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Abstract 

Morbidity and falls are growing problems for older people. Wearable devices are increasingly 

proposed to monitor daily life activities. However, sensors often require rigid attachment to 

specific locations and shuffling or quiet standing may be confused with walking. Furthermore, it 

is unclear how clinical gait assessments relate to walking during daily activities.  

Here, wavelet transformations of accelerometer and barometer data from a small Philips® 

prototype pendant device worn freely are used to identify continuous walks (excluding shuffling 

or standing) by 51 older people (83 ± 4 years) during twenty-five minutes of ‘free-living’ daily 

activities. Accuracy was validated against annotated video. Training and testing were separated. 

Activities were only loosely structured including noisy data preceding pendant wearing. A 

GaitRite® electronic walkway was used for laboratory assessments.  

Walking was classified (accuracy ≥97%) with low false positive errors (≤1.9%, Kappa ≥0.90). 

Median free-living cadence was lower than laboratory-assessed cadence (101 vs. 110 steps/min, 

p<0.001) but correlated (r=0.69). Free-living step time variability was significantly higher and 

uncorrelated with laboratory-assessed variability unless de-trended.  

Remote gait impairment monitoring using wearable devices is feasible providing new ways to 

investigate morbidity and falls risk. Laboratory-assessed gait performances are correlated with 

free-living walks, but likely reflect individuals’ ‘best’ performances. 

 

Keywords: gait, wavelet, elderly, wearable, device  
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1. Introduction 

Quantitative gait parameters have been associated with neuromuscular gait disorders [24], fall 

risk [10], physical activity [32], and the effect of exercise [21]. Laboratory gait assessment 

mostly uses electronic walkways, passive marker systems, and footswitches in standardised 

laboratory settings [18]. Laboratory gait assessments have good psychometric properties; 

however, relationships between straight line reference walks in controlled settings [30] and less 

constrained walks [14,1] or walking during daily life [26] require further investigation.  

 

Recent technological developments in wearable sensors have made remote activity monitoring in 

‘free-living’ environments possible [22,26]. Algorithms have been developed to identify and 

assess different types of physical activities, for example: peaks associated with steps or strides 

[12], sit-to-stand transfers [22], and walking on stairs or level ground [25,29,34].  

 

However, accuracy of these algorithms to assess activities of daily life may strongly rely on 

correct device positioning and orientation [13], and elaborate set-up may be required. Previous 

studies have used waist, leg, ankle, and/or sternum mounted sensor devices to collect 

accelerometer and/or barometric pressure data [33,13,22,1,34]. Compared to structured 

laboratory studies, reported performance of activity classification algorithms drops in daily life 

simulations [11], or if the training and validation groups are independent [9]. The detection of 

less structured walks during daily life activities is often confused with quiet standing and 

shuffling movements [11,9,1], especially in older people with impaired mobility [13]. Thresholds 

may either be set for high sensitivity (87% to 94% [11]), with correspondingly high false positive 
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errors (19% to 28%), or for low false positive errors (2% ± 2% [9]), with correspondingly 

reduced sensitivity (74% ± 30%) to detect walking periods. 

 

For classifying activities, wavelet transformations [13] of acceleration data may be better than 

Fourier transformations [4,35]. Wavelets provide new ways of investigating gait complexity [29] 

or abnormalities such as stumbles [15]. Here we present a new method to remotely monitor gait 

impairments, which combines discrete wavelet decomposition with decision tree algorithms. 

Wavelets are good for describing local regularities in gait signals [12] and, for example, already 

accepted for heart monitoring of ventricular arrhythmias [3]. In this study the Daubechies ‘db5’ 

wavelet was used. The ‘db5’ wavelet is widely used in signal processing applications due to its 

simplicity and continuous first-order derivative [2]. 

 

In remote and prolonged monitoring applications involving older adults it may be more difficult 

to ensure strict compliance and precise device placement. Freely worn devices providing similar 

accuracy [9,17] have advantages. Acceptance of pendant devices by independent living people at 

risk of falls may be inferred from the many Personal Emergency Response Systems (PERS) 

commercially available, which generally include discrete pendant sensors.  

