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Abstract The level of physical stress rules the adaptative response of peripheral nerves,

which is crucial to assess their physiological and pathological states. To this aim, in this

work, different computational approaches were presented to model the stress response of

in vitro peripheral nerves undergoing longitudinal stretch. More specifically, the effects of

geometrical simplifications were studied with respect to the amount of computational time

needed to obtain relevant information. Similarly, the variation of compressibility of the pe-

ripheral nervous tissue was investigated with respect to the variation of longitudinal stress

and transversal stretch variations, and with reference to the computational time needed for

simulations. Finally, the effect of small dimensional changes was investigated to better un-

derstand whether the variation of time was only due to the amount of nodes or elements.

In conclusion, since fast in silico models, able to assess the nerve stress could be a strate-

gic advantage in case of time constraints or on-line evaluation (e.g., surgical interventions)
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a synergistic use of these approaches was proposed as a possible strategy to decrease the

computational time needed for simulations from minutes to seconds.

Keywords Peripheral nerves, Physical stress, Fast in silico models

1 Introduction

Peripheral nerves are composite structures [38, 39] able to transport electrical signals from

the brain to the periphery of the body. They are quite easily stretchable within a physio-

logical range [9, 10], to maintain the structural continuity of internal fibers. Indeed, within

the nerve trunk, axons show a redundant undulated shape [45], which results in the optical

phenomenon of the bands of Fontana [7, 17, 21, 22, 44]. In addition, an irregular network of

capillaries [45], supplies each nerve from adjacent blood vessels and provides both collateral

and segmental circulation [35, 36]. However, some situations (e.g., injuries) could lead to

supraphyisiological stretches, which are able to smoothen undulated axons and to damage

vasa nervorum [3]. In other words, stretch injuries, which are among the ”most common”

human nerve injuries [45], could involve a combination of ischemic and mechanical dam-

ages, due to the simultaneous destruction of the epineural plexus and to the mechanical

distortion of axons [45].

In addition, intra-epineural sclerosis and extraneural constriction were described as ad-

verse effects associated to the nerve stimulation [37], while complications due to peripheral

nerve overstretch were described in surgical procedures for bone reconstruction [13] (e.g.,

Iliazarov procedure [16]). Furthermore, the physical stress of a nerve was related to their

adaptative response to the external environment [25, 41]. Nevertheless, stretch injuries are

among the ”least studied” form of injuries [45], thus the knowledge of the stress field, aris-

ing within the stretched nerve, is crucial to account for their physiological and pathological

states.

Experiments and in silico models were both used to investigate pathological condi-

tions of peripheral nerves or their interaction with external devices. More specifically, piglet

nerves were studied to explore the unilateral vocal fold paralysis [42], while interactions be-

tween peripheral nervous tissue (PNT) and tungsten microneedles [30, 31, 43] were studied
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to improve the insertion of intraneural interfaces [8, 28]. Finite Elements (FE) models were

used to reproduce the subject specific geometry of specimens [2, 4, 11, 14, 20, 26, 34, 40].

Nevertheless, a different approach could be desirable in case of time constraints, as real time

interventions or the assessment of a surgical procedure for many patients, where, a fast in

silico approach, able to quickly assess the needed information, could be strategic. To this

aim, the effects of geometrical simplification, variation of compressibility and dimensional

approximation were explored in this work.

2 Materials and Methods

2.1 Experiments

A sciatic nerve (65mm long) was dissected from a posterior limb of a Large White pig

(∼ 10 months old), which was slaughtered in conformity with the National Italian Regu-

lation and frozen until experiments. According to literature [15], the nerve specimen was

gradually defrosted and re-hydrated for about one hour at room temperature in a bath of

aqueous saline solution (0.9% sodium chloride isotonic to the blood) before experiments.

The physiological characteristics (e.g., stiffness) of the specimen (which had a length be-

tween clamps of 55mm), were preserved by spraying saline solution on its surface. Stretch

experiments were performed at room temperature ( ∼ 25±1◦C), by using an Instron R4464

testing machine (Instron Corporation, Canton, MA) with a standard load cell (Instron load

cell, Instron Corporation, cell type 2525−808, max force 10 N, accuracy 0.25% Full Scale

Output). The nerve was longitudinally stretched (velocity v = 10mm/min; maximum stretch

8%) after preconditioning to minimize viscoelastic effects [12] and the axial force was dig-

itally recorded (see Figure 1).

