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Abstract

Due to the low contrast and ambiguous boundaries of the tumors in breast ultrasound (BUS) 

images, it is still a challenging task to automatically segment the breast tumors from the 

ultrasound. In this paper, we proposed a novel computational framework that can detect and 

segment breast lesions fully automatic in the whole ultrasound images. This framework includes 

several key components: preprocessing, contour initialization, and tumor segmentation. In the pre-

processing step, we applied non-local low-rank (NLLR) filter to reduce the speckle noise. In 

contour initialization step, we cascaded a two-step Otsu-based adaptive thresholding (OBAT) 

algorithm with morphologic operations to effectively locate the tumor regions and initialize the 

tumor contours. Finally, given the initial tumor contours, the improved Chan-Vese model based on 

the ratio of exponentially weighted averages (CV-ROEWA) method was utilized. This pipeline was 

tested on a set of 61 breast ultrasound (BUS) images with diagnosed tumors. The experimental 

results in clinical ultrasound images prove the high accuracy and robustness of the proposed 

framework, indicating its potential applications in clinical practice.
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1 Introduction

Breast cancer is one of the high-incidence cancer types among women worldwide [1, 2]. 

Early detection of breast cancer is crucial for successful treatment and reducing the mortality 

rate [2]. Among existing diagnostic modalities, the biospecimenbased test remains the gold 
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standard to determine whether a breast lump is malignant or benign [3]. However, only 

around 10~31% of the breast lumps referred for surgical biopsy turn out to be malignant [3]. 

Most of the false positive biopsies are unnecessary and can be potentially avoided with a 

more reliable breast cancer screening technique. With the development of medical imaging 

techniques, magnetic resonance imaging (MRI), mammography, tomosynthesis, and 

ultrasound have been introduced in a clinical environment for the early detection of breast 

cancer. Compared to MRI, mammography, and tomosynthesis, breast ultrasound (BUS) 

imaging is a cost-effective and safe way for early cancer detection and diagnosis [4]. 

Segmentation of tumor regions in BUS is a key step with-in conventional computer-aided 

diagnosis (CAD) analysis, which aims to optimize the following treatment plan. In most 

centers, the segmentation of breast lesions is performed by manually tracing the lesion 

contours, where intra- and inter-rater variations are inevitable, which would confound the 

following analysis [4]. Hence, in order to achieve more effective and reproducible lesion 

contouring, automatic segmentation methods are required and become critical in many 

imaging-based applications such as computer-aided diagnosis and image-guided surgical 

planning. However, due to the speckle noise, the shadowing effect, and especially the low 

contrast between the lesion and its background, it remains a challenging task to accurately 

and robustly segment the breast tumor in BUS images.

A number of semiautomatic image segmentation methods have been investigated for breast 

tumor segmentation in BUS, such as the histogram thresholding [5, 6], the watershed 

transformation methods [7, 8], the clustering algorithms [9], the graph-based methods [10], 

the active contour models, and the level set algorithms [11, 12]. However, these methods 

require human interaction in the segmentation procedure, where the accuracy to some extent 

depends on the human observers.

In recent years, several fully automatic methods for breast tumor segmentation in BUS have 

been reported. Madabhushi and Metaxas [13] presented an automatic approach by 

combining empirical domain-specific knowledge with low- and high-level image features. 

Liu et al. [14] described a fully automatic segmentation method by using a well-trained 

texture classifier and an active contour model which combined the global statistical 

information and local edge information. Shan et al. [15] proposed an automatic 

segmentation for BUS images composing of three steps: region of interest (ROI) generation, 

multi-domain feature extraction, and classification using an artificial neural network.

In general, the available automatic segmentation schemes were usually divided into two 

steps: ROI identification and tumor segmentation [13–16]. The identification of ROI is 

usually based on pattern recognition techniques combining empirical domain knowledge of 

the lesions. The tumor segmentation is usually based on some classic segmentation methods, 

such as active contour model. However, all the parameters in those models have to be 

empirically predefined, and it easily results in segmentation failure because of the wrong 

ROI initialization when the true tumor is not located at the center of the image or the BUS 

image contrast is not obvious.

In this paper, we propose a fully automatic segmentation scheme for segmenting the tumor 

lesions in the whole BUS images. The contributions of our proposed algorithm are the 
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following: (1) a fully automatic contour initialization framework is proposed to 

automatically obtain the initial contour; (2) an improved Chan-Vese model based on the ratio 

of exponentially weighted averages (CV-ROEWA) model is proposed to refine the contours 

of the tumor regions accurately; (3) a new edge detector is proposed to make the proposed 

method more robust than the traditional gradient-based methods.

2 Methods

This section describes the scheme proposed for our automatic segmentation scheme of breast 

lesion in whole ultrasound images. Figure 1 summarizes graphically the different steps of 

the scheme, including the following:

1. Pre-processing, the non-local low-rank (NLLR) filter is firstly used to suppress 

the speckle noise and improve the visual quality of BUS images.

