first backward signal reaching PMJ Pi starts from meas-
ure xj so that Pi belongs to the region of influence Sj; b PMJ Pi is then 
moved in order to maximize the accordance between the activation 
time τi computed by the network and that predicted by the backward 
Eikonal solution τ



a line, the best accordance (moving procedure). If none of 
such points allowed to obtain a discrepancy less than 15 %, 
we then deleted the PMJ Pi and the related leaf (delete pro‑
cedure). If some of the points are not yet satisfied, we cre-
ated new leaves so to satisfy all the data (create procedure). 
All the details of the algorithm can be found in [17].

We observe that the value of the threshold is a user 
parameter that can be tuned to improve the accuracy of 
the algorithm. In our case, we have used a trial-and-error 
strategy.

Finally, we notice that the network generated by the 
method depends on the starting tentative network, which 
is randomly generated with Bernoullian and Gaussian vari-
ables, and on some user parameters such as the mean value 
of the length and of the angles of the branches, the thresh-
old to detect the satisfied points, and the conduction veloci-
ties. Once the tentative network and these parameters have 
been fixed, the solution produced by our algorithm after the 
moving and delete procedures is unique, in the sense that 
it generates always the same network. However, the create 
procedure produces different networks depending on the 
order used to investigate the not satisfied points.

The code for the implementation of this algorithm has 
been written in C++ using the VTK 5.8 library.

2.3 � Models for a computational comparison

In order to assess the accuracy of the numerical solutions 
obtained with our strategy (referred in what follows to as 
model D), we compared its performance with the one of 
other three scenarios used so far in the literature:

1. Model A. This is the most common model considered
so far in the literature when neither the Purkinje net-
work nor clinical measurements were available. In
particular, the source for problem (1) is located in a
single point at the apex of the ventricle. This strategy
does not reproduce accurately the physiology (remem-
ber that the electrical signal enters in the ventricle at
the level of the mid-antero septum). However, it has
been widely used by several authors (see, e.g., [20]) as
a simple surrogate to replicate the physiological con-
ditions using only a single source. For a visualization
of such a model, see the subfigures at the top/left in
Fig. 3;

2. Model B. This model has been considered so far when
no Purkinje network is available, whereas measures of
the activation times are known. In particular, in this
case, the localization of the sources for problem (1) is
driven by the measures and the idea is to identify such
sources with the points with the smallest measured
activation times. This allows to obtain a patient-spe-

cific model, see, e.g., [25]. For a visualization of such a 
model, see subfigures at the top/right in Fig. 3;

3. Model C. This model has been considered so far when
a Purkinje network has been generated but no clinical
measures are available. The generation of the network
is often driven by a fractal law. The idea is to solve an
Eikonal or a bidomain problem in the network and then
to use the activation times at the PMJ as sources for
problem (1), see, e.g., [1, 11, 23].

4. Model D. It is the new model proposed in this work
consisting in the generation of a patient-specific net-
work. In particular, we used a part of the data to gener-
ate such a network and the remaining part to validate
it (cross-validation). For this reason, we divided the
measures in two sets: the training set composed by
50 % of the measures for the generation of the patient-
specific network and the testing set composed by the
remaining 50 % of the measures for the validation. We
notice that also models A, B and C have been validated
using the same testing set.

3 � Results

In this section, we show the numerical results related to 
the normal propagation of the three subjects, referred in 
what follows to as subjects 1, 2 and 3. The goal is to com-
pare the measured activation times with those computed 
by the four scenarios described above. Given a point on 
the endocardium where a measure was available, we say 
that the related datum has been satisfied (up to tolerance 
tol) by one of the four models if the relative difference in 
activation time between the datum and the computed value 
was less than tol. We observed that the ratio of the perfor-
mance among different models was rather constant with 
respect to tol (however, not lower than the threshold used 
in the algorithm). We report here the results obtained by 
setting tol = 15 %, thus equal to the threshold used in the
algorithm.

Our starting points were, for each of the three subjects, 
the geometries reconstructed from the MRI data and the 
measured activation times. Since we have used a proba-
bilistic model to generate the Purkinje tentative network, 
each run of our method produced a different outcome. For 
this reason, we ran the algorithm 20 times for each subject, 
generating 20 tentative and 20 patient-specific networks. In 
Table  1, first two rows, we reported the mean number of 
branches and PMJ in the generated networks. In Fig. 3, for 
each of the subjects, at the top we indicated the localization 
of the sources for models A and B, whereas at the bottom 
we reported a selected network generated by our algorithm 
for models C and D.