 

In summary, previous work suggests several limitations with remote gait assessments during 

unrestricted free-living settings. Issues include; reliance on correct device positioning; confusion 

between walking, shuffling, and quiet standing; and understanding about how free-living gait 

relates to laboratory-assessed gait. Therefore, as part of the current study, semi-structured daily 

activities by 51 older adults were recorded using a freely worn pendant sensor. Our objectives 
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were to investigate; (a) if a new wavelet-based decision tree algorithm could distinguish 

continuous walking from shuffling movements with both high sensitivity and low false positive 

errors; (b) how walking during daily activities relates to laboratory-assessed gait; and therefore, 

(c) if remote gait analysis with a freely worn pendant device is feasible.  

 

2. Methods 

2.1. Overview 

The Philips® Senior Mobility Monitor (SMM, Philips Research Europe, Eindhoven, Netherlands) 

a research prototype containing a triaxial accelerometer and barometer was attached to an 

adjustable lanyard and worn freely around the neck either inside or outside clothing (Figure 1).  

 

To investigate if continuous walking could be distinguished from shuffling movements three 

different decision tree algorithms were developed based on wavelet transformations of the data. 

MATLAB® code is available from the corresponding author. To reduce the likelihood of over-

training the algorithms for highly structured laboratory performances, semi-structured activities 

in a semi-controlled environment were completed (Figure 2). In addition several mechanisms 

were employed to ensure the training data set included some ‘worst case’ scenarios that might 

occur during remote monitoring.  

 

To investigate how continuous walking during daily activities relates laboratory-assessed gait, 

comparisons between continuous free-living walking and laboratory gait assessments were made 

using additional data from a GaitRite® electronic walkway.  
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2.2. Participants 

Fifty one community-dwelling older adults (83 ± 4 years) were recruited from the fourth wave of 

the Sydney Memory and Ageing Study [28]. Participants able to walk with or without a walking 

aid participated in the study. The study was approved by the University of New South Wales 

Human Studies Ethics Committee and all participants provided informed consent prior to 

participation. Age, height, weight, body mass index (BMI), and physiological fall risk assessed 

using the Physiological Profile Assessment (PPA) [20] were recorded.  

 

2.3. The inertial pendant device and unrestricted placement 

Participants wore the SMM on a lanyard around their neck without further restrictions. The 

pendant (39.5 x 12 x 63.5 mm) contained a triaxial accelerometer and a barometer. The 

accelerometer had a sampling frequency of 50 Hz and range of ± 8G. The barometer had a 

sampling frequency of 25 Hz and an operating pressure range of 10 to 1200 hPa. The pendant’s 

lanyard length was adjusted to a self-selected height and worn above or below clothing. Data was 

stored on an SD card inside the SMM and extracted for processing on a desktop computer after 

the experiment was complete. 

 

2.4. Free-living walking during semi-structured activities in a semi-controlled environment 

The free-living experiment comprised twenty five to thirty minutes of daily activities that people 

might perform in their home environment (see Figure 2). Durations were dependent on the 

functional performance of each participant. Activities were performed at Neuroscience Research 

Australia in a semi-controlled environment where corridors often contained other people 
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walking. Free-living activities were semi-structured; participants were asked to perform several 

tasks in a given order, but were not given specific instructions about how to complete each task. 

 

Tasks included: sitting down on soft and hard chairs, lying down on a sofa, switching power 

outlets at floor level and light switches at shoulder level. In one of the tasks, participants were 

asked to go to a kitchen bench, pour themselves a cup of water, carry the cup to a table, pull a 

chair out, sit down, drink from the cup, return to the kitchen bench, and wash their cup in a sink. 

Other tasks included bending to put rubbish in the bin, walking through corridors, walking 

between rooms, moving about within a room, taking the elevator, walking up and down stairs, 

and stopping to look out windows.  