2. Contour initialization, an adaptive contour initialization framework based on 

Otsu-based adaptive thresholding (OBAT) pre-segmentation and morphologic 

operations to automatically locate the breast tumor regions.

3. Tumor segmentation, a novel CV-ROEWA model is proposed to further 

accurately refine the contours of the tumor regions.

In the following subsections, we will make the detailed description of the different steps of 

the procedure.

2.1 Pre-processing

It is well known that the ultrasound images often contain lots of speckle noise and artifacts 

which result in relatively low contrast and the signal to noise ratio (SNR). Therefore, a pre-

processing procedure for speckle reduction is needed in advance so as to improve the 

performance of the subsequent segmentation.

Several filtering approaches have been proposed in the literature for reducing speckle in 

BUS images while preserving edge details. Among these methods, the most successful ones 

are those based on anisotropic diffusion and the bilateral filter [17]. Several existing speckle 

reduction schemes based on anisotropic diffusion are speckle reducing anisotropic diffusion 

(SRAD) [18, 22], interference-based speckle filtering followed by anisotropic diffusion 

(ISFAD) [19], anisotropic diffusion guided by Log-Gabor (ADLG) filters [20], fast feature-

preserving speckle reduction via phase congruency (FFSRPC) [21], and NLLR [17].

Among the above speckle reduction filters, ADLG outperforms the ISFAD and SRAD 

compared with respect to real BUS images [20], FFSRPC outperforms ADLG [21], and 

NLLR performs better than FFSRPC [17]. In another word, NLLR can better maintain 

features with speckle removal than state-of-the-art methods. Based on the above 

consideration, NLLR is chosen to remove the speckle noise while preserving important 

features in BUS images.

In the following, we describe the NLLR filter.
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The NLLR is a non-local low-rank filtering framework for speckle noise reduction. The 

windowed inherent variation (WIV) measure is employed to generate the guidance image, 

G, from the input image I as follows:

G p = Σqgp, g • ∂xI
q

2
+ Σqgp, g • ∂yI

q

2
(1)

where p is a pixel in I, q is a pixel in the rectangular neighborhood centered at p, and gp,g is 

a weighting function based on spatial affinity, which is defined as:

gp, q ∝ exp −
distp, q

2σw  2
(2)

where σw controls the spatial scale of the neighboring rectangle.

With the WIV-guidance image, the distance between two non-local patches centered at 

pixels p and q is computed as:

dist p, q = PI p − PI q ⋅ PG p − PG q (3)

where ‖·‖ represents the L2 norm, and PI(p), PI(q), PG(p) and PG(q) are the vectorized 

patches centered at pixels p and q in image I and guidance image G, respectively. The K 
most similar patches for each patch are selected in the input image. In the implementation, 

the window for searching similar patches is (2 × Sw + 1) × (2 × Sw + 1) with Sw = 20 to 

reduce the computation time, K = 30 and patch size as 7 × 7.

After finding the K most similar patches Pi i = 1
K  (in the imageI) for a given reference patch 

Pref, a patch group (PG) matrix ΨI is constructed as:

ΨI = V Pre f , V P1 , V P2 , ⋯, V PK (4)

where V(.) vectorizes a patch as a 49-element column vector. Similarly, ΨD denotes the PG 

matrix for each pixel in the final despeckled image D. Due to the rank of ΨD which tends to 

be low and the rank of ΨI tends to be high, in the ultrasound images, a low-rank recovery 

process is formulated to estimate ΨD from ΨI. That is, ΨI is decomposed into a low-rank 

component (ΨD) and a spare component (Ψη) by solving:

min
ΨD , Ψη

rank ΨD + α Ψη 0s . t . ΨI = ΨD + Ψη (5)
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where rank(ΨD) denotes the rank of ΨD, which equals to the L0 norm of the singular values 

of ΨD; and a is a weight to balance the two regularization terms.

To better approximate the rank operator by combining the strength of the truncated nuclear 

norm and the weighted nuclear norm, a truncated and weighted nuclear norm (TWNN) ‖⋅‖tw 

is proposed:

ΨD tw
=

i = 1

M
wiσi ΨD (6)

where M is the total number of the singular values; and wi is the weight for the i-th singular 

value σi of ψD.

The wi is defined as

wi =
0 i f i ≤ λ

θ K + 1
σi ΨD + ε

otherwise
(7)

where λ and θ are parameters, and ε is set to be 0.00001 to avoid division by zero. In all the 

experiments, λ = 9 and θ = 5 2

And the initialization of σi(ΨD) is

σi ΨD = max σi
2 ΨI − β, 0 (8)

where β is a parameter that estimates the noise component.

The structured sparsity Ωη is employed to approximate ‖Ψη‖0 for ultrasound speckle 

reduction, which is defined as:

Ωη =
g ∈ Ψη

g ∞ (9)

where g is each 3 × 3 submatrix in Ψη; and ‖.‖∞ is the maximum value over all the elements 

in g.

By putting the Eq. 6 and the Eq. 9 into Eq. 5, the final objective function to recover the 

underlying low-rank matrix is:
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min
ΨD , Ψηi = 1

M
wiσi ΨD + α

g ∈ Ψη

g ∞s . t . ΨI = ΨD + Ψη (10)

where α is set to be 1.0 in the current implementation.

