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Abstract We describe a mechanistic model ofWindkessel phenomenon based

on the linear dynamics of fluid-structure interactions. The phenomenon has

its origin in an old-fashioned fire-fighting equipment where an air chamber

serves to transform the intermittent influx from a pump to a more steady

stream out of the hose. A similar mechanism exists in the cardiovascular sys-

tem where blood injected intermittantly from the heart becomes rather smooth

after passing through an elastic aorta. In existing haeodynamics literature this

mechanism is explained on the basis of electric circuit analogy with empiri-

cal impedances. We present a mechanistic theory based on the principles of

fluid/structure interactions. Using a simple one-dimensional model, wave mo-

tion in the elastic aorta is coupled to the viscous flow in the rigid peripheral

artery. Explicit formulas are derived that exhibit the role of material proper-

ties such as the blood density, viscosity, wall elasticity, radii and lengths of

the vessels. The current two-element model in haemodynamics is shown to be

the limit of short aorta and low injection frequency and the impedance coef-

ficients are derived theoretically. Numerical results for different aorta lengths

and radii are discussed to demonstrate their effects on the time variations of

blood pressure, wall shear stress and discharge.
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1 Introduction

The Windkessel Effect is an important phenomenon in cardiovascular haemo-

dynamics. Windkessel means air chamber in German whose role in old-fashioned

fire-engine bears some similarity to the elastic aorta that affects arterial pulses,

as explained by the classic work of [1]. Comprehensive review and historical

survey of the literature on this and related to phenomenon has been given

in [10,22]. One of the prominant physical features is that while blood enters

the aorta from the heart in intermittent spurts, it always flows out of the pe-

ripheral arteries and the smaller capillaries downstream as more continuous

pulsations. By putting a balloon between a pump and a long rubber tube,

experimental simulations of the windkessel effect even show that the outflow

can be practically steady(e.g., [13]).

In recent years many haemodynamic problems involving fluid/solid inter-

actions have been modeled by highly computational solution of the equations

governing the two coupled phases (e.g., [14,15]). Existing mathematical de-

scriptions of the windkessel effect have however been dominated by simplifed

impedance models familiar in the electric circuit theories. In the simplest two-

parameter model [6], the elastic aorta serves only as a reservoir whose vol-

ume variation causes a pressure difference between the left ventricle and the

peripheral artery. This model resembles the Helmholtz mode in an acoustic

cavity where pressure and density change due to the compressibility of air.

More complex models involving three or four parameters have been proposed

for better matching with experiments [22]. The numerical values of the pa-

rameters are determined by fitting predicted velocity and pressure with their

measured values from specific experiments. Various techniques for determin-

ing these parameters, such as the Pulse Pressure Method (PPM), have been

developed [16]. In addition to volume expansion and compaction, the role of

wave propagation in the aorta has also been emphasized by several authors [6,

8]. It has been pointed out that occlusions, discontinuities or bifurcations can

cause wave reflections in aorta [4,19,21]. These effects require the recognition

that the aorta is not too short, as implied by the volume expansion and con-
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traction assumption in the classical model [7]. For treating such issues Wave

Intensity Analysis was introduced by Parker [11] and has been applied by oth-

ers[17,20,23,24]. In the Reservoir-Wave Approach, Wang et al. [23] reasoned

that pressure changes are due not only to the passage of waves but also to

a change in volume of an elastic vessel or to a change in chamber elasticity,

as occurs during ventricular contraction and relaxation, Thus the measured

pressure should be the sum of a volume-related pressure and a wave-related

pressure. A recent review has been given by Tyberg [18].

Many of these studies still rely on the use of empirical impedance param-

eters such as compliance and resistance. In this article we wish to present a

mechanistic theory where only the material properties and the geometric di-

mensions of the structure are needed. For illustration we consider the simple

model shown in Figure 1 where an elastic aorta of mean radius R̂ and length

L̂ is connected to the heart at one end and to a rigid peripheral artery of

smaller radius R and length L at the other. Blood enters the aorta from the

heart at the averaged velocity UH(t) which is a periodic sequence of isolated

pulses and flows out of the peripheral artery to the surrounding environment

of known pressure. Based on the theory of fluid/structure interactions, we first

investigate the physics. We shall show that for a short aorta the downstream

flow out of the artery is pulsatory but continuous as predicted by the classical

two-element model. The empirical impedance parameters can however be the-

oretically derived in terms of the structural properties or the vessel system.