 

2.5. Video annotation  

For validation, free-living activities were simultaneously recorded with a hand-held video 

camera. Activities were annotated by a trained observer, using custom software to record the 

precise timings. Annotated ‘walking’ required continuous stepping, progression down a corridor 

or between spaces, and was defined between the first and last heel strikes. Continuous stepping 

required at least three consecutive heel strikes that had to be no more than three seconds apart. 

Shuffling movements within a room were annotated as ‘not walking’; for example, moving a 

short distance from sink to table. Stair negotiation was separated from continuous walking for 

decision trees one (DT1) and two (DT2), but not for decision tree three (DT3), see Tables 1 & 2.  

 

2.6. Wavelet interpretations of free-living activities 
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For the wavelet detection of continuous walking over flat ground, participants were randomly 

assigned to independent training (n=25) and testing groups (n=26). In addition to the unrestricted 

device placement further mechanisms were devised to simulate ‘worst case’ remote monitoring 

scenarios. For three minutes before the participant put on the inertial pendant (approximately 

10% of the active duration, see Figure 1, Misc1), the device was exposed to unrestricted 

movements: randomly picked up, carried about the room, swung by the lanyard, passed from 

person to person, and synchronized by hitting it twice against a table top.  

 

Discrete wavelet decomposition was performed using the Daubechies ‘db5’ wavelet to transform 

the acceleration signal into an array of coefficients (Figure 3A), whereby coefficients at each 

subsequent level (vertical axis) represent signal power at half the previous mid pseudo 

frequency. In Figure 3A, level 1 represents signal power at the mid pseudo frequency of 16 Hz, 

level 2 at 8 Hz, level 3 at 4 Hz, level 4 at 2 Hz, level 5 at 1 Hz, level 6 at 0.5 Hz, level 7 at 0.25 

Hz, and level 8 at 0.13 Hz. As frequency resolution increases, temporal resolution decreases 

(horizontal axis) and the coefficients at subsequent levels each cover twice the time period. 

Normalised signal strength is plotted (Figure 3A) from zero (black) to one (white). This provides 

an efficient way to simultaneously identify both frequency and temporal changes associated with 

steps taken during continuous walking. 

 

Inspection of the training set revealed several pertinent features, which in combination showed 

potential to identify continuous walking. Postural transitions causing changes in device 

orientation, such as the recline-to-stand (Figure 3D) were characterized by details level 6 and 7 

of the triaxial acceleration (vertical only shown), corresponding to mid pseudo-frequencies of 
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approximately 0.25 Hz and 0.5 Hz respectively. The direction of a transition (Figure 3E), such as 

the sit-to-stand (upwards) or stair negotiation was characterized by pressure changes in the level 

6 approximation of the differentiated barometer signal, which were negatively correlated to 

height changes. Rhythmical heel-strikes while walking (Figure 3C) were characterized by peaks 

in detail levels 4 and 5 of the vertical acceleration (corresponding to mid pseudo-frequencies of 

approximately 1 Hz and 2 Hz) and could be separated from similar peaks during miscellaneous 

impacts by the frequency ratio. Vertical acceleration (Figure 3B) was extracted, using a level 7 

approximation of the gravity vector to correct for low frequency changes in device orientation, 

similar to previous methods [5]. The frequency ratio was calculated over consecutive 62 point 

(≈1.2s) moving average data windows by dividing the level 4 and 5 details of vertical 

acceleration by the level 1 and 2 details of vertical acceleration. Window length for frequency 

ratio was selected to encompass at least two heel strikes at an expected step frequency of 1.6Hz. 

 

2.7. Wavelet detection of continuous walking using decision trees 

Three empirical decision tree algorithms were developed to identify continuous walking. The 

first decision tree (DT1) had four nodes, and was designed to separate continuous walking from 

all other activities including stair climbing. The first two decision nodes rejected data where 

orientation changes or height changes were above thresholds expected during walking over flat 

ground (Figures 3D and 3E). The third node retained data containing heel-strike peaks above a 

set threshold (Figure 3C, circles). Finally, the fourth node only retained walks with more than a 

set number of consecutive heel strike peaks (Figure 3C, horizontal band).  
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The second decision tree (DT2) had five decision nodes, additionally using the frequency ratio. 