The implementation also can be found in [17].

The phenomenon of speckle reduction by different filtering schemes is illustrated in Fig. 2 

with two breast lesion ultrasound images.

2.2 Contour initialization

The initial contour detection is an important step to be considered prior to the segmentation 

process which based on active contour models. If the initial contour is outside the lesion 

area, the subsequent segmentation result would not be correct.

This stage yields the initial contours used in the subsequent segmentation steps by a set of 

simple but determinant operations in the proposed scheme. The flow chart of the proposed 

fully automatic contours initialization scheme is shown in Fig. 3.

Detailed procedures for this stage are given as follows:

2.2.1 Two-step OBAT pre-segmentation—Otsu method is a well-behaved automatic 

optimal global threshold selection method and has been widely used for its simplicity, low 

computational complexity, stability, and effectiveness [23]. However, when using the 

traditional Otsu method to separate the foreground object, most of the background is still 

retained in the segmentation results (see Fig. 4e–h). To solve this problem, a two-step OBAT 

method is proposed that constrains the search range of the ideal segmentation threshold to 

extract the foreground object inside the image.

A brief description of Otsu threshold method is presented below.

Supposed that the pixels of the gray image were expressed in L gray levels[0, 1, ⋯, L − 1], 

where the variable “L” refers to the total number of gray levels in the image, the number of 

pixels with gray level i is denoted as ni and the total number of pixels can be expressed as 

N = i = 0
L − 1ni. The probability density distribution of gray level i is denoted as Pi =

ni
N , and 

i = 0
L − 1 pi = 1, pi ≥ 0.

The pixels of the image can be divided into two classes C0 (foreground) and C1 

(background) by a threshold t. Then, C0 and C1 respectively represent the pixels within [0, 1, 

⋯, t] and [t + 1, t + 2, ⋯, L − 1]. The probabilities of the two classes and average can be 

denoted as
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ω0 =
i = 0

i = t
pi, ω1 =

i = t + 1

L − 1
pi (11)

μ0 = 1
ω0 t i = 0

t
ipi, μ1 = 1

ω1 t i = t + 1

L − 1
ipi (12)

The mean gray level values of the total image is computed as

μT =
i = 0

L − 1
ipi (13)

The between-classes variance is defined as

σB
2 = ω0 μ0 − μT

2 + ω1 μ0 − μT
2 (14)

Last, the optimal threshold t* is chosen by maximizing σB
2 .

t* = argmaxσB
2 (15)

The experimental results with traditional Otsu algorithm indicate that the obtained threshold 

could not efficiently discriminate the lesion regions and normal tissues (see Fig. 4e–h).

To precisely separate the BUS image into background and foreground, we proposed a two-

step OBAT method to search the ideal segmentation threshold for extracting the foreground 

object inside the BUS image.

The procedure of the proposed automatic threshold pre-segmentation is described as below:

1) Calculate the gray level L of the BUS image, where L refers to the total number 

of gray levels in the input image.

2) The traditional Otsu method is used to calculate the initial segmentation 

threshold t1.

3) With the initial threshold t1, the image I would be separated into two parts C0 

(foreground) and C1 (background). In the BUS image, the gray levels of the 

pixels within this low echogenic tumor area are lower than surrounding. So,we 

assume the set C0 implies the foreground object with a gray level of [0, 1, ⋯, t], 
and C1 represents the back-ground pixels with a gray level of [t + 1, t + 2, ⋯, L 
− 1].
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4) Retain the part C0. The traditional Otsu method is used in the part C0 to 

calculate the threshold t2.

5) Segment the whole BUS image using threshold t2.

2.2.2 Morphologic operations—There is also some fine noise which is some isolated 

misclassified regions in the binary images that generated by the two-step OBAT pre-

segmentation, as shown in Fig. 5d. To reduce the impact of small misclassified regions, 

morphologic erosion and dilatation were performed, using a flat disk-shaped structuring 

element. In order to better separate the background and foreground, a 9-pixel-radius circular 

structuring element is performed in dilatation processing and a 3-pixel-radius circular 

structuring element is performed in erosion processing.

2.2.3 Fill the holes—A flood-fill operation is performed on the image to fill the holes 

inside the initial contour area of the segmented image.

2.2.4 Delete the border-connected regions—After the above operation, we find all 

the connected components. Each connected component represents a possible lesion region. It 

is assumed that the regions which directly connected with the border were not part of the 

lesion regions, often resulting from artifacts or shadows in the ultrasound exam [29]. The 

regions connected with the image borders were directly deleted in many kinds of literature, 

such as [29]. However, sometimes, the lesion region is also connected with the border. If we 

directly delete the border-connected regions, the lesion region will be also deleted. 

Therefore, we propose a criterion of the center window which is about one half size of the 

whole image and centered at the image center to eliminate false detected regions.