Once we have identified for each model the sources for 
the 2D problem, we solved the Eikonal problem (1) on the 
endocardium, obtaining the activation times for all the four 
models, reported in Figs. 4, 5 and 6. For models C and D, 
we depicted one selected case over the 20 simulated. The 
velocities of conduction in the network (Vp) and on the 
endocardium (Ve) have been tuned in order to maximize the 
number of satisfied points and have been kept constant over 
the 20 simulations for models C and D. We reported such 
quantities in Table 1, third and fourth rows. We observe that 
for models C and D such values fell into the physiologi-
cal ranges (3–4 m/s for Vp and 0.3–0.8 m/s for Ve). Regard-
ing models A and B, the absence of the PF network has 

been supplied by choosing a conduction velocity Ve which 
could change over the domain [25]. In particular, we chose 
two different values of such a velocity, one in the region 
of the endocardium activated by the PF and another one 
in the region characterized by a purely muscular activa-
tion (that is, at the base of the ventricle and at the upper 
areas of the mid-antero septum). From Table 1, we observe 
that for models A and B we let Ve assume values outside 
the muscular physiological range (but consistent with the 
conduction velocity in the network) to account for the PF 
propagation.

In Figs. 4, 5 and 6, we plotted also the measured activa-
tion times (represented with squares) and the absolute error 

Fig. 3   Subjects 1, 2 and 3. Top 
Localization of the sources in 
the models without PF: Model 
A (left) and model B (right). 
Bottom Tentative (model C, 
left) and patient specific (model 
D, right) Purkinje networks 
generated by our algorithm. 
The yellow bullets represent the 
PMJ. For models C and D, we 
depicted one selected case over 
the 20 simulated (color figure 
online)



(that is the distance between computed and measured data) 
at each point. We observe an excellent qualitative agree-
ment between measured and computed data obtained with 
our method, whereas a comparable accuracy was obtained 
by models B and C. Model A seemed to feature the poorest 
accuracy among the four models.

In order to quantify the accuracy of the different mod-
els, we computed the percentage of satisfied points and the 
average absolute error in activation time between the meas-
ures and the prediction by the four models in each meas-
urement point. We reported such values in Table 2, which 
confirmed the better accuracy of the model with a patient-
specific Purkinje network (model D) with respect to the 
other ones.

As for the computational time needed to run our method 
for the generation of the patient-specific network and the 
computation of the activation times, we typically had a 
CPU time of about 350 s for each run, split into the differ-
ent steps of the algorithm as follows:

• Generation of the tentative network (step 2): 65 %;
• Solution of the 1D and 2D Eikonal problems (steps 3

and 4): 5 %;
• Correction to generate the patient-specific network (step

6): 25 %;
• Final solution of the 1D and 2D Eikonal problems (steps

7 and 8): 5 %.

From these results, we observe that the generation of 
the patient-specific network requires a little extra time with 
respect to the generation of the tentative one.

4 � Discussion

4.1 � State of the art

Mathematical models of the cardiac electrophysiology 
allow to compute virtually the electrical activity in the ven-
tricles, providing a non-invasive tool for the study of the 
propagation of the electrical signal [13]. Despite PF have 
an essential function in the coordinated activation of the 
ventricles, they have been usually neglected in the com-
putational models. This was mainly due to the difficulty in 
obtaining in vivo images of the PF, which are excessively 
thin for the current clinical imaging resolution.

A common strategy used so far to obtain significant 
results without generating explicitly the Purkinje network 
consisted in locating the source of the front at the apex 
of ventricle (model A) [20]. An alternative approach has 
been considered in [25], where the sources were local-
ized by analyzing available clinical data and defining 
space-dependent conduction properties (model B). Nev-
ertheless, accounting for the PF in ventricular compu-
tational models is essential to simulate the normal acti-
vation [21, 29]. For this reason, some scientists have 
attempted to incorporate PF in the mathematical models 
by their explicit construction. Three possible alternatives 
have been proposed so far:

1.	A  manual procedure based on the anatomical knowl-
edge [3, 29];

2.	T he segmentation of PF from ex vivo images [5];
3.	T he construction of the Purkinje network computation-

ally with a semiautomatic algorithm [1, 11, 23].