We shall also show that for a long compliant section the flow out of the artery

can become essentially steady, as is known in the fire-fighting system and

demonstrated in laboratory simulations with a balloon [13]. It is hoped that

the present work may provide deeper mathematical and mechanistic insight of

a problem in arterial haemodynamics.

2 Intermittent Injection from the Heart

We first present a simple model of intermittent influx. Let the area-averaged

velocity UH(t) of blood influx from the left ventricle at x = 0 be an infinite

series of intermittent pulses which can be expressed as a Fourier series

UH(t) =

∞∑

n=−∞

UH
n eiωnt =

∞∑

n=−∞

UH
n einπt/T > 0, (2.1)
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where 2T is the fundamental period of the pulses, ω1 = π/T the fundamental

frequency, and UH
n is the amplitude of the n-th harmonic. In particular, UH

0

is the steady (DC) component. For UH to be real we require that UH
−n equals

the complex conjugate of UH
n , i.e., UH

−n = (UH
n )∗.

Let each pulse be asymmetric and non-zero within a portion of the period.

While any realistic injection rate can be modeled by the Fourier series with

properly chosen UH
n , for simplicity we assume it to be of the following form

within a typical period of −T < t < T :

UH(t)

Umax
=





cos
(
πt
2a

)
, −a < t < 0,

cos
(
πt
2b

)
, 0 < t < b;

0, −T < t < −a, b < t < T

(2.2)

where Umax is the maximum of UH . We shall later take a < b so that the rise

is steep and the fall is flat. The harmonic amplitudes are readily obtained.

In real form, the influx velocity is

UH(t) =
Umax

2T

∞∑

n=0

ǫn

{
(π/2a) cos(nπa/T )

(π/2a)2 − (nπ/T )2
+

(π/2b) cos(nπb/T )

(π/2b)2 − (nπ/T )2

}
(2.3)

where ǫn is the Jacobi symbol with ǫ0 = 1, ǫn = 2, n = 1, 2, 3, .... It is easy to

see that the series dies out as 1/n2 for increasingly large n. Note that there

is no singularity at 2a = T/n since cosπ/2 = 0. The time-averaged steady

current is

UH
0 =

Umax

2T

(
1

π/2a
+

1

π/2b

)
= Umax

a+ b

πT
(2.4)

The time series of the influxQH(t) = πR̂2UH(t) is shown for a = 4T/15, b =

8/15T in Figure 2.

In the cardiovascular system blood is forced from the ventricle into the

elastic aorta, then flows into the peripheral artery. Let us first examine the

compliant aorta.

3 Dynamics within the Aorta

Using symbols distinguished by wide hats, we consider an aorta of mean

radius R̂ and length L̂. Since the aorta is typically much larger in radius

than the peripheral artery, viscosity can be negligible. This is justified by

the following estimates of the Womersley number α = R̂
√

ω/ν which is the
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ratio of vessel radius to the boundary layer thickness. Take the blood den-

sity to be ρ = 1.05g/cm3, aorta radius R̂ = O(1.5 cm), kinematic viscosity

ν = 4 ∗ 10−2 cm2/s. Let the heart rate be 72 beats per minutes (frequency

f = 1.2 s−1 or, ω = 2π ∗ 1.2 = 7.54 radian/s. The Womersley number

α = 1.5 ∗
√

7.54/4 ∗ 10 = 20.6 is rather large. Viscosity is therefore quite

negligible except near the wall. In contrast the typical radius of a peripheral

artery is R = O(0.2 cm); the Womersley number is of order unity (α = 2.93).

Resistance by viscosity must be accounted for.