The criterion is as follows:

(1) If the border-connected region does not intersect with the center window, this 

border-connected region will be deleted from the lesion candidate list.

(2) If the border-connected region intersects with the center window, this border-

connected region will be truncated by the center window.

2.2.5 The largest region discrimination—The connected region after primary 

segmentation based on threshold segmentation model through the above experiments may be 

more than one, but the real lesion area in the actual situation is often the largest area of the 

connected regions. So, an eight neighborhood tracking algorithm [30] is used to out-line the 

boundary of the lesion area and the size of lesion area as a basis for selecting the interested 

region. The largest connected region is chosen as the initial outline of the lesion.

Then, the preliminary contour is obtained by the above operations, as shown in Fig. 5.

The contour initialization could obtain a reliable lesion region, but it could not detect the 

boundaries of the tumor. For this reason, a post-segmentation stage is required to refine the 

tumor contour on the basis of the second contour initialization.
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2.3 Tumor segmentation

After the initial contour has been identified, the next task is to accurately extract the 

boundaries of breast lesion using a suitable image segmentation approach. The CV model 

[24] as an active contour model based on Mumford-Shah segmentation techniques [26] and 

the level set method [27] is a very popular segmentation method for BUS images [25]. The 

CV model has the advantage that ensures the detected edge closed and continuous. Its 

disadvantages are that the initialization contours are required accurately and the reasonable 

energy function is difficult to obtain due to the BUS image quality. Due to the pseudo edges 

and noises, it tends to fall into the local minimum solution or generate boundary leakages. 

To solve this problem, a novel CV-ROEWA model is proposed.

Next, we first briefly review the traditional CV algorithm and, then, briefly review the 

ROEWA operator, followed by the discussion of the proposed CV-ROEWA model.

2.3.1 The CV model—The CV model is taken to refine the contour of the tumor regions 

by minimizing the energy functional F(c1, c2, C), defined by

F c1, c2, C = μ ⋅ Length C + v ⋅ Area inside C

+ λ1 inside C
I x, y − c1

2dxdy

+ λ2 outside C
I x, y − c2

2dxdy

(16)

where C is the evolving curve, μ ≥ 0, ν ≥ 0, λ1 > 0, λ2 > 0are fixed parameters, the 

constants c1, c2 depending on C are the averages of the image u0 inside C and outside C, 

respectively. Lenght(C) denotes the length of the curve C and Area(inside(C)) denotes the 

area of the region inside the curve C. This energy function can be represented by a level set 

formulation as follows:

F c1, c2, ϕ = μ
Ω

δ ϕ x, y ∇ϕ x, y dxdy

+ v
Ω

H ϕ x, y dxdy

+ λ1 Ω
I x, y − c1

2H ϕ x, y dxdy

+ λ2 Ω
I x, y − c2

2 1 − H ϕ x, y dxdy

(17)

where H(ϕ(x, y)) denotes the Heaviside function, which is defined by

H z = 1
2 + 1

π ⋅ arctan z
ε (18)
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Then, the energy minimization problem can be converted to solving a level set evolution 

equation. The energy F(c1, c2, ϕ) is minimized when ϕ is on the boundary of the object. 

Keeping c1 and c2 fixed and minimizing F, the equation in ϕ is

∂ϕ
∂t = δε ϕ μ ⋅ div ∇ϕ

∇ϕ − v − λ1 u0 − c1
2 + λ2 u0 − c2

2 (19)

In (14)

δε z = d
dzH z = 1

π ⋅ ε
ε2 + z2 (20)

2.3.2 ROEWA operator—The ROEWA operator has constant false alarm rates and 

outstanding localization performance, which is proposed by Fjortoft et al. [28] for SAR 

images. The ROEWA operator is a line-by-line and column-by-column detector, which 

consists of computing the ratio of exponentially weighted averages on opposite sides of the 

central pixel in the horizontal and vertical directions.

To compute the horizontal edge strength component, the image I(x, y) is first smoothed 

column by column using a linear minimum mean square error (MMSE) filter. In the discrete 

case, the MMSE filter f is implemented very efficiently by a pair of recursive filters f1(n) 

and f2(n), realizing the normalized causal and anti-causal part of f(n), respectively

f 1 n = a ⋅ bnu n (21)

f 2 n = a ⋅ b−nu −n (22)

where 0 < b = e−α < 1, a = 1 − b, and u(n) are the discrete Heaviside function. The value of b 
is taken as 0.73. The smoothing function can be written as

f n   = c ⋅ b n = 1
1 + b f 1 n + b

1 + b f 2 n − 1 (23)

where c = (1 − b)/(1 + b).

Next, the causal (f1(x), x > 0) and anti-causal filter (f2(x), x 0) are employed line by line 

with the result of the smoothing operation to obtain μ1 x  andμ2 x .

μX1 x, y = f 1 x * f y ⋅ I x, y (24)
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μX2 x, y = f 2 x * f y ⋅ I x, y (25)

where ∗ denotes convolution in the horizontal direction and ∙ denotes the convolution in the 

vertical direction. The vertical edge strength component RXmax(x, y) is obtained in the same 

manner, except that the directions are interchanged.