Figure 1 about here

2.2 Theoretical background

The peripheral nervous tissue (PNT) was modelled as homogeneous and incompressible

and, according to the literature [1, 18, 19, 42], its behaviour was assumed to derive from a
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strain energy function Ψ ∗, which was defined, in terms of principal invariants, as:

Ψ
∗(I1, I2, I3) =Ψ(I1, I2)−

k
2
(I3−1) (1)

where k was an indeterminate Lagrange multiplier accounting for boundary conditions and

the principal strain invariants I1, I2, I3 were respectively defined as: I1(b)= trb, I2 =
1
2 [(tr(b)

2)−

tr(b2)], I3(b) = det(b). In addition, b = FFT was the left Cauchy-Green tensor, while F was

the deformation gradient. The PNT was assumed to be incompressible, thus I3 = 1, and the

transversal stretch was defined as 1/
√

λ , where λ was the longitudinal stretch. Therefore,

the Cauchy stress was:

σ =−kI+2
∂Ψ(I1, I2)

∂ I1
b−2

∂Ψ(I1, I2)

∂ I2
b−1 (2)

In particular, a suitable strain energy function, which was a generalization of [42], was

written in the form:

Ψ(I1, I2) =
1

∑
i=0

1

∑
j=0

ci j(I1−3)i(I2−3) j (3)

where ci j ∈ ℜ were scalar coefficients. Finally, for computational purposes, the PNT

was also modelled as a near incompressible material, thus the strain energy function was

rewritten as:

Ψ
∗(I1, I2,J) =

1

∑
i=0

1

∑
j=0

ci j(I1−3)i(I2−3) j +
1
d
(J−1)2 (4)

where d = 2/K was a variable accounting for the material compressibility, K was the mate-

rial bulk modulus and J = det(F).

2.3 In silico approaches

The in silico models of the nerve were implemented though a standard FE software (Ansys

c© Academic, Ansys, Inc. Canonsburg, Pennsylvania, USA). First, a suitable approximation
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of the three-dimensional nerve geometry was obtained by reproducing each profile with Im-

ageJ (National Insitutes of Health, USA) and by computing the resulting mean straight lines.

The real specimen geometry was, then, approximated with an elliptical cylinder, whose ma-

jor and minor axes were respectively 4.52 mm and 1.38 mm long. This structure was meshed

with solid elements (SOLID185), which were able to account for fully incompressible hy-

perelastic materials through enhanced strain and mixed displacement-pressure formulation.

This procedure resulted in 2016 nodes and 1375 elements. Since the eccentricity of the

specimen cross section was 0.95, the previous cylindroid was approximated with a tape like

structure, with a rectangular section of 2.76 mm and 9.05 mm. The specimen was, therefore,

modelled as a parallelepiped, which was meshed with 2464 nodes and 1650 elements.

Furthermore, low dimensional models were implemented, exploiting the plane stress

approximation of the whole structure. In particular, the parallelepiped was further reduced

to its middle plane, which coincided with the symmetry plane along the structure depth

(z axis). Then, eight-nodes plane elements (PLANE 183), allowing each node to have two

translational degrees of freedom, were used to mesh this plane. The meshing procedure re-

sulted in 1781 nodes and 550 elements. In all these cases, the lower area or line, belonging

to the model, was fully constrained to account for experimental constrains, while increas-

ing displacements were imposed to the upper extremity to closely mimic the experimental

stretches. The global times for the solution of the three-dimensional models as well as for

plane stress approximations (with and without thickness) were compared and eventual dif-

ferences in stress fields were investigated.

Moreover, the PNT was modelled as a nearly incompressible material, since the com-

pressibility was set to be d = 1E − 010, d = 1E − 009, d = 1E − 008, d = 1E − 007,

d = 1E − 006, d = 1E − 005. The performances of these models were compared to the

fully incompressible case (i.e., d = 0) with respect to the stress field, the lateral stretch, and

the computational time needed to solve the model.

Furthermore, the effects of the dimensional approximation were studied. More specifi-

cally, the lateral dimension of the bidimensional plane stress model were slightly changed

with respect to the reference (bidimensional) model (i.e., width=9.05 mm). This dimension
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were slightly increased (up to 9.1 mm) or decreased (up to 9.0 mm). The effects on the

computational time were studied.