For the sake of generality, we assume that the aorta length L̂ can be com-

parable to the typical length of the waves inside. Let Û(x, t) denote the area-

averaged blood velocity and p̂(x, t) the difference between the blood pressure

inside and the ambient pressure outside the aorta. Neglecting viscosity and

nonlinearity, the conservation laws of mass and momentum are

1

ρC2

∂p̂

∂t
+

∂Û

∂x
= 0, and

∂Û

∂t
+

1

ρ

∂p̂

∂x
= 0, (3.1)

throughout the aorta 0 < x < L̂. C is the Moens-Korteweg wave speed [2],

[12],

C =

√
Eh

2ρR̂
(3.2)

which depends on Young’s modulus of elasticity E, the blood density ρ, the

thickness h and the radius R̂ of the vessel wall. The two conservation laws can

be combined to yield the classical wave equation

1

C2

∂2(p̂, Û)

∂t2
=

∂2(p̂, Û)

∂x2
, 0 < x < L̂. (3.3)

It is known that for human and dogs, C = 5.8 ∼ 8 m/s; and peak blood

velocity Û ≈ 0.5 m/s [12,3]. Linearity is justifiable since Û/C ≪ 1.

At the ventricular entrance (the heart valve) the boundary condition is

Û(0, t) = UH(t) x = 0. (3.4)

Matching conditions at the junction (x = L̂) with the peripheral artery will

be added later.

Let the unknown aorta pressure be expressed formally as a Fourier series

p̂(x, t) =

∞∑

n=−∞

P̂n(x)e
iωnt, (3.5)
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then,

∂2P̂n

∂x2
+ k2nP̂n = 0, where kn =

ωn

C
. (3.6)

Corresponding to the fundamental mode, k1 = ω1/C = π/CT = 2π/λ1 where

2T is the wave period and λ1 = 2CT is the wave length. Formally the solution

to (3.6) is

P̂n(x)e
iωnt =

1

2

[
(An + iBn) e

−iknx + (An − iBn) e
iknx

]
eiωnt (3.7)

which represents the sum of incident and reflected waves.

Let the aorta velocity Û(x, t) be of the form,

Û(x, t) =
∞∑

n=−∞

Ûn(x)e
iωnt (3.8)

Using (3.1),

iωnÛn(x) = −
1

ρ

∂P̂n

∂x
=

kn
ρ

(An sin knx−Bn cos knx) e
iωnt. (3.9)

The unknown coefficients An and Bn can be formally solved in terms of the

velocity at x = 0 and the pressure at x = L̂ by two continuity requirements.

Leaving the straightforward details in Appendix A, we cite the result as follows,

P̂n(x) =

(
Pn(L̂) +

iωnρU
H
n

kn
sin knL̂

)
cos knx

cos knL̂
−

iωnρU
H
n

kn
sin knx (3.10)

which can be used in (3.5) to give

p̂(x, t) =
∞∑

−∞

{(
Pn(L̂) +

iωnρU
H
n

kn
sin knL̂

)
cos knx

cos knL̂
−

iωnρU
H
n

kn
sin knx

}
eiωnt

(3.11)

Using (3.9) at x = L̂, the aorta velocity Û(L̂, t) is finally determined in terms

of UH
n and Pn(L̂),

Û(L̂, t) = UH
0 +

∑

n6=0

kn
iωnρ

[(
Pn(L̂) +

iωnρU
H
n

kn
sin knL̂

)
sin knL̂

cos knL̂

+
iωnρU

H
n

kn
cos knL̂

]
eiωnt. (3.12)

The coefficients Pn(L̂), n = 0,±1,±2, . . . are yet to be found.
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4 Flow in the Peripheral Artery

We model the peripheral artery by a rigid tube of radius R and length L occu-

pying the domain L̂ < x < L̂+L. Accounting for laminar viscosity throughout

the tube, the governing equation for the internal velocity u(r, t), which is uni-

form in x but varies significantly in the radial direction, is

ρ
∂u

∂t
= −

∂p

∂x
+ µ

1

r

∂

∂r

(
r
∂u

∂r

)
, 0 < r < R (4.1)

The pressure gradient in the straight artery, so far unknown, is uniform in x

so that

p(x, t) =
∞∑

n=−∞

Pn(L̂)
(L̂+ L− x)

L
eiωnt (4.2)

From here on we shall abbreviate Pn(L̂) = P̂n(L̂) by Pn, unless specified

otherwise.