μY1 x, y = f 1 y ⋅ f x * I x, y (26)

μY2 x, y = f 2 y ⋅ f x * I x, y (27)

The normalized ratio RXmax(x, y) is found by substituting μX1 x − 1, y  and μX2 x + 1, y  into 

the following:

Rmax = max
μ1
μ2

,
μ2
μ1

. (28)

Finally, with analogy to gradient-based edge detectors for optical images, the magnitude of 

the two components is

R x, y = RX max
2 x, y + RY max

2 x, y (29)

The ROEWA-based edge detector is efficient for the detection of isolated step edges in 

speckled images. Figure 6 shows the gradient-based edge detectors and the ROEWA-based 

edge detectors for the same ultrasound image.

2.3.3 The CV-ROEWA model—In the traditional CV model which has been described 

above, the domain of the function δε(ϕ) is narrow, and this seriously suppressed the 

detection of the edges which are far away from the initial contours. In addition, it is difficult 

to find the accurate boundary of an object in low contrast images. To avoid boundary 

leakages or runs over ϕ, we construct an edge indicator function g as the curve evolution 

stop term to replace δε(ϕ). The role of the edge indicator function g is to make the dynamic 

curves move toward the object boundaries and make the evolution of the contour lines 

accurately stop at the boundary contour of the object. For this purpose, the edge indicator 

function can be defined as:

g R = e−α ⋅ R/β 2
(30)
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or

g R = 1
1 + R/β 2 (31)

where R denotes the edge strength which obtained by ROEWA operator, and α and β are 

constants which are the coefficients of the speed function of the image edge strength field. 

The edge indicator function should be a monotone decreasing function, and it can move the 

zero level curve toward the object boundaries. Because the negative exponential form has 

better performance than the reciprocal form, the negative exponential form is chosen as the 

edge indicator function. Then, the corresponding evolution equation is

∂ϕ
∂t = g R ⋅ μ ⋅ div ∇ϕ

∇ϕ − v − λ1 u0 − c1
2 + λ2 u0 − c2

2

ϕ 0, x, y = ϕ0 x, y inside o f Ω
, (32)

In the implementation, the parameters are fixed as μ = 0.2, ν = 0, λ1 = 1.0, λ2 = 1.0, α = 

0.2, and β = 0.2.

2.4 Evaluation of the automatic segmentation scheme

To compute the difference between the Bground truth^ regions and automatically segmented 

regions, four quantitative performance measures of area error metrics are proposed in [29] 

including true positive (TP), false positive (FP), false negative (FN), and the Jaccard 

similarity (JS). They are defined as

TP =
Ωm ∩ Ωa

Ωm
(33)

FP =
Ωm ∪ Ωa − Ωm

Ωm
(34)

FN =
Ωa ∪ Ωm − Ωa

Ωm
(35)

JS =
Ωm ∩ Ωa
Ωm ∪ Ωa

(36)
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where Ωm represents the area (number of pixels) of the manual tumor region delineated by 

an experienced radiologist, and Ωa represents the area of the tumor region generated by the 

pro-posed method. Figure 7 illustrates the areas corresponding to TP, FP, FN, TN, Ωm, and 

Ωa.

In order to further quantitatively evaluate the performance of the proposed fully automatic 

segmentation scheme, some measures are used in this paper. Figure 8 shows a contingency 

matrix and measures calculated based on it. Based on the table, it is possible to calculate row 

and column wise parameters, positive predictive value (PPV, also called precision) and 

negative predictive value (NPV), sensitivity, and specificity, respectively. PPV and NPV are 

the conditional probability that a malignant or neutral variant is predicted as malignant or 

neutral, respectively. Sensitivity is the proportion of breast tumors which have the correct 

classification in the manual segmentation region. Specificity is the proportion of normal 

breast tissues which have the correct classification. Accuracy is the proportion of correct 

segmentation capability in all sub-regions and it is calculated based on all the four figures in 

the table.

3 Results

In this section, we evaluate the performance of the proposed scheme on a B-mode BUS 

image dataset of 61 cases, where 32 invasive ductal carcinomas (malignant) and 29 

fibroadenomas (benign) have been validated by pathology. The dataset is provided by the 

Third Affiliated Hospital, Sun Yat-sen University, with various kinds of medical imaging 

systems, such as ALOKA, PHILIPS, TOSHIBA, HITACHI, and ESAOTE. All images in our 

dataset contained the breast lesions and pathology reports. The manually delineated tumor 

boundaries by an experienced radiologist with more than 10 years of experience in reading 

BUS images (Kai Li, the second author) were used as the golden standards. The proposed 

fully automatic segmentation algorithm was implemented by using MATLAB (R2013a) on a 

machine which has a clock speed of 2.94 GHz and 4.0 GB memory with no GPU 

optimization. The performance of the proposed method was validated by comparing the 

results with the golden standards.