In this case, a walk also required stepping frequencies (details 4 and 5) to be significantly greater 

than higher frequencies (details 1 and 2) associated with some miscellaneous movements.  

 

The third decision tree (DT3) did not use the barometer data and therefore had only four decision 

nodes. Consequently, in this case no attempt was made to separate stair climbing from walking.  

 

2.8. Grid search and classification performance 

Agreement between continuous walking detected by the algorithms and walking annotated in the 

recorded videos was calculated using Cohen’s Kappa because it accounts for sample bias [16] 

and incorporates all elements of the confusion matrix. A Kappa of unity indicates perfect 

agreement. Grid searches (Table 1) were performed in MATLAB® 2013a using data from the 25 

participants in the training group. Threshold values (Table 2) residing in the geometric center of 

a broad plateau representing global optimum performance (Figure 3, left panel) were selected. 

Performance was then validated using data from the 26 participants of the testing group (Table 

2). We also calculated accuracy (defined as the percentage of all activities correctly classified) 

false positive errors (defined as the percentage of incorrectly identified walks) and sensitivity 

(defined as the percentage of correctly identified walks).  

 

2.9. Clinical assessment  

Participants were instructed to perform three walks at their usual walking speed on a 4.60 m 

GaitRite® electronic walkway (CIR Systems Inc. Clifton, NJ 07012). All walks were performed 

according to the European guidelines for clinical applications of spatio-temporal gait analysis in 
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older adults [19]. Gait parameters were obtained from GaitRite® Software Version 3.3 and 

included speed (cm/s), cadence (steps/min), step length (cm), and the standard deviation (SD) of 

step times (s).  

 

2.10. Wavelet assessment of free-living walking 

2.10.1. Cadence 

A peak detection algorithm was used to identify steps in walks previously classified by the first 

wavelet detection algorithm (DT1). Peaks in the detail levels 4 and 5 of the vertical acceleration 

were counted provided they were greater than half the threshold selected in the previous grid 

search, and were between one 300 and 3000 milliseconds apart. Free-living cadence was then 

calculated as the number of peaks counted divided by walk duration in minutes. From all free-

living walks greater than 10 steps (the threshold for DT1) by each participant, the 2.5, 25, 50, 75, 

and 97.5 cadence percentiles were recorded.  

 

2.10.2. Step time variability and de-trended variability 

Variability during free-living walks was calculated by the standard deviation of step times in 

seconds. Step times were calculated by the duration between the successive acceleration peaks 

previously used to calculate cadence. De-trended variability (Figure 4) was calculated by 

subtracting a five-point moving average from the step times prior to obtaining a standard 

deviation. De-trended variability was calculated to prevent the longer term changes in cadence, 

associated with accelerations and decelerations during free-living walks, potentially swamping 

the shorter term step time variability. Median values from multiple walks by each participant 

were recorded.  



12 

 

 

2.11. Free-living correlates for walking speed and step length 

The root mean squared (RMS) vertical acceleration [23] and the RMS vertical velocity 

oscillation were calculated for each walk previously identified by the first wavelet detection 

algorithm (DT1, Table 1). Vertical velocity oscillations were calculated by integrating vertical 

acceleration and high-pass filtering using bi-directional 4th order Butterworth filter with 0.75 Hz 

cut-off frequency [5]. Median values from multiple walks by each participant were recorded. 

 

2.12. Statistical comparison of free-living walking and laboratory gait assessment 

Assumptions for parametric statistic were met. Pearson’s correlations and paired t-tests were 

used to investigate possible associations and differences between spatio-temporal gait parameters 

from free-living and laboratory gait assessments. SPSS 20.0 (SPSS, Inc., Chicago, IL) was used 

for data analyses with a significance level of 0.05.  