The arterial velocity can be formally expanded as

u =

∞∑

n=−∞

un(r)e
iωnt (4.3)

With the boundary conditions that u(R, t) = 0 and ∂u(0,t)
∂r = 0, the solution by

Womersley [25] for one harmonic n = 1 can be generalized to higher harmonics

of any n,

un(r) = −
i

µ

Pn

L

R2

α2
n

(
1−

J0(i
3/2αnr/R)

J0(i3/2αn)

)
, n = 0,±1,±2,±3, ... (4.4)

where J0 denotes Bessel function of order 0, and αn is the Womersley number

of the n-th harmonic which is the ratio of radius to the Stokes layer thickness

δn of the nth harmonic. For positive integer n,

α2
n = R2ωn

ν
=

4R2

δ2n
, δn =

√
2ν

ωn
(4.5)

For negative integer n = −|n|, ωn < 0. We replace αn by −|αn|. Then

J0(i
3/2αn) becomes J0(i

3/2i2|αn|) = J0(i
1/2|αn|) and u−|n| is the conjugate of

u|n| since i9/2 = i1/2 = (i3/2)∗.

By integrating (4.1) across the tube,

ρπR2 ∂ 〈u〉

∂t
= πR2 1

L

∞∑

n=−∞

Pn e
iωnt + µ2πR

[
∂u

∂r

]

R

(4.6)
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where

〈u〉 =

∞∑

n=−∞

〈un〉 e
iωnt =

1

πR2

∫ R

0

u(r) 2πrdr (4.7)

is the area averaged velocity in the artery. From the combination of (4.3) and

(4.4), the frictional resistence on the wall is

2πR

[
µ
∂u

∂r

]

r=R

= 2πRµ

∞∑

n=−∞

neiωnt
∂un(r)

∂r

∣∣∣∣∣
r=R

= −2πR

∞∑

n=−∞

eiωnt

{
Pn

L

R2

iα2
n

i3/2αn
J ′
0(i

3/2αn)

J0(i3/2αn)

}
(4.8)

It follows from (4.6) that, for each harmonic

〈un〉 =
Pn

iωnρL

[
1−2

i1/2

αn

J ′
0(i

3/2αn)

J0(i3/2αn)

]
(4.9)

We also get the wall stress from (4.4):

τw = µ
∂u

∂r

]

R

= −
∞∑

n=−∞

eiωnt

{
Pn

L
R2 i

1/2

αn

J ′
0(i

3/2αn)

J0(i3/2αn)

}
. (4.10)

Finally we determine Pn ≡ Pn(L̂) by requiring flux continuity at the junc-

tion x = L̂.

πR2 〈u〉 = πR̂2Û(L̂) (4.11)

Using (3.12) and (4.9), we get

πR2 Pn

iωnρL

[
1−2

i1/2

αn

J ′
0(i

3/2αn)

J0(i3/2αn)

]

= πR̂2

{
kn
iωnρ

[(
Pn +

iωnρU
H
n

kn
sin knL̂

)
sin knL̂

cos knL̂

+
iωnρU

H
n

kn
cos knL̂

]}
(4.12)

Thus Pn is finally determined in terms of the known UH
n for all n,

Pn =

πR̂2

cos knL̂
UH
n

πR2

iωnρL

[
1−2 i1/2

αn

J ′

0(i
3/2αn)

J0(i3/2αn)

]
− πR̂2kn

iωnρ
sin knL̂

cos knL̂

. (4.13)
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With this result the arterial velocity and wall shear stress can be obtained

in terms of the influx velocity from the ventricle. In particular (4.9) gives the

harmonic amplitude 〈un〉 of the artery velocity

〈un〉 =
Pn

iωnρL

[
1−2

i1/2

αn

J ′
0(i

3/2αn)

J0(i3/2αn)

]
=

R̂2/R2

cos knL̂
UH
n

1− (R̂2/R2)knL[
1−2 i1/2

αn

J′

0(i3/2αn)

J0(i3/2αn)

] sin knL̂

cos knL̂

=
UH
n

R2

R̂2
cos knL̂− knL sin knL̂[

1−2 i1/2

αn

J′

0(i3/2αn)

J0(i3/2αn)

]
(4.14)

after using (4.13) in (4.9). The artery velocity 〈u〉 follows from (4.7).