3.1 Contour initialization results

The aim of the contour initialization scheme is obtaining a reliable lesion region which is 

located in the inner of the tumor region. Figure 4 shows the segmentation results using the 

traditional Otsu algorithm and our two-step OBAT pre-segmentation algorithm. Comparing 

with the results of the traditional Otsu algorithm, the results of the proposed two-step OBAT 

pre-segmentation method contain fewer false detected areas and will be more easily to find 

the credible initial contours.

The contour initialization results of our proposed method are shown in Fig. 4. Comparing 

with the tumor boundaries delineated by the experienced radiologist, it demonstrated that all 

of the initial contours generated by the proposed method are in the tumor regions.
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3.2 Tumor segmentation results

The results of the contour initialization step are used as the initial contours of modified CV 

model. For brevity, only four representative BUS images (two malignant images and two 

benign images) from our test database are selected to present the segmentation results as 

shown in Figs. 9, 10, 11, and 12. The results demonstrate that our automatic initial contour 

generation scheme is valid for breast lesions with different shapes and sizes and even works 

well for the breast lesion from the basal and apical sections. Figure 9a shows an irregular 

malignant tumor, Fig. 10a shows a small malignant tumor, Fig. 11a shows a commonly 

benign tumor, and Fig. 12a shows a benign tumor which is far away from the center of the 

image. Figures 9b, 10b, 11b, and 12b show the filtered images, in which most of the 

speckles have been removed by NLLR model. Figures 9c, 10c, 11c, and 12c show the pre-

segmentation results using the proposed automatic threshold presegmentation algorithm. 

Figures 9d, 10d, 11d, and 12d show the initial contour generated by the proposed automatic 

initial contour generation method. Figures 9e, 10e, 11e, and 12e show the initial contours of 

the original image. Figures 9f, 10f, 11f, and 12f show the final contours delineated by the 

green lines. From the results of our proposed method, it can be clearly observed that the 

contours produced by our approach are located in the true contour of the tumor area 

wherever the true tumor located in the BUS image.

To demonstrate the advantages of the proposed CV-ROEWA model, it is compared with the 

standard CV model using the same initial contour which is generated by the contour 

initialization scheme. We follow the algorithm in [24] exactly and test it on the same 

database. The results after a series of operations with pre-processing, contour initialization, 

and CV model are shown in Fig. 13. The upper row of Fig. 13 shows the results of the 

standard CV model with 100 iterations, 300 iterations, 500 iterations, and 1000 iterations. 

The lower row of Fig. 13 shows the results of our CV-ROEWA model with 100 iterations, 

300 iterations, 500 iterations, and 1000 iterations. It is obviously seen that the final contour 

produced by the CV model may easy cross the true contour with the increase of iterations. 

And the curve evolution using the CV-ROEWA model will stop when the curve evolves the 

real boundary contour of the tumor.

In order to validate the effectiveness of the proposed scheme, we compared the proposed 

method with the currently published method in [34]. We follow the algorithm in [34] exactly 

and test it on our datasets. For all of the 61 BUS images in our database, Elawady’s method 

totally fails to segment the lesion in 11 images; this is because the output result of their 

segmentation tool is not correctly segmented; as a result, the post-processing step is just 

neglecting any region rather than the lesion. One typical case with incorrect segmentation 

using Elawady’s method is shown in Fig. 14d. The proposed scheme is effective in all the 

test images.

The segmentation results of the proposed scheme and Elawady’s in four BUS images are 

shown in Fig. 14. Figure 14a–d shows the results of Elawady’s method, Fig. 14e–h shows 

the results using the contour initialization + standard CV model, Fig. 14 i–l shows the results 

of the contour initialization + CV-ROEWA model, and Fig. 14 m–p shows the results of 

manual segmentation by the radiologist. It is obviously seen that the contours produced by 
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the contour initialization + CV-ROEWA model are closer to the true contour of the tumor 

area.

The quantitative analysis of the segmentation results of Elawady’s method, initial contour + 

CV, and initial contour + CV-ROEWA in the dataset images is listed in Tables 1, 2, 3, and 4, 

where the values include the mean and standard deviations results. Table 1 and Table 2 show 

the area error metrics of benign and malignant images, respectively. The segmentation 

accuracy, sensitivity, specificity, PPV, and NPV are illustrated in Table 3 and Table 4, 

respectively.

The Kruskal-Wallis method is used to test the significance of the differences among the 

three methods. The p values obtained are shown in Table 5. To further reveal if there are 

statistical differences between each pair of Elawady’s method, the initial contour + CV 

model, and the initial contour + CV-ROEWA model, the post hoc analysis is performed 

which is based on Tukey-Kramer method and a 95% confidence inter-val. The result of post 

hoc analysis is shown in Table 6.