3 Results

In Figures 2a, 2b the spatial distribution of displacement and stress at the maximum stretch

(i.e., λ = 1.08) is shown for the threedimensional model of nerve with elliptical section.

This model was able to reproduce the experimental relationship between stress and stretch

in axial direction (R2 ' 0.9) for c01 = 0.9702 KPa, c10 = 0.4998 KPa, c11 = 49.294 KPa,

with a maximum percentage error within the 4.5%, as shown in Figures 2c, 2d. Similarly,

this model was able to reproduce the transversal stretch of the specimen along the whole

stretch range with a maximum error of 8E−004, as shown in Figures 2e, 2f.

Figure 2 about here

In Figure 3a, the displacement field for an approximate models is shown. First, because of

the eccentricity of the cylindrical specimen, a rectangular section was used to simplify its

cross sectional area (on the left). Then, a planar reduction of the solid model was used to

reproduce the displacement field (Figure 3a, right). Similarly, the stress field was computed

for the parallelepiped (Figure 3b, left) and for the bidimensional approximation (Figure 3b,

right).

Figure 3 about here

The behaviour of these approximate geometries was compared to the performances of the

cylindroid, which was used as a reference, since it was able to reproduce the experimental

results. The relationship between stretch and axial stress was investigated for all the approx-

imations (i.e., parallelepiped, plane with thickness and plane without thickness) and, in all

cases, it was superimposed to the reference curve in the whole range of stretches, as shown

in Figure 4a. To quantify the reliability of the different models to reproduce the cylindroid

performances, the percentage error was computed and resulted within the 0.003% (Figure

4b). Similarly, the transversal stretch was investigated for all the approximate models (Fig-

ure 4c) and resulted in differences within 0.0004, as shown in Figure 4d.
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Figure 4 about here

Moreover, the influence of the compressibility on axial stress was investigated. In Sup-

plementary Figure 1a, different values of compressibility (ranging from d = 1E − 005 to

d = 1E−010) were compared to the fully incompressible case (d=0) for the elliptic cylin-

droid. The errors resulted within 4.5E − 005 KPa, as shown in Supplementary Figure 1b.

Similarly, the effects of the variation of compressibility were investigated for the paral-

lelepiped and for both the plane stress approximation with and without thickness. The com-

parison to the fully incompressible case is shown in Supplementary Figures 1c, 1e, 1g, while

the differences with the fully incompressible case were reported in Supplementary Figures

1d, 1f, 1h, respectively for the parallelepiped, the bidimensional rectangle with thickness

and the bidimensional rectangle without thickness. Also in these cases, the maximum errors

were within 6E−005 KPa.

The effects of compressibility on the transversal stretch were also studied. More specif-

ically, in Supplementary Figures 2a, 2b the difference between the fully incompressible case

and the near incompressible ones was investigate for d = 0, d = 1E− 010, d = 1E− 009,

d = 1E− 008, d = 1E− 007, d = 1E− 006, d = 1E− 005. All the curves were superim-

posed (Supplementary Figure 2a) and the maximum difference resulted within 1.4E−006.

For the other approximations, the results were similar, as shown in Supplementary Figures

2c, 2d, 2e, 2f, 2g, 2h, respectively for the parallelepiped, the plane with thickness and the

plane without thickness.

In addition, the variation of the computational time needed to solve the in silico model

was studied for different values of the compressibility parameter (d). All these times were

normalized with respect to the computational time needed to solve the respective fully in-

compressible cases. More specifically, in Figure 5a, the maximum percentage decrease (i.e.,

2.27%) for the threedimensional cylindroid is shown for d = 1E − 005, similarly for the

threedimensional parallelepiped (Figure 5b) the maximum decrease of computational cost

(i.e.,0.80%) was achieved for d = 1E − 005. Instead, for bidimensional approximations

(plane stress with or without thickness) the maximum values (i.e., respectively 81.96%

and 81.41%) were both achieved for d = 1E − 007, as shown respectively in Figures 5c
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and 5d. Finally, the percentage decrease of computational time of each different model

was compared to the time needed to solve the fully incompressible cylindroid, as shown

in Figure 5e. The maxima of time decrease were achieved for the near incompressible bidi-

mensional model without thickness (i.e., 97.18%), as well as for the near incompressible

bidimensional model with thickness (i.e., 97.25%). In both these cases the compressibility

was d = 1E−007.