We stress that the preceding results hold for all integrals n = 0, 1, 2, . . . .

The special case of n = 0 can either be obtained by taking the limit of vanishing

argument of J0 in (4.4), to get

u0(r) =
P0

4µL
(R2 − r2) (4.15)

or derived directly from the momentum equation for the zeroth harmonic

0 =
P0

L
+ µ

1

r

∂

∂r

(
r
∂u0

∂r

)
. (4.16)

and the boundary conditions

u0 = 0, r = R;
∂u0

∂r
= 0, r = 0. (4.17)

By taking the cross-sectional average

〈u0〉 =
1

πR2

∫ R

0

2πru0dr =
P0R

2

8µL
(4.18)

one finds the relation

P0 =
8µL

R2
〈u0〉 . (4.19)

As a check, we take n = 0 in (4.13) to find,

P0 = 8

(
ρ
Lν

R2
UH
0

)
R̂2

R2
(4.20)

since α0 = 0. This result can be used in (4.19) to get

〈u0〉 =
R2

8µL
8

(
ρ
Lν

R2
UH
0

)
R̂2

R2
= UH

0

R̂2

R2
(4.21)

which is of course the steady part of (4.11).
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5 Physical Deductions and Limiting Cases

5.1 Effects of artery radius, viscosity and/or frequency

In the denominator of (4.13), the first term

Fn = |Fn|e
iθn =

1

i

[
1−2

i1/2

αn

J ′
0(i

3/2αn)

J0(i3/2αn)

]
(5.1)

represents the effect of viscous resistance in the artery and wave frequency.

The exact behavior of Fn is plotted in Figure 3 for a wide range of αn. For

large Womersley’s number (αn ≫ 1, i.e., low viscosity or high frequency), we

get Fn → −i.

For all n, 0 < |Fn| < 1. Since the n-th term in the Fourier series of p̂, p, û

and 〈u〉 diminishes with UH
n (t) as O(n−2), only the lowest few modes are

numerically dominant. Let us consider the limit of small αn, i.e., small artery,

high viscosity or low frequency, and denote z = i3/2αn so that

2
i1/2

αn

J ′
0(i

3/2αn)

J0(i3/2αn)
= −

2J ′
0(z)

zJ0(z)
(5.2)

Since for small z, i.e., small Womersley number,

J0(z) = 1−
z2

4
+

z4

24(2!)2
+ · · · , J ′

0(z) = −
z

2
+

z3

22(2!)2
+ · · · (5.3)

J ′
0(z)

zJ0(z)
=

− 1
2 + z2

22(2!)2 + · · ·

1− z2

4 + z4

24(2!)2 + · · ·
= F (z2) = F (−iα2

n) (5.4)

we get
1

i

{
1− 2

i1/2

αn

J ′
0(i

3/2αn)

J0(i3/2αn)

}
≈

α2
n

8
= R2ωn

8ν
(5.5)

i.e.,

Fn ≈
α2
n

8
= R2ωn

8ν
(5.6)

This approximation is compared with the exact expression in Figure 3, showing

good agreement within the range 0 < αn < 1.5.

From (4.13) Pn reduces to

Pn =

πR̂2

cos knL̂
UH
n

πR2

ρL
R2

8ν − πR̂2kn

iωnρ
sin knL̂

cos knL̂

, αn ≪ 1. (5.7)

Note that the viscous resistance term in Pn no longer depends on n, as in the

conventional two-element model to be reexamined later.
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5.2 Short aorta

Let us next consider the role of elastic deformation of the aorta wall. Again

we focus on the first few n in the Fourier series. Consider in particular a

short aorta and arbitrary αn. We let knL̂ ≪ 1 in (5.7), so that cos knL̂ →

1, sin knL̂ → knL̂, and

−
πR̂2kn
iωnρ

sin knL̂

cos knL̂
→ i

kn
ωn

πR̂2knL̂

ρ
= iωn

πR̂2L̂

ρC2
(5.8)