In the latter case, the network generation was driven by 
general anatomical information and thus was not patient 
specific (model C). In this work, we proposed to use the 
same approach, where, however, the construction of PF 
has been driven by clinical patient-specific data concerning 
the activation times on the endocardium during a normal 
propagation (model D). At the best of our knowledge, this 
has been the first attempt to use clinical data for the explicit 
construction of the Purkinje network by means of compu-
tational tools, allowing to obtain patient-specific networks.

4.2 � Discussion of the results

We applied models A, B, C and D to three subjects charac-
terized by a normal conduction activity (see Figs. 3, 4, 5, 6; 

Table 1   Number of branches and of PMJ of the networks generated 
by models C and D, and estimated conduction velocities in the net-
work (Vp) and on the endocardium (Ve)

For Ve in models A and B, the first value refers to the endocardium 
excluding the base of the ventricle and the upper areas of the mid-
antero septum, while the second one refers to the base of the ventricle 
and the upper areas of the mid-antero septum. For models C and D, 
the results have to be intended as the average over the 20 simulations

Model A Model B Model C Model D

Subject 1

 # Branches X X 1,946 ± 74 1,735 ± 72

 # PMJ X X 474 ± 24 311 ± 21

 Vp (m/s) X X 3.9 3.9

 Ve (m/s) 3.8/0.8 3.1/0.8 0.6 0.6

Subject 2

 # Branches X X 1,515 ± 54 1,439 ± 51

 # PMJ X X 337 ± 15 261 ± 13

 Vp (m/s) X X 3.9 3.9

 Ve (m/s) 2.8/0.8 2.1/0.8 0.6 0.6

Subject 3

 # Branches X X 2,529 ± 73 2,430 ± 68

 # PMJ X X 608 ± 29 253 ± 12

 Vp (m/s) X X 3.2 3.2

 Ve (m/s) 2.2/0.8 2.1/0.7 0.4 0.4



Tables 1, 2). We divided the measures in the training set for 
the generation of the patient-specific network in model D 
and in the testing set for the validation of all the four mod-
els. Each of these two groups was composed by 50 % of the 
total points (cross-validation test).

The numerical results showed that the absolute errors 
obtained with model B decreased in the three subjects 
by 4, 22 and 32  %, respectively, in comparisons of the 
ones obtained with model A, while the number of satis-
fied points increased by 6 % for subject 3 and decreased 
for subjects 1 and 2. This showed that the use of clini-
cal data allowed to improve the accuracy of the numeri-
cal results when no PF were modeled, at least for what 

concerns the absolute error. We also noticed that the val-
ues of the mean absolute error and of the standard devia-
tion obtained with model B are in good accordance with 
those obtained in [25].

The same conclusion concerning the importance of 
using clinical data to improve the accuracy was obtained 
also for the models with a Purkinje network. Indeed, the 
absolute errors related to model D decreased in the three 
subjects by 9, 19 and 25 %, respectively, in comparisons of 
the ones obtained with model C, while the number of satis-
fied points increased by 6, 31 and 53 %, respectively.

By comparing the performance obtained by models 
which exploited clinical measures (models B and D), 

Fig. 4   Computed activation 
times and absolute errors for the 
four models. Top left, model A. 
Top right, model B. Bottom left, 
model C. Bottom right, model 
D. For each case, in the upper
row we depicted the computed
activation times (the measured
data are plotted with squares)
and in the lower row we repre-
sented the absolute errors. For
models C and D, we depicted
one selected case over the 20
simulated. Subject 1, normal
activation (color figure online)



we found that the inclusion of the Purkinje network is 
fundamental to obtain accurate results. Indeed, the abso-
lute errors obtained with model D decreased in the three 
subjects by 40, 23 and 17  %, respectively, in compari-
sons of the ones obtained with model B, while the num-
ber of satisfied points increased by 92, 214 and 29  %, 
respectively.

From these results, we observed that by performing a 
cross-validation test there was a clear improvement in the 
performance of model D with respect to the other models. 
In particular, the mean absolute error was lower in all the 
cases with respect to that featured by the other models. 

Analogously, model D featured the highest number of satis-
fied points.

By comparing the accuracy of models B and C, we 
found that such methods featured more or less the same 
accuracy. This showed that using the clinical data without 
modeling the Purkinje network or modeling the network 
without using the clinical data brought more or less to the 
same level of accuracy.