Figure 5 about here

To further explore the sensitiveness of the bidimensional models with respect to the degree

of numeric approximation, the amount of nodes and elements was computed for a width

varying between 9.000 mm and 9.100 mm, while the length was kept constant (i.e., 55 mm).

More specifically, these values were normalized with respect to the amount of nodes and

elements of the main bidimensional approximations (i.e., width = 9.05 mm). Both values

(nodes and elements) are lower (respectively 0.906 and 0.900 for nodes and elements) for

the lower dimension, while were kept constants (i.e., 1 ) for all the other approximations, as

shown in Figure 6a. The computational time needed to solve the whole cycle was, therefore,

computed for different values of width and compressibility and normalized with respect to

the time needed to solve the main approximation (i.e., width=0.95 mm). In particular, for a

fully incompressible material d = 0, and for the following values of width 9.000 mm, 9.040

mm, 9.045 mm, 9.04999 mm, 9.050 mm, 9.055 mm, 9.100 mm, the normalized times were,

respectively 1.582,1.241,0.992,1.700,1.000,1.181,0.923, as shown in Figure 6b. Similarly,

for the same values of width, but for a compressibility of d = 1E− 007, these values were

0.987,0.995,0.985,0.995,1.000,0.984,0.992, as shown in Figure 6c.

Figure 6 about here

4 Discussion

The coupling between computer simulations and biological and medical investigations is be-

coming an emergent scientific paradigm. Indeed, thanks to the increasing of computational

power, the behaviour of cells and tissues can be reproduced in silico with a great precision.

In this work, the response of a sciatic nerve to longitudinal stretch was reproduced through
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in silico models. First, to test a feature-based approach the specimen was approximated

with a three-dimensional solid (cylindroid) of hyperelastic and fully incompressible mate-

rial [24, 31, 42], whose coefficients (Mooney-Rivlin formulation with three constants) were

obtained through a standard fitting procedure. This model was able to reproduce the ex-

perimental axial stress (R2 ' 0.9, and maximum difference within 4.5%) and the transversal

stretch (maximum difference within 8E−004), but computational times were suitable for an

off-line analysis, to be performed without time constraints. To investigate other solutions the

geometry of the real specimen was simplified, thus the cylindroid was approximated with

a parallelepiped, since the eccentricity of the specimen was high (i.e., 0.95). In this case,

the stress and stretch fields, previously obtained with the reference cylindroid, were closely

reproduced, since the axial stress had a low percentage error (i.e., −0.005%), while the

difference for the transversal stretch was within 0.0001. However, in this way, the amount

of elements and nodes enlarged together with the computational time, which increased of

about 20%. Therefore, since the width of the parallelepiped was greater than its depth (i.e.,

more than three times), two plane stress approximations (with and without thickness), ac-

counting for the behaviour of the mean section, were used to reproduce the response of the

whole volume. Also in these cases, the errors with respect to the reference cylindroid were

small for axial stress (within ±0.002%) and for the transversal stretch (within −0.0004). In

addition, the number of nodes and elements was smaller with respect to the previous three-

dimensional models, so the computational time considerably decreased (i.e., about 80%).

4.1 Variation of compressibility

In parallel to this way, the effects of the variation of the compressibility were explored. In

particular, the PNT was modelled as a near incompressible material, with quite low coeffi-

cient of compressibility d (i.e., d ranging from 1E− 005 to 1E− 010). For all models the

axial stress was not influenced by compressibility changes (errors 1E−005 KPa), as well as

the transversal stretches (errors around 0.0008%). However, the computational time varied.

Indeed, for three-dimensional models the decrease of time was small and oscillating around

the 2% for the cylindroid, while it was in the range −2% , +1% for the parallelepiped. In
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other words, in this case, the time needed to solve the near incompressible model was, for

a very low compressibility, greater than the time needed to solve the fully incompressible

case. This effect could be due to numerical causes. On the contrary, the variation of d was

highly effective for bidimensional models, which showed in both cases (plane stress with

and without thickness) a big time reduction (i.e., around 80%) with respect to the fully in-

compressible bidimensional approximations. In other words, the variation of compressibility

was able to keep both axial and transversal response of the nerve (stress, stretch), while it

was able to lower the computational time particularly for bidimensional models.