3.3 Classification of breast cancer using morphological features

Morphological features have been proved to be effective features in differentiating benign 

from malignant breast tumors with high accuracy [31]. Circularity, elongation, compactness, 

orientation, and radial distance standard deviation are the most common and most effective 

morphological features for evaluating benign or malignant of breast tumors in clinical 

application [31–33]. The five morphologic features formed the input to a support vector 

machine (SVM) to distinguish the benign tumors from malignant ones. In the experiments, 

we use 41 cases (including 19 benign breast tumors and 22 malignant ones) to train the 

SVM and the remaining 20 cases (including 10 benign breast tumors and 10 malignant ones) 

to test the SVM. The morphological features of circularity, elongation, compactness, 

orientation, and radial distance standard deviation are extracted from the results of CV 

model, manual segmentation, and the proposed method. The experimental result is listed in 

Table 7 and the ROC analysis is shown in Fig. 15.

4 Discussion

Initial contour generation is a prerequisite step for this automatic segmentation scheme of 

BUS images. The initial contour provided by the proposed contour initialization method can 

provide a rough location of the lesion. In the case of low contrast, it is difficult to exclude 

normal tissues and artifacts via the traditional Otsu method. To address this problem, we 

propose an adaptive thresholding method for low contrast images. In our method, the 

contour initialization outputs are close to the true boundaries of the tumor. Hence, fewer 

iterations are required in the subsequent processing.

Tables 1, 2, 3 and 4 list the quantitative analysis results of these three methods. The TP of 

the proposed method is larger than Elawady’s method and CV model, indicating that the 

segmented area of our method covers more area of the true tumor. The FP and FN of the 

proposed method are better than Elawady’s method. For the metric JS, the proposed method 

is closer to 1 than Elawady’s method and CV model, proving that the contours detected by 
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our method are more similar to the manual segmentation. From Table 3 and Table 4, it can 

be clearly observed that the accuracy, sensitivity, specificity, PPV, and NPVof our proposed 

method are larger than Elawady’s method and initial contour + CV model, further proving 

that the contours detected by our method are more effective and more accurate in the studied 

database. The results show that the proposed model achieves better overall performance than 

both the CV model and Elawady’s method.

The p values obtained by Kruskal-Wallis test are shown in Table 5. It can be seen that the 

difference among the three methods is significant. The result of post hoc analysis is reported 

in Table 6. It can be seen that the p12 values of accuracy, sensitivity, specificity, PPV, and 

NPV are all less than 0.05, indicating there is a significant difference between Elawady’s 

method and initial contour + CV model. All the p13 values of accuracy, sensitivity, 

specificity, PPV, and NPV are much smaller, indicating the significant difference between 

the results of Elawady’s method and initial contour + CV-ROEWA model. All the p23 values 

are not less than 0.05, indicating there is no significant difference between the initial contour 

+ CV model and the initial contour + CV-ROEWA model. However, we believe no 

significance does not mean unimportance. As mentioned in section 3.2, CV-ROEWA model 

shows better convergence than CV model with the increase of iterations.

Moreover, with the recent development of radiomics and radiogenomics in breast cancer 

[35–39], we expect this proposed method would facilitate such analysis of BUS images and 

generate interesting findings. The limit of the proposed scheme is that the largest region 

criterion in contour initialization could reduce the efficiency of the method in cases with 

multiple tumors, because the detection of a second mass is deliberately ignored.

5 Conclusions

In this paper, we propose an automatic segmentation framework for breast ultrasound image. 

The approach based on semiautomatic or manual segmentation is time-consuming and 

difficult to reproduce. In addition, some popular semiautomatic segmentation methods rely 

on the initial contour. Hence, this paper proposes an automatic contour initialization scheme 

to automatically obtain the initial contour. And a new CV-ROEWA mod-el is proposed to 

further refine the contours of the tumor regions. Qualitative and quantitative analyses in 

clinical BUS images illustrate the proposed method is superior to previous segmentation 

models in terms of accuracy and robustness.

In future work, we plan to test the proposed model with more clinical data and further 

expand our model for classification of the benign or malignant tumors.
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Fig. 1. 
The main framework of the proposed scheme for BUS images segmentation
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Fig. 2. 
Comparisons of speckle reduction using different filtering schemes. a, e Original images. b, 

f The filtered images using the SRAD model. c, g The filtered images using SRPC model. d, 
h The filtered images using the NLLR model
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Fig. 3. 
Flow chart of the contour initialization scheme
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Fig. 4. 
A comparison between the Otsu method and the proposed modified Otsu threshold selection 

method. a–d Original images. e–h Binary images generated using Otsu method. i–l Binary 

images generated using the modified Otsu method
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Fig. 5. 
The process of initial contour generation. a Original image. b Filtered image. c Result of 

traditional Otsu method. d Result of the proposed adaptive thresholding method. e Result of 

morphologic operations. f Result of filling the holes. g Result of deleting border-connected 

regions. h Result of the largest region discrimination. i The initial contour overlapping the 

original image. (The red circles indicate the small isolated misclassified regions)
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Fig. 6. 
A comparison between the gradient-based edge detectors and the ROEWA-based edge 

detectors. a The original image. b The gradient-based edge detectors. c The ROEWA-based 

edge detectors
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Fig. 7. 
Illustration of the areas corresponding to TP, FP, FN, TN, Ωm, and Ωa
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Fig. 8. 
Contingency matrix of measures
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Fig. 9. 
Segmentation results for the first malignant BUS image: (a) original image; (b) filtered 

image; (c) result of the automatic threshold pre-segmentation; (d) the initial contour; (e) the 

initial contour of the original image; (f) the final result.
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Fig. 10. 
Segmentation results for the second malignant BUS image. a Original image. b Filtered 

image. c The result of the automatic threshold pre-segmentation. d The initial contour. e The 

initial contour of the original image. f The final result
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Fig. 11. 
Segmentation results for the first benign BUS image. a Original image. b Filtered image. c 
The result of automatic threshold pre-segmentation. d The initial contour. e The initial 

contour of the original image. f The final result
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Fig. 12. 
Segmentation results for the second benign BUS image. a Original image. b Filtered image. 