It follows that

Pn →
πR̂2UH

n

πR2

iωnρL

[
1−2 i1/2

αn

J ′

0(i
3/2αn)

J0(i3/2αn)

]
+ πR̂2L̂

ρC2 iωn

. (5.9)

This result can be derived independently as shown in Appendix A. From (5.10)

we get

〈un〉 =
UH
n

R2

R̂2
− knLknL̂[

1−2 i1/2

αn

J′

0(i3/2αn)

J0(i3/2αn)

]
(5.10)

In particular, if there is no aorta, L̂ = 0, we get

〈un〉 = UH
n

R̂2

R2
(5.11)

so that

〈u〉 =

∞∑

−∞

〈un〉 e
iωnt =

R̂2

R2

∞∑

−∞

UH
n eiωnt =

R̂2

R2
UH(t). (5.12)

Flow in the peripheral artery is just as intermittent as the influx, maintained

by the pressure gradient given in(4.2). This intermittency is expected since

change to smoother flow is entirely contributed by the compliant aorta.

6 Reduction to the Classical Two-element Model

We shall show in this section that the conventional two-element model is the

limit of the wave theory for short aorta and low frequency.

In the two-element model the flow rate is assumed to be affected only by

the volume change of the aorta and wall friction in the artery. Using linear

approximations for both parts, mass conservation requires

Q(t) = πR̂2UH(t) = K
∂p

∂t
+

p

f
(6.1)
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where Q(t) denotes the influx rate, K the compliance and f the resistance.

For a periodic influx,

Q(t) =

∞∑

n=−∞

Qne
iωnt where Qn = πR̂2UH

n (6.2)

the blood pressure is

p =

∞∑

n=−∞

Pne
iωnt, where P0 = fQ0, Pn =

Qn
1
f + iωnK

(6.3)

The blood discharge rate in the artery is

Q =
p

f
=

1

f

∞∑

n=−∞

Pne
iωnt =

1

f

∞∑

n=−∞

Qn
1
f + iωnK

(6.4)

For very large K (soft aorta),

Q(t) ≈ Q0 =
P0

f
(6.5)

The flux is dominated by the steady part and is no longer pulsatory.

Returning to our wave theory, if the Womersley number in the peripheral

artery is small and the aorta is short, then (4.13) (or (5.7),(5.9)) reduces to

Pn =
πR̂2UH

n

πR4

8ρLν + iωn
πR̂2L̂
ρC2

, αn ≪ 1, knL̂ ≪ 1. (6.6)

Eq.(6.6) is of the same form as (6.3). The empirical resistance and conductance

can be identified to be

1

f
=

πR4

8ρLν
, K =

πR̂2L̂

ρC2
. (6.7)

Thus the conventional impedance parameters are now theoretically derived

and related to the structural properties of the vascular system. In particular

the compliance coefficient K can be large when R̂ and whL are sufficiently

large and the capacitance C is small. Pn can then be small for all n 6= 0 and

overwhelmed by the steady part P0. Consequently 〈u(t)〉 ≈ 〈u0〉; the outward

flow can be nearly uniform in time, as in the fire-fighting hose system.

7 Sample Numerical Results

We now present the numerical results calculated from the full theory.
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7.1 Inputs

The following inputs are fixed in our first example: ρ = 1.06(g/cm3), ν =

3.3 × 10−2(cm2/s), C = 440(cm/s), T = 0.417(s), corresponding to the

period 2T = 0.834(s) or heart beat rate of 72/min. We first choose a large

aorta with R̂ = 3.2 (cm) and small peripheral artery with R = 0.29(cm) and

L = 100 (cm). By setting a = 4T/15 = 0.11(s), b = 8T/15 = 0.22(s) in (2.2),

the ratio UH/Umax is plotted in Figure 2. By combining (2.4) with (4.20) we

get

P0 =
8ρLν

R2

a+ b

πT

R̂2

R2
Umax (7.1)

In order that the mean blood pressure P0 ≈ 100 mmHg, we take Umax = 12.6

cm/s. The influx discharge rate QH(t) = πR̂2UH(t) is also plotted in Figure

2. With these inputs the artery parameter is f = 0.95 mmHg/cm3 according

to (6.7).