The plots of time decrease had flat (or near flat) portions (see Figure 5). As a conse-

quence, even if a single maximum was localized, this value may have, at least, one compara-

ble value. In particular, for the reference case (three-dimensional cylindroid) the maximum

percentage decrease of computational time (i.e., 2.27% for d = 1E − 005) was similar to

the value achieved for d = 1E−009 (i.e., 2.20%), while the maximum time decrease for the

three-dimensional parallelepiped (i.e., 0.80%) was not too different from the values achieved

for d = 1E − 006 and d = 1E − 007, which were respectively 0.635 and 0.627. Similarly,

for the plane stress approximations (with and without thickness) the maximum reductions of

time were 81.41% and 81.96% for d = 1E−007, which were similar to the time reductions

of 80.59% and 81.86%, which were obtained for d = 1E−008 respectively for plane stress

with and without thickness. In other words, for a near incompressible material, whose the

compressibility was in the range 1E−007,1E−008 the computational time was reduced in

a similar way.

4.2 Is the reduction of computational time only due to the lower amount of nodes or

elements ?

The parallelepiped was always more time expensive than the cylindroid as shown in Figure

5e. This was in agreement with the higher amount of its nodes and elements (i.e., 2464

nodes and 1650 elements) with respect to the reference cylindroid (i.e., 2016 nodes and

1375 elements). However, the amount of nodes of parallelepiped was the 22.22% higher,

and the amount of elements was about 20% higher, while the extra time needed to solve the
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model varied from 21.78% and 25.06%. As a consequence, there was an extra percentage

ranging from 1−5% due to other causes.

As previously shown, an effective strategy to decrease the computational time was to

lower the dimensionality of the problem by using bidimensional models. Indeed, also in this

case, both the number of nodes and elements were consistently lower, that is 1781 nodes

and 550 elements. These values corresponded to a decrease of 11% in the amount of nodes

and to a decrease of 59.7% in the amount of elements with respect to the reference geometry

of the in silico specimen (cylindroid). Nevertheless, these values seem to be not enough to

explain a decrease of computational time varying in the range 84.80%−97.25%, as shown

in Figure 5e.

Again, some other causes seemed to be involved in the reduction of the needed com-

putational time (i.e., a percentage ranging between 25%− 85%). Very likely, in both cases

the extra percentage of time decrease was due to the variation of the compressibility of the

material, since the dimensions were kept. To further explore this problem for bidimensional

models, and also to assess the sensitiveness to the variation of dimensions, the computational

time was computed for different amounts of nodes and elements. As shown in Figure 6, the

number of nodes and elements increased with dimensions (as expected), while the compu-

tational time had an oscillating behaviour. In particular, these variations were sensible to the

degree of compressibility of the material. Indeed, for a fully incompressible material (d = 0)

the normalized time needed was 0.986 for a width of (9.000 mm), while for the upper limit

(9.100 mm) it was 0.992. Similarly, a difference between the reference case (time = 1) was

found both for smaller (width=9.045 mm) and greater (width=0.955 mm) geometries, for

which the normalized time were respectively 0.985 and 0.984. As expected, the variation

for very similar dimensions (i.e., between width=9.4999 mm and width=9.050 mm) were

small (i.e.,0.005) and the time needed was lower for the lower dimension.

Moreover, for a nearly incompressible material (i.e., d = 1E−007), the behaviour of the

normalized time was again oscillating. Nevertheless, the magnitude of numeric oscillations

with respect to the reference case was greater and the behaviour was quite different from the

previous one. More specifically, for the lower dimension in the range (i.e, width=9.000 mm),
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the normalized computational time was 1.581, while for the upper limit (i.e., width=9.100

mm), the needed time was 0.923. For small differences the oscillations were also evident.

Indeed, although the normalized time was 0.992 and 1.181, respectively for width measuring

9.045 mm and 9.055 mm, this value was 1.700 for a width of 9.04999 mm. In other words,

for a very small dimensional gaps there was a big difference in the normalized time. As

shown in Figure 6c, also in this case the trend of the normalized time was not easily related

to the variation of the number of nodes or elements.