c The result of automatic threshold pre-segmentation. d The initial contour. e The initial 

contour of the original image. f The final result
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Fig. 13. 
A comparison between the CV model and the CV-ROEWA model. a The original imag., b–e 

The results using the CV model. f–i The results using the CV-ROEWA mode. b, f 100 

iterations. c, g 300 iterations. d, h 500 iterations. e, i 1000 iterations
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Fig. 14. 
Comparison of breast tumor segmentation in clinical ultrasound images. a–d The 

segmentation results using Elawady’s method. e–h The segmentation results using the 

contour initialization + standard CV model. i–l The segmentation results produced by the 

contour initialization + CV-ROEWA model. m–p The manual segmentation results by the 

radiologist
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Fig. 15. 
ROC curves of classification
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Table 1

Statistical evaluation with area error metrics of benign tumors

Methods TP (%) FP (%) FN (%) JS (%)

Elawady’s method 70.39 ± 18.57 1.62 ± 2.40 29.61 ± 18.57 68.52 ± 17.65

Initial contour + CV 84.92 ± 5.59 8.51 ± 15.15 15.08 ± 5.59 78.10 ± 11.67

Initial contour +CV-ROEWA 87.84 ± 5.43 2.42 ± 2.05 12.16 ± 5.43 85.29 ± 5.20
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Table 2

Statistical evaluation with area error metrics of malignant tumors

Methods TP (%) FP (%) FN (%) JS (%)

Elawady’s method 53.86 ± 28.59 11.76 ± 33.10 46.14 ± 28.59 47.74 ± 26.65

Initial contour + CV 82.45 ± 5.33 2.28 ± 2.87 17.55 ± 5.33 79.72 ± 4.46

Initial contour + CV-ROEWA 85.52 ± 4.88 2.68 ± 3.11 14.48 ± 4.88 82.65 ± 3.58
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Table 3

Segmentation performance measures of benign tumors

Methods Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%)

Elawady’s method 96.73 ± 2.88 70.39 ± 18.57 99.77 ± 0.40 96.97 ± 5.59 96.91 ± 3.24

Initial contour + CV 97.39 ± 2.03 84.92 ± 5.59 98.94 ± 1.50 90.89 ± 12.97 98.38 ± 1.65

Initial contour +
 CV-ROEWA

98.31 ± 1.50 87.84 ± 5.43 99.57 ± 0.54 96.79 ± 2.57 98.63 ± 1.55

Med Biol Eng Comput. Author manuscript; available in PMC 2019 January 10.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Liu et al. Page 39

Table 4

Segmentation performance measures of malignant tumors

Methods Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%)

Elawady’s method 87.89 ± 9.32 53.86 ± 28.59 96.62 ± 9.71 89.56 ± 23.13 90.39 ± 8.03

Initial contour + CV 95.40 ± 2.46 82.45 ± 5.33 98.98 ± 1.39 96.40 ± 4.29 95.92 ± 3.18

Initial contour +
 CV-ROEWA

95.96 ± 2.29 85.52 ± 4.88 99.05 ± 1.23 96.49 ± 3.90 96.49 ± 3.13
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Table 5

A summary of the p values for accuracy, sensitivity, specificity, PPV, and NPV of Kruskal-Wallis test

Measurements Accuracy Sensitivity Specificity PPV NPV

p < 0.0001 < 0.0001 < 0.0001 0.0003 0.0002
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Table 6

A summary of the p values of post hoc analysis (p12 is calculated between Elawady’s method and the initial 

contour + CV model, p13 is calculated between Elawady’s method and the initial contour + CV-ROEWA 

model, and p23 is calculated between the initial contour + CV model and the initial contour + CV-ROEWA 

model)

Measurements Accuracy Sensitivity Specificity PPV NPV

p12  0.0238 < 0.0001 < 0.0001 0.0005 0.0137

p13 < 0.0001 < 0.0001 < 0.0001 0.0043 0.0002

p23  0.2095 0.0529 0.9135 0.8155 0.4614

Med Biol Eng Comput. Author manuscript; available in PMC 2019 January 10.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Liu et al. Page 42

Table 7

Classification of breast tumors by SVM with morphological features

Methods Correct Accuracy (%) AUC

Manual segmentation 17 85 0.94

Initial contour + CV 14 70 0.90

Initial contour + CV-ROEWA 18 90 0.94
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