 

3. Results 

Participants ranged in age from 76 to 96 (mean 83 ± 4 years), had varied heights (167 ± 9 cm), 

and had varied weights (69 ± 14 kg). According to their Physiological Profile Assessments they 

also had varied physiological fall risk [20] with scores ranging from -0.62 to 2.53 (0.90 ± 0.82). 

Thirty one participants were male and twenty were female. Participants were towards the upper 

healthy range for Body Mass Index (25 ± 3 kg/m2).  

 

3.1. Wavelet-based decision tree detection of continuous walking 
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During the semi-structured daily activities we observed orientation and position of the device 

relative to the subjects’ thorax could change. Device movement could be unpredictable, as the 

device could become temporally entangled in clothing or participants could ‘fiddle’ with the 

device. Despite this noisy data, the training grid search revealed a robust solution space, with 

strong agreement between walks detected by the algorithm and the video annotation. Within a 

broad peak of optimum Kappa (Figure 4, left panel), algorithm performance plateaued and was 

relatively insensitive to small changes in thresholds. Final thresholds for the first decision tree 

(Table 1) required continuous walking to have at least 10 consecutive steps with acceleration 

peaks greater than 0.5 m/s2. Postural transitions and/or stair climbing were excluded by 

thresholds of 2.2 m/s2 and 2.5 Pa/s (equating to a rate of height change of around 18 cm/s). 

 

In the test group, the thresholds for the first decision tree (DT1) resulted in good agreement with 

the annotated video (Kappa 0.90, accuracy 97.1%, sensitivity 90.9%, and low false positive 

errors of 1.6%, Table 2). For the second decision tree, increasing decision tree complexity by 

adding a node for the frequency ratio (≥1.75) slightly improved performance (Kappa 0.91). The 

third decision tree, which did not use barometer data, also had marginally better performance 

(Kappa 0.93), but could not separate stair climbing from walking.  

 

3.2. Associations between free-living and laboratory gait analysis 

Compared to the laboratory assessment of cadence on the electronic walkway (110 ± 9 

steps/min, Table 3), participants had significantly lower median cadence during free-living (101 

± 7 steps/min, p <0.001), but no significant difference was observed for maximum free-living 

cadence (p <0.19). Furthermore, maximum free-living cadence was most correlated with 
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laboratory assessed cadence (r = 0.80, p <0.001). Laboratory assessment of step length was most 

correlated with RMS vertical velocity oscillation during free-living (r = 0.71, p <0.001). 

Laboratory assessment of walking speed was most correlated with RMS vertical acceleration 

during free-living (r = 0.68, p <0.001).  

 

Compared to laboratory assessment of step time variability (19 ± 10 ms, Table 3) from constant 

speed walking, participants had significantly higher step time variability in the free-living 

environment (103 ± 53 ms, p <0.001). A significant correlation was observed between laboratory 

assessment of step time variability and de-trended step time variability in the free-living 

environment (r = 0.31, p <0.03). 

 

4. Discussion 

4.1. Wavelet-based decision tree detection of continuous walking 

Accurate identification of continuous walking during activities of daily life was feasible using 

the freely worn inertial pendant sensor (Kappa 0.90, Accuracy 97%). Different to previous 

research, our main focus was on the problematic distinction between continuous walking, 

shuffling, and quiet standing. This singular focus enabled both high sensitivity (90.9%) and low 

false positive errors (1.6%) to be obtained. Previously, during free-living simulations, high 

sensitivity has been achieved using a device fixed to the lower back [11], and low false positive 

errors have been achieved using a mobile phone [9], but not simultaneously.  

 

One strength of the new wavelet-based decision tree algorithms was that despite several 

mechanisms devised to simulate ‘worst case’ real world scenarios we still observed low false 
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positive errors. For example, the device was fiddled with, carried in the hands of a technician, 

randomly lifted up, and banged down on a table. Furthermore, including data from a barometer 

enabled stair climbing to be separated from walking.  