5 Conclusions

The knowledge of the ”physical stress” of peripheral nerves is physiologically relevant since

it drives their adaptation to the external environment [25, 41]. As a consequence, a procedure

able to achieve a fast assessment of the stress field may be a strategic advantage in different

branches of medicine and physical therapy [41].

A strategy involving geometrical simplifications, low dimensional in silico models, a

near incompressible material, and a suitable numeric approximation was used to reduce the

whole computational time of 97.25% with respect to the three-dimensional standard refer-

ence case. More specifically, the time needed to find the stress field within an elongating

nerve (several steps from λ = 1 to λ = 1.08) was reduced from minutes to very few seconds

keeping the some amount of information. This reductionist approach was suitable to quickly

assess the gross physical stress [25] in a nerve and to predict its overall adaptative response

(e.g., within a physiological or a pathological range of stretch) [41]. In addition, it could be

also useful, in synergy with more complex models, to achieve precise initial guess to cal-

ibrate heavy computational models (as patient specific models) or the interaction between

peripheral nerves and neural interfaces [5]. The provided approach, could be also used to in-

fer information to enhance more specific regenerative models [6, 27, 29, 32, 33] accounting

for the presence of regenerating axons or bundles [15]. Finally, the presented framework,

exploiting a ”continuum mechanics approach”, may be coupled with enhanced researches

[21, 23] aiming at combining in-vitro, in-vivo and in-human studies to investigate the ef-
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fects of the surrounding environment (e.g., provided by artificial nerve-guides) on the nerve

regeneration in peripheral nerve-gap lesions.

Figure Captions

Figure 1: Scheme of experimental set-up. a) Testing machine. b) Frontal and side view of

the nerve specimen. c) Experimental data.

Figure 2: Behaviour of the reference cylindroid: a) Field of axial displacements. b) Field

of axial stress. c) Comparison between the experimental and the in silico stress as a function

of stretch (R2 ∼ 0.9). d) Percentage error between in silico and experimental data for axial

stress. e) Comparison between in silico and theoretical transversal stretch. f) Difference

between in silico and theoretical transversal stretch as a function of the axial stretch.

Figure 3: Approximation of the cylindrical model with a parallelepiped and a bi-dimensional

model. a) Axial displacement of three-dimensional and bi-dimensional approximations. b)

Stress fields of three-dimensional and bi-dimensional approximations.

Figure 4: Approximation of the reference cylindroid with a parallelepiped and with bi-

dimensional plane models. a) Stress fields of three-dimensional and bi-dimensional approx-

imations with respect to the reference cylindroid. b) Percentage errors among axial stresses

in three-dimensional and bidimensional approximations with respect to the reference cylin-

droid. c) Comparison among of transversal stretches derived from different approximations:

all lines are superimposed to the theoretical one d) Difference among three-dimensional and

bi-dimensional approximations with respect to the theoretical transversal stretch.

Figure 5: a) Percentage decrease of computational time with the variation of material

compressibility. The decrease is normalized with respect to the time needed to solve the

fully incompressible reference cylindroid. b) Percentage decrease of computational time

with the variation of the material compressibility. The decrease is normalized with respect

to the time needed to solve the fully incompressible parallelepiped. c) Percentage decrease

of computational time with the variation of the material compressibility for plane stress with

thickness. The decrease is normalized with respect to the time needed to solve the respective

fully incompressible bi-dimensional plane model. d) Percentage decrease of computational
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time with the variation of the compressibility parameter for plane stress without thickness.

The decrease is normalized with respect to the time needed to solve the respective fully in-

compressible plane model. e) Global percentage of time decrease for all approximation with

respect to the fully incompressible reference cylindroid as a function of the compressibility

of the material.

Figure 6: Effects of small width changes of a bi-dimensional model: a) The number of

nodes and elements as a function of width. b) Variation of the time (normalized with respect

to the reference width = 9.05 mm) with the changes of width for a fully incompressible

material. b) Variation of the time (normalized with respect to the reference width = 9.05

mm) with the changes of width for a near incompressible material (d = 1E−007).
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element simulation of keeled versus pegged glenoid implant designs in shoulder arthro-

plasty. Medical & Biological Engineering & Computing 53(9), 781–790 (2015). DOI

10.1007/s11517-015-1286-7. URL https://doi.org/10.1007/s11517-015-1286-7

27. Roccasalvo, I.M., Micera, S., Sergi, P.N.: A hybrid computational model to predict

chemotactic guidance of growth cones. Scientific Reports 5, 11,340– (2015). URL

http://dx.doi.org/10.1038/srep11340

28. Sergi, P.N., Carrozza, M.C., Dario, P., Micera, S.: Biomechanical characteriza-

tion of needle piercing into peripheral nervous tissue. IEEE Trans Biomed

Eng 53(11), 2373–2386 (2006). DOI 10.1109/TBME.2006.879463. URL

http://dx.doi.org/10.1109/TBME.2006.879463



18 ∗Elisabetta Giannessi et al.