All these facts clearly showed the importance of using 
both clinical data and a patient-specific Purkinje network to 
obtain accurate results by numerical simulations of a nor-
mal propagation.

Fig. 5   Computed activation 
times and absolute errors for the 
four models. Top left, model A. 
Top right, model B. Bottom left, 
model C. Bottom right, model 
D. For each case, in the upper
row we depicted the computed
activation times (the measured
data are plotted with squares)
and in the lower row we repre-
sented the absolute errors. For
models C and D, we depicted
one selected case over the 20
simulated. Subject 2, normal
activation (color figure online)



4.3 � On the variability patient to patient

Here, we want to study whether the mean error obtained 
with our model is comparable with the variability of the 
measures patient to patient. If this was the case, then the 
extra effort to do patient-specific network may be unnec-
essary. Otherwise, the construction of a patient-specific 
Purkinje network would be justified and its accuracy would 
not be given by the fortuity.

To obtain the variability patient to patient, we com-
puted the mean values of the activation measures for 
each patient and then the standard deviation σ among the 
three mean values. We found σ  =  9.25  ms, which is in
any case greater than the mean absolute errors obtained 

with model D, see Table 2, last column. This highlighted 
that the extra effort needed to build a patient-specific net-
work is perfectly justified in terms of an improvement of 
the accuracy.

4.4 � On the sensitivity of the accuracy on the number 
of measures

From the results reported in Table 2, we observed that the 
accuracy of model D is quite sensitive to the number of 
measures, in particular the percentage of satisfied points 
increased for an increasing number of measures. These 
observations lead to the (quite expected) conclusion that by 
increasing the number of available measures, the accuracy 

Fig. 6   Computed activation 
times and absolute errors for the 
four scenarios. Top left, model 
A. Top right, model B. Bottom
left, model C. Bottom right,
model D. For each case, in
the upper row we depicted the
computed activation times (the
measured data are plotted with
squares), while in the lower
row we represented the absolute
errors. For models C and D, we
depicted one selected case over
the 20 simulated. Subject 3,
normal activation (color figure
online)



of the results obtained when using the patient-specific 
Purkinje network increased.

4.5 � On the validity of the proposed model

In this work, we considered the activation times related to a 
normal ventricle propagation. In such a condition, it is pos-
sible to exploit two assumptions concerning the electrical 
propagation:

• The electrical signal propagates firstly on the endocar-
dium and then into the myocardium starting uniquely
from the PMJ;

• There is no feedback of the muscular activation on the
Purkinje network.

These assumptions are supported by [27], which high-
lighted that in the presence of an active Purkinje network 
and for an endocardial source, no returning fronts could 
activate the endocardium. These two assumptions lead to 
great simplifications in the model to generate a patient-
specific Purkinje network. Indeed, on the one hand, the 
propagation in the myocardium does not influence that on 
the endocardium and therefore at step 4 of our algorithm 
is enough to solve a problem only on the endocardium. On 
the other hand, since the propagation in the Purkinje net-
work is not influenced by the muscular propagation, the 
choice of using an explicit algorithm to solve the coupled 

electrical network/muscle problem is perfectly justified, 
leading to a simple algorithm which does not need to intro-
duce subiterations (see also [24]).

As observed, our method is valid only when data on 
the endocardium related to a normal propagation are con-
sidered. In the case of a pathological propagation, the two 
assumptions above are not still valid in general, so that one 
needs to account for the muscular fibers (and then for the 
anisotropy) and for an implicit algorithm to manage the 
electrical coupling between the network and the muscle. 
The extension of our model to the pathological case can be 
found in [16].

4.6 � On the choice of using the Eikonal model

Regarding the mathematical models used to compute the 
activation times [problems (1) and (2)], we considered 
in this work the Eikonal equation both for the PF and for 
the endocardium. In its more complex version, this model 
accounts for the orientation of the muscular fibers and for 
the diffusion process characterizing the front (anisotropic 
Eikonal-diffusion equation [18, 25]). This model was 
proved to be a good approximation of the more complex 
bidomain one for computing the activation maps in the 
myocardium [7] and has been recently considered also for 
clinical applications [28].