 

Similar to others [25], our approach defined continuous walking by consecutive heel strikes. 

However, in the current study the device was worn freely and not rigidly strapped to a bony 

landmark. Compared to more structured experiments [22], for example involving a fixed ten 

meter walk [12], we did not achieve 100% accuracy. The difference may relate to our semi-

structured experimental design and noise from miscellaneous activities which were included to 

reduce the likelihood of over-training. Our older participants (76 to 96 years of age) were of 

varied height, weight, and physical capacity. They completed many walks of varied lengths 

including shuffling and various activities while quite standing (Figure 1). Variability in the 

training data increases the likelihood that similar performance will be obtained during future 

remote and prolonged monitoring applications.  

 

In our training group, increasing the number of steps required for a walk reduced the false 

positive errors (Figure 4, right panel). However, because our participants completed both short 

and long walks, increasing the number of steps required for a walk also increased the number of 

walks missed. Therefore within the ‘plateau of optimum performance’, increasing the number of 

steps required for a walk resulted in little change to overall performance (Figure 4, left panel). 

The annotated videos revealed that most errors were due to confusion between shuffling and 

walking. Walks were missed (causing decreased sensitivity) if too few steps were taken, for 

example; by the more athletic participants taking ‘too few’ longer steps to enter the elevator (see 
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Figure 2, EE). Conversely, false positive errors were caused by prolonged shuffling, which the 

video annotator deemed to be without the purpose of getting to a new location, for example, by 

the more ‘frail’ participants taking ‘too many’ shorter steps while moving to the sink.  

 

Improved performance was achieved by increasing algorithm complexity (Kappa 0.91), and by 

not excluding stair climbing from the definition of continuous walking (Kappa 0.93). 

Personalizing the thresholds may have led to further improvements. However, these alternative 

solutions were not used in our final solution (DT1) because we considered the marginal 

improvements did not justify the increased risk of over-training and in the second part of the 

experiment, data from flat walking without any stair climbing was required. A decision tree 

approach may trade performance for increased interpretability and reduced complexity [7]. Our 

final solution successfully identified free-living walking patterns using just four decision nodes 

that had direct physical interpretations. With respect to the ‘big data’ requirements of population 

monitoring, a decision tree approach may provide computational efficiencies because at each 

node only a subset of the computations is required. For example, during long-term monitoring, if 

some ‘inactive’ periods of data were rejected by the top level node processing time would be 

reduced, because full computations would not be required for all data.  

 

During selection of global thresholds a robust moving average approach was used to avoid being 

‘caught’ by any local maxima. In the training group, we observed a ‘plateau of optimum 

performance’ (Figure 4, left panel) with many local maxima likely reflecting the finite 

limitations of the data set and discontinuities associated with step counting. Algorithm thresholds 
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were therefore selected from the estimated geometric center of this ‘plateau’, which was our best 

estimate of the global optimum solution.  

 

We acknowledge certain limitations. One issue with using discrete wavelet transforms is shift 

variance [31,27], whereby the wavelet coefficients may depend on the distance from the start of 

the data window to the signal of interest. Because the expected step frequency during continuous 

walking was around 1.6 Hz, any changes caused by shift invariance would be likely to inversely 

affect the level 4 coefficients (mid pseudo frequency 2 Hz) relative to the level 5 coefficients 

(mid pseudo frequency 1 Hz). Error associated with shift invariance was therefore minimized by 

combining the level 4 and 5 details and using the inverse discrete wavelet transform prior to heel 

strike detection. Furthermore, test retest reliability of the method was not assessed. However, in a 

subsequent study the long-term measurement stability of the new method has been established 

using eight weeks of remote monitoring [6]. 