29. Sergi, P.N., Cavalcanti-Adam, E.A.: Biomaterials and computation: a strategic alliance

to investigate emergent responses of neural cells. Biomater. Sci. 5, 648–657 (2017).

DOI 10.1039/C6BM00871B. URL http://dx.doi.org/10.1039/C6BM00871B

30. Sergi, P.N., Jensen, W., Micera, S., Yoshida, K.: In vivo interactions be-

tween tungsten microneedles and peripheral nerves. Med Eng Phys

34(6), 747–755 (2012). DOI 10.1016/j.medengphy.2011.09.019. URL

http://dx.doi.org/10.1016/j.medengphy.2011.09.019

31. Sergi, P.N., Jensen, W., Yoshida, K.: Interactions among biotic and abiotic factors af-

fect the reliability of tungsten microneedles puncturing in vitro and in vivo periph-

eral nerves: A hybrid computational approach. Materials Science and Engineering:

C 59, 1089 – 1099 (2016). DOI http://dx.doi.org/10.1016/j.msec.2015.11.022. URL

http://www.sciencedirect.com/science/article/pii/S0928493115305531

32. Sergi, P.N., Marino, A., Ciofani, G.: Deterministic control of mean alignment

and elongation of neuron-like cells by grating geometry: a computational ap-

proach. Integr. Biol. 7, 1242–1252 (2015). DOI 10.1039/C5IB00045A. URL

http://dx.doi.org/10.1039/C5IB00045A

33. Sergi, P.N., Morana Roccasalvo, I., Tonazzini, I., Cecchini, M., Micera, S.: Cell

guidance on nanogratings: a computational model of the interplay between pc12

growth cones and nanostructures. PLoS One 8(8), e70,304 (2013). DOI

10.1371/journal.pone.0070304. URL http://dx.doi.org/10.1371/journal.pone.0070304

34. Shim, V.B., Fernandez, J.W., Gamage, P.B., Regnery, C., Smith, D.W.,

Gardiner, B.S., Lloyd, D.G., Besier, T.F.: Subject-specific finite element

analysis to characterize the influence of geometry and material proper-

ties in achilles tendon rupture. Journal of Biomechanics 47(15), 3598 –

3604 (2014). DOI http://dx.doi.org/10.1016/j.jbiomech.2014.10.001. URL

http://www.sciencedirect.com/science/article/pii/S002192901400520X

35. Smith, J.: Factors influencing nerve repair: I. blood supply

of peripheral nerves. Archives of Surgery 93(2), 335–341

(1966). DOI 10.1001/archsurg.1966.01330020127022. URL +



Fast in silico assessment of physical stress for peripheral nerves 19

http://dx.doi.org/10.1001/archsurg.1966.01330020127022

36. Smith, J.: Factors influencing nerve repair: Ii. collateral circula-

tion of peripheral nerves. Archives of Surgery 93(3), 433–437

(1966). DOI 10.1001/archsurg.1966.01330030063014. URL +

http://dx.doi.org/10.1001/archsurg.1966.01330030063014

37. Stanton-Hicks, M.: Chapter 29 - peripheral nerve stimulation for pain peripheral

neuralgia and complex regional pain syndrome. In: E.S. Krames, P.H. Peck-

ham, A.R. Rezai (eds.) Neuromodulation, pp. 397 – 407. Academic Press, San

Diego (2009). DOI https://doi.org/10.1016/B978-0-12-374248-3.00030-6. URL

https://www.sciencedirect.com/science/article/pii/B9780123742483000306

38. Sunderland, S.: The intraneural topography of the radial, median and ulnar nerves. Brain

68, 243–299 (1945)

39. Sunderland, S.: The connective tissues of peripheral nerves. Brain 88(4), 841–854

(1965)