7.2 Large Aorta of Different Length

We first examine the effect of aorta lengths examine the results for L̂ =

(5, 10, 15) cm. From (6.7), the corresponding compliance factors are K =(1.07,

2.09,3.13) cm3/mmHg respectively. For these three cases, the blood pressure

at the junction(x = L̂) is displayed in Figure 4. In all cases the blood pressure

increases during the systolic phase when the influx velocity is strong, and de-

creases during the diastolic phase when the influx is weak. However pressure

variation is the largest for the shortest aorta(5 cm) and the smallest for the

longest aorta.

Figure 5 shows the outflux discharge in the peripheral artery Q(t) =

〈u(t)〉πR2. It is seen that the flux is no longer intermittent and quite con-

tinuous with minor fluctuations about the mean. The longer the aorta, the

more steady the outflow. This confirms the primary feature of the windkessel

effect. Variation of the wall shear stresses τw along the peripheral artery is

shown in Figure 6. Larger wall shear stress occurs in a shorter aorta. The

mean wall shear stress is about −0.14 mmHg, or approximately 186dyn/cm2,

which is in the range common in human physiology [5].
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7.3 Smaller Aorta

Let us consider two smaller aortas of radii R̂ = (1.5cm, 2cm) which are com-

mon in humans. For the same length L̂ = 15cm, the compliance factors are cal-

culated to beK = 0.69, 1.22. Taking R = 0.25cm and L = 70cm for the the pe-

ripheral artery, we get f = 1.2 from (6.7). To keep the mean pressure P0 around

100 mmHg, we get from (7.1) that Umax = (46.6 cm/s, 26.2 cm/s). These

velocities correspond to the same maximum influx discharge of max QH =

330mL/s.

The blood pressure at the junction p(L̂, t), discharge Q(t) and wall shear

stress τw(t) in peripheral artery are shown in Figures 7, 8 and 9 respectively. In

the smaller aorta, the amplitudes of pressure, discharge and wall shear stress

are larger.

8 Concluding remarks

To complement recent interest in the role of waves in windkessel effect, we

have described a mechanistic theory of a simple vascular system consisting of

an elastic aorta and rigid peripheral artery of much smaller radius. Instead

of empirically determined impedances, we assume the material properties and

dimensions of the vascular system to be known and treat the fluid-structure

interaction based on the linear theory of continuum mechanics. By first allow-

ing a broad range of aorta length and pulsating frequency, we derive analytical

expressions of the blood pressure, blood velocity and wall shear stress. In the

special limit of short aorta and low frequency, the classical two-element model

is recovered and the dependence of the empirical impedances on vessel prop-

erties is theoretically derived. Computed pressure and flow velocity for a short

aorta show features consistent with typical observations of cardiovascular sys-

tems. Results for increasingly long aorta shows the tendency towards steady

flow which is in accord with the engineering principle of the fire-fighting equip-

ment that inspired Otto Frank.

Acknowledgement

We thank Dr. Paul McBeth, MD, Foothills Medical Center, University of Cal-

gary, for introducing the topic of Windkessel Effect to CCM.



15

Appendix A: Details of aorta solution:

Let us first match the velocities at the ventricle, x = 0,

UH
n = Ûn(0) = −

kn
iωnρ

Bn (A.1)

This determines Bn so that

P̂n(x) = An cos knx−
iωnρU

H
n

kn
sin knx, . (A.2)

Clearly, the steady component (n = 0) is

Û0(0) = UH
0 (A.3)

Let the unknown pressure in the peripheral artery be denoted by p(x, t).

Because of the assumed rigidity, the pressure gradient in the peripheral artery

is constant in x. At the junction x = L̂, p(L̂, t) may be formally expanded as

a Fourier series

p(L̂, t) =

∞∑

n=−∞

Pn(L̂)e
iωnt (A.4)

where the coefficients Pn(L̂) are to be found.