In this work, we made two approximations for the 
Eikonal equation. On the one hand, we considered the 
isotropic version of such a model. This could be justified 
by noticing that, for a normal activation, the signal enters 
the ventricle at the level of the endocardium, propagat-
ing first on such a surface and then in the myocardium, 
and that in the presence of an active Purkinje network 
no returning fronts could activate the endocardium [27]. 
Therefore, for a normal ventricle activation, the propaga-
tion on the endocardium is not influenced by the myocar-
dial muscular fibers that are located downstream, along 
the thickness of the myocardium. Despite the presence 
of muscular fibers also on the endocardium, which influ-
ence the electrical propagation on this surface [27], we 
assumed that the solution on the endocardium is mostly 
determined by the Purkinje fibers, in particular by the 
PMJ, which are so dense to attenuate any anisotropic 
phenomenon on the endocardium. These facts motivated 
our choice of using the isotropic equation. However, this 
approximation represents a limitation of this study, and 
2D (or even 3D) anisotropic models will be considered in 
future works to improve the accuracy of the method. On 
the other hand, we neglected the diffusion term, since we 
assumed that the diffusion process gives a small contribu-
tion with respect to the advection one. This was justified 
by noticing that PF were so dense to inhibit the diffusion 
to become relevant.

Table 2   Percentage of satisfied points (that is, characterized by an 
error less than 15 %) and mean absolute error for the three cases in 
the four models

For models C and D, the results have to be intended as the average 
over the 20 simulations. Cross-validation with 50  % of the points 
used to generate the network in model D and the remaining 50 % to 
validate all the models

Satisfied points (%) Mean absolute error (ms)

Subject 1

 Model A 23.8 8.4 ± 5.7

 Model B 19.2 8.1 ± 6.2

 Model C 34.6 ± 5.8 5.4 ± 4.5

 Model D 36.8 ± 4.7 4.9 ± 4.1

Subject 2

 Model A 16.7 10.2 ± 7.8

 Model B 11.1 8.0 ± 6.3

 Model C 26.6 ± 3.8 8.0 ± 6.8

 Model D 34.8 ± 2.8 6.5 ± 5.4

Subject 3

 Model A 27.9 13.1 ± 10.2

 Model B 29.5 8.9 ± 7.5

 Model C 25.0 ± 3.7 9.9 ± 7.5

 Model D 38.2 ± 3.7 7.4 ± 6.6



Concerning the propagation in the PF, these two approx-
imations (isotropy and absence of diffusion) were perfectly 
justified, due to the absence of fibers (and then of anisot-
ropy) in the network, and to the high advection term Vp 
which dominated any diffusion process.

4.7 � Possible extension to non‑invasive data

The method proposed in this work was presented for 
data related to the activation times on the endocardium 
acquired with the NavX system. To acquire such data, an 
invasive procedure is needed based on the implantation of 
catheters in the left ventricle. Often, such invasive data are 
not available, so that we ask whether our method could be 
applied to non-invasive data as well. For example, elec-
trocardiographic signals in the torso could be used to 
generate a patient-specific network. In this case, at step 
5 of the algorithm, one needs to compute the ECG sig-
nals on the torso starting from the Eikonal solution in the 
ventricle and to compare them with the data. Of course, 
we expect to obtain a more accurate network when using 
invasive data, since ECG data on the torso give a poorer 
information, being surrogates of the activation times in 
the ventricle.

5 � Conclusions

In this work, we proposed a method for the computation 
of a patient-specific Purkinje network starting from clini-
cal measurements of a normal electrical propagation, to 
be used to improve the computational models for the com-
putation of the electrical activity in the left ventricle. The 
main contributions of the present work are summarized in 
what follows:

• We showed, for the first time, the feasibility of using
clinical measurements of the activation times on the
endocardium to drive the Purkinje network generation
by means of computational tools, allowing to recover
patient-specific networks;

• We showed an improvement of the accuracy in the case
of a normal propagation when patient-specific measures
were used to drive the simulation, both in the absence
and in the presence of a Purkinje network;

• We showed the importance of generating a patient-spe-
cific Purkinje network to recover an accurate electrical
activation on the endocardium for a normal propagation,
when clinical measures are available;

• We showed that the solution of the simple isotropic
Eikonal model solved only on the endocardium was
enough to generate accurate patient-specific Purkinje
networks.

These conclusions showed that the proposed method is 
able to provide an effective tool to improve the accuracy in 
the computation of the normal electrical activity of the left 
ventricle. The next step we are working on is the extension 
of such a method to the description of pathological cases 
such as Wolff–Parkinson–White [16].
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