40. Tarjuelo-Gutierrez, J., Rodriguez-Vila, B., Pierce, D.M., Fastl, T.E., Verbrug-

ghe, P., Fourneau, I., Maleux, G., Herijgers, P., Holzapfel, G.A., Gomez, E.J.:

High-quality conforming hexahedral meshes of patient-specific abdominal aortic

aneurysms including their intraluminal thrombi. Medical & Biological Engineer-

ing & Computing 52(2), 159–168 (2014). DOI 10.1007/s11517-013-1127-5. URL

https://doi.org/10.1007/s11517-013-1127-5

41. Topp, K.S., Boyd, B.S.: Structure and biomechanics of peripheral nerves: nerve re-

sponses to physical stresses and implications for physical therapist practice. Phys Ther

86(1), 92–109 (2006)

42. Williams, M.J., Utzinger, U., Barkmeier-Kraemer, J.M., Vande Geest, J.P.: Differences

in the microstructure and biomechanical properties of the recurrent laryngeal nerve as a

function of age and location. Journal of Biomechanical Engineering 136(8), 0810,081–

0810,089 (2014). URL http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4056420/

43. Yoshida, K., Lewinsky, I., Nielsen, M., Hylleberg, M.: Implantation mechanics of tung-

sten microneedles into peripheral nerve trunks. Med Biol Eng Comput 45(4), 413–420



20 ∗Elisabetta Giannessi et al.

(2007). DOI 10.1007/s11517-007-0175-0. URL http://dx.doi.org/10.1007/s11517-007-

0175-0

44. Zachary, L.S., Dellon, E.S., Nicholas, E.M., Dellon, A.L.: The structural basis of felice

fontana’s spiral bands and their relationship to nerve injury. J reconstr Microsurg 9(02),

131–138– (1993)

45. Zochodne, D.W., Low, P.A.: Adrenergic control of nerve blood flow. Exp Neurol 109(3),

300–307 (1990)

Acknowledgements

The authors thank the company ”Desideri Luciano s.r.l” for biological specimens and Dr.

Cesare Temporin for his valuable technical assistance in handling and dissection of periph-

eral nerves.



  

Frontal view
     width

Side view
   depth

a b

c

Stretch l

S
tr

es
s 

[K
P

a]

z z

x y

zx
y

y x



  

a

  D
is

p
la

ce
m

e
n

t  
[m

m
]

0

0.49

1.96

2.44

2.93

3.42

3.91

4.40

0.98

1.45

b

  S
tr

e
ss

 s
 [K

P
a

]
1.33

1.42

1.69

1.78

1.87

1.97

2.06

2.15

1.51

1.60

Stretch l

 E
rr

or
   

 

T
ra

ns
ve

rs
al

 s
tr

et
ch

 

e f

S
t r

e s
s 

s 
[K

P
a ]

Stretch l Stretch l

 E
rr

or
 %

   

c d

Stretch l



  

a
  D

is
pl

ac
e

m
e

n
t  

[m
m

]

0

0.49

1.96

2.44

2.93

3.42

3.91

4.40

0.98

1.45

b

  S
tr

e
ss

 s
 [K

P
a

]

1.33

1.42

1.69

1.78

1.87

1.97

2.06

2.15

1.51

1.60



  

Stretch lStretch l

 E
rr

or
   

 

T
ra

ns
ve

rs
al

 s
tr

et
ch

 

c

S
t r

e s
s 

s 
[K

P
a ]

Stretch l Stretch l
 E

rr
or

 %
   

a b

d



  

a

c d

b

e

T
im

e 
de

c r
e a

s e
 (

%
)

d

T
im

e  
de

c r
e a

s e
 (

%
)

d

T
im

e  
d

e c
re

as
e  

(%
)

T
im

e  
d

e c
re

as
e  

(%
)

dd

T
im

e  
de

c r
e a

s e
 (

%
)

d



  

N
u m

b e
r  

no
d e

s  
/  e

l e
m

e n
ts

 
   

   
  

(n
or

m
a l

i z
e d

)

Width (mm)

T
im

e 
( n

o r
m

a l
iz

e d
)

Width (mm)

T
im

e 
( n

o r
m

a l
iz

e d
)

Width (mm)

a

b

c

d = 0

d = 1E-007