 

4.2. Associations between free-living and laboratory gait analysis 

We found significant correlations between laboratory gait analysis and free-living walking for 

measures of maximum cadence (r = 0.80, p <0.001), step length (r = 0.71, p <0.001), walking 

speed (r = 0.68, p <0.001), and de-trended step time variability (r = 0.31, p =0.03). However, 

free-living walks had significantly slower median cadences and greater step time variability 

(both p <0.001) and no significant difference was found for maximum free-living cadence (p 

<0.19). Together, these observations suggest that laboratory gait measurements do relate to free-

living walking, but are more indicative of an individual’s ‘best’ performance, and not their usual 
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performance. Therefore, both laboratory and free-living assessments might potentially provide 

complementary information about morbidity risk and fall risk.  

 

Older adults tend to reduce their cadence, velocity and step length with increasing age and our 

laboratory gait assessments were within expected margins [30,18]. Interestingly, step time 

variability during free-living walking (103 ± 53 ms) was approximately five times greater than 

when assessed in the laboratory with an electronic walkway (19 ± 10 ms) and not significantly 

correlated. One explanation could be that in the laboratory setting only steady-state straight 

walking was recorded, whereas fluctuating cadences were recorded during the free-living walks. 

We observed that step times often changed over several steps in the free-living walks (Figure 5). 

Participants often accelerated at the start of a walk and slowed down as they approached various 

obstacles. De-trended step time variability was therefore calculated which removed these longer 

term cadence changes. Although de-trended step time variability was still greater (82 ± 46 s) than 

laboratory-assessed step time variability, it was significantly correlated (r = 0.31, p =0.03).  

 

Differences between free-living and laboratory assessments might also be explained by 

participants being more aware of measurements being taken during a clinical assessment. 

Participants might focus more on walking when travelling over an electronic walkway compared 

to assessment of daily activities when walks are measured using a discrete wearable device. 

 

We observed that more vigorous participants, who walked faster and had greater step lengths 

during laboratory assessments, also had greater vertical accelerations (r = 0.68, p <0.001) and 

greater vertical velocity oscillations (r = 0.71, p <0.001) during free-living walks. These 
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correlates were chosen because it was not practical to measure walking speed or step lengths 

directly from the pendant accelerations. However, vertical accelerations are correlated to walking 

speed squared [23] and principal component analysis has been used to show that many 

measureable gait features map to few underlying principal components, such as gait intensity or 

vigour [8], which comprises of step length, walking speed, vertical oscillations and accelerations. 

 

5. Conclusion 

The new wavelet-based decision tree method accurately separated continuous walking from 

shuffling and other movements during the activities of daily life. Laboratory gait assessments 

correlated to free-living walking, but likely reflected an individual’s ‘best’ performance. Remote 

gait impairment monitoring using freely worn devices appears feasible and provides new ways to 

investigate morbidity and fall risk. Future work might investigate if remote gait monitoring can 

be incorporated into existing pendant Personal Emergency Response Systems. The objective 

assessments of changes in gait quantity and gait quality over time could then be used to alert the 

associated health care providers of deteriorating health and/or increasing fall risk in participants.  
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Table 1: Grid search specifications and global optimum values for three different decision tree 

algorithms using the training group (n=25).  

 

Threshold variable Start Step Stop Chosen value 

DT1 DT2 DT3 

Max transition accel [m/s2] 1.8 0.2 3 2.2 2.4 2.6 

Max pressure change [Pa/s] 1.5 0.5 4 2.5 3 NA 

Min step peak [m/s2] 0.3 0.1 1 0.5 0.5 0.5 

Min steps [count] 4 2 18 10 10 16 

Frequency Ratio 1 0.25 2.5 NA 1.75 1.75 

 

 

Table 2: Classification performance for the testing group (n=26) by three different decision tree 

algorithms using the thresholds determined in the training group (n=25). 