We now match the pressure at the junction x = L̂ where the aorta joins

the peripheral artery, and get

Pn(L̂) = P̂n(L̂) = An cos knL̂−
iωnρU

H
n

kn
sin knL̂, n 6= 0 (A.5)

hence

An =

(
Pn(L̂) +

iωnρU
H
n

kn
sin knL̂

)
1

cos knL̂
(A.6)

This leads to (3.10).

Appendix B: Alternative derivation of Eq.(5.9)

Using the dominant harmonic (ω1, k1) for scaling, and assuming k1L̂ ≪ 1, the

ratio of the two terms in the momentum equation (3.1) is

(1/ρC2)∂p̂/∂t

∂Û/∂x
= O

(
ω1CUmax

C2Umax/L̂

)
= O

(
ω1L̂

C

)
= O(k1L̂) ≪ 1 (B.1)
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Thus Û(t) is uniform in x, and the pressure can be related to the radial disten-

tion h by a quasi static approximation. Based on extensive experiments with

rubber tubes, Olsen and Shapiro [9] found

p̂ =
ρC2

2

(
1−

S2
0

S2

)
, (B.2)

where S0 = πR̂2, S = π(R̂ + h)2 impedance are the cross-sectional areas

before and after distention respectively. For small distention we take the linear

approximation,
S2
0

S2
=

1

(1 + h

R̂
)4

= 1− 4
h

R̂
+ · · · (B.3)

so that

p̂ =
2ρC2h

R̂
; i.e., h =

p̂

2ρC2
R̂. (B.4)

Mass conservation requires that

πR̂2Û − πR2 〈u〉 = L̂2πR̂
∂h

∂t
=

πR̂2L̂

ρC2

∂p̂

∂t
(B.5)

It follows by using (3.12) and (4.9) that

πR̂2
∑

n

UH
n eiωnt − πR2

{
∑

n

Pn

iωnL
eiωnt

[
−2

i1/2

αn

J ′
0(i

3/2αn)

J0(i3/2αn)

]}

=
πR̂2L̂

ρC2

∂p̂

∂t
=

πR̂2L̂

ρC2

∑
iωnPne

iωnt (B.6)

since p̂ is nearly uniform in x and equal to p approximately. This gives (5.9).
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Fig. 1: Definition sketch of model vascular system
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Fig. 2: A periodic series of influx pulses QH(t) based on Eq. (2) for a =

4T/15, b = 8T/15. Umax = 12.6 cm/s Period of heart beat 2T=0.834 (s).
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Fig. 3: Exact Fn = |Fn|e
iθF according to Eq.(43): (solid), and approximate Fn

according to (Eq.48): (dashed), as functions of αn
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Fig. 4: Time variation of p(L̂, t) at the junction x = L̂. Same aorta radius

R̂ = 3 cm but different lengths. Solid line: L̂ = 5 cm, Dashed line: L̂ = 10 cm,

Dash-dot line: L̂ = 15 cm.
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Fig. 5: Time variation of Q(t) in peripheral artery. Same aorta radius R̂ = 3 cm

but different lengths. Solid line: L̂ = 5 cm, Dashed line: L̂ = 10 cm, Dash dot

line: L̂ = 15 cm.
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Fig. 6: Time variation of τw in peipheral artery. Same aorta radius R̂ = 3 cm

but different lengths. Solid line: L̂ = 5 cm, Dashed line: L̂ = 10 cm, Dash dot

line: L̂ = 15 cm.
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Fig. 7: Time variation of p(L̂, t) at the junction x = L̂. Same aorta length

L̂ = 15 cm but different radii. Solid line: R̂ = 2cm, Dashed line: R̂ = 1.5cm.
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Fig. 8: Time variation of Q(t) in peripheral artery. Same aorta length L̂ =

15 cm but different radii. Solid line: R̂ = 2cm, Dashed line: R̂ = 1.5cm.
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Fig. 9: Time variation of τw in peripheral artery. Same aorta length L̂ = 15 cm

but different radii. Solid line: R̂ = 2cm, Dashed line: R̂ = 1.5cm.