 

 DT1 DT2 DT3 

Number of nodes 4 5 4 

Stair climbing separated Yes Yes No 

Kappa 0.90 0.91 0.93 

Accuracy [%] 97.1 97.3 97.9 

False positive errors [%] 1.6 1.6 1.3 

Sensitivity to walking [%] 90.9 92.1 94.6 
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Table 3. Spatio-temporal gait parameters assessed by accelerometer and electronic walkway 

 

Gait parameter Laboratory Free-living Correlated 

Pearson’s r (p) 

Different 

Paired t-test Mean ± SD 

Cadence [steps/min] 109.9 ± 8.5    

Median [peaks/min]  100.9 ± 7.4 0.69 (<0.001) <0.001 

UQ [peaks/min]  104.8 ± 7.9 0.76 (<0.001) <0.001 

Max [peaks/min]  108.9 ± 7.9 0.80 (<0.001) 0.19 

Step length (cm) 60.9 ± 9.8    

RMS VT Velocity [cm/s]  11.2 ± 2.9 0.71 (<0.001) <0.001 

Velocity (cm/s) 111 ± 20    

RMS VT Accel [m/s2]  1.54 ± 0.34 0.68 (<0.001) <0.001 

Step time variability [ms] 19 ± 10    

variability [ms]  103 ± 53 0.27 (0.06) <0.001 

De-trended variability [ms]  82 ± 46 0.31 (0.03) <0.001 
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Figure 1: The Senior Mobility Monitor (SMM) research prototype from Philips Research 

Europe, Eindhoven, Netherlands, was worn around the neck without further restrictions.  
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Figure 2: Example annotated vertical acceleration data from the semi-structured ‘free-living’ 

experiment. Key: W1 to W9 – walks of various lengths often bounded by postural transfers. 

W+S1 and W+S2 – walks including stairs. PT1 to PT3 – various stand/sit/recline postural 

transfers. S1 and S2 – various ‘shuffling’ movements and tasks within a room. Misc1 and 

Misc2 – miscellaneous movements associated with setting up the experiment, including 

synchronization, carrying the device, and putting the device on. EE – elevator entry after waiting 

on the landing. Note: Walks annotated by the video (top horizontal lines) and detected by the 

new wavelet method (second horizontal lines) are visualized at the top of the figure. For this 

‘athletic’ participant, the few steps taken when entering the elevator (EE) caused most confusion.  
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Figure 3: Wavelet-based analysis of free walk W9 (Figure 2). Panel A: Wavelet decomposition 

of the active period using Daubechies ‘db5’ wavelet. Level 1 (mid pseudo frequency 16 Hz) to 

level 8 (mid pseudo frequency 0.13 Hz) on the vertical axis. Time is on the horizontal axis and 

identical to panel B underneath. Normalised signal strength is visualized from zero (black) to one 

(white). Panel B: Corrected vertical acceleration. Panel C: Heel strikes identified by peaks 

greater than 0.5 m/s2 in the level 4 and 5 (mid pseudo frequencies 1 Hz and 2 Hz) wavelet details 

(circles), and a walk by 10 or more consecutive steps (thick line). Panel D: Postural transitions 

excluded by changes in device orientation greater than 2.2 m/s2 in the level 6 and 7 (0.5 Hz and 

0.25 Hz) wavelet details. Panel E: Postural transitions excluded by pressure changes greater than 

2.5 Pa/s, which are negatively correlated with height. Note: This participant wore the pendant 

swinging freely over clothing and no orientation changes were observed during the stand-to-sit 

transition, but the height change was picked up by the barometer.  
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Figure 4: Effects of minimum acceleration peak threshold and number of steps in the 

identification of continuous walking for Cohen’s Kappa (A) and false positive errors (B). Panel 

A shows that optimum classification of continuous walking forms a broad peak approximately 

centered around thresholds of 0.5ms-2 and 10 steps. Panel B shows that increasing both the peak 

acceleration for step detection and the number of steps required for continuous walking reduces 

the false positive errors or the amount of shuffling and quiet standing mistaken for walking. 
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Figure 5: Step times during free-living walks varied both in the short term (thin line) and in the 

longer term (thick line) as participants slowed down to avoid obstacles. During free-living, de-

trended variability was calculated by subtracting the moving average (thick line) from the step 

times (thin line) prior to obtaining the standard deviation. De-trended variability was correlated 

with the laboratory assessment of step time variability.  


