
 

1 

 

 

 

 

Comparison of Short Term Heart Rate Variability Indexes evaluated 

through Electrocardiographic and Continuous Blood Pressure 

Monitoring 

 

Riccardo Pernice1, Michal Javorka2, Jana Krohova2, Barbora Czippelova2, Zuzana Turianikova2,  

Alessandro Busacca1, and Luca Faes1, Member, IEEE 

1Department of Energy, Information engineering and Mathematical models (DEIM), 

University of Palermo, 90128 Palermo, Italy 

(corresponding author e-mail: riccardo.pernice@unipa.it) 

 
2 Dept. of Physiology and the Biomedical Center Martin 

Comenius University in Bratislava, Jessenius Faculty of Medicine, 

Martin, Slovakia 

 

Abstract—Heart rate variability (HRV) analysis represents an important tool for the 

characterization of complex cardiovascular control. HRV indexes are usually calculated from 

electrocardiographic (ECG) recordings after measuring the time duration between consecutive R 

peaks, and this is considered the gold standard. An alternative method consists of assessing the 

Pulse Rate Variability (PRV) from signals acquired through photoplethysmography, a technique 

also employed for the continuous noninvasive monitoring of blood pressure. In this work, we 

carry out a thorough analysis and comparison of short term variability indexes computed from 

HRV time series obtained from the ECG and from PRV time series obtained from continuous 

blood pressure (CBP) signals, in order to evaluate the reliability of using CBP-based recordings in 

place of standard ECG tracks. The analysis has been carried out on short time series (300 beats) of 

HRV and PRV in 76 subjects studied in different conditions: resting in the supine position, 

postural stress during 45° head-up tilt, and mental stress during computation of arithmetic test. 

Nine different indexes have been taken into account, computed in the time domain (mean, 

variance, root mean square of the successive differences), frequency domain (low-to-high 

frequency power ratio LF/HF, HF spectral power and central frequency) and information domain 

(entropy, conditional entropy, self entropy). Thorough validation has been performed using 

comparison of the HRV and PRV distributions, robust linear regression, and Bland-Altman plots. 

Results demonstrate the feasibility of extracting HRV indexes from CBP-based data, showing an 

overall relatively good agreement of time, frequency, and information domain measures. The 

agreement decreased during postural and mental arithmetic stress, especially with regard to 

band-power ratio, conditional and self entropy. This finding suggests to use caution in adopting 

PRV as a surrogate of HRV during stress conditions. 
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I. INTRODUCTION 

Heart rate variability (HRV) is commonly considered an important tool to assess overall cardiac health 

and the status of autonomic nervous system (ANS) [1, 2]. HRV reflects cardiovascular complexity and 

the organism capability to react to environmental and psychological stimuli, and is widely agreed as a 

noteworthy feature of healthy physiological regulation that is commonly degraded with disease and aging 

[1-5]. Therefore, HRV may potentially reveal an ongoing disease, or even an impending cardiovascular 

pathological state [2, 6]. The “gold standard” method to assess HRV involves measurement of the time 

interval between consecutive heartbeats from electrocardiographic (ECG) recordings – RR intervals [1-

6]. While in the analysis of HRV recordings as long as 24 hours (“long-term” recordings) can be 

considered, recordings of HRV of 5 minutes are the most commonly analyzed, both for practical 

purposes and because they allow to assess the short-term cardiovascular control [1, 6]. The analysis of 

short-term HRV can be also used – with a reasonable time resolution – to assess changes in the ANS 

activity related to altered psychophysiological states, including among others the response to 

physiological stressors [7, 8]. 

Short-term HRV is commonly described through different analysis techniques, carried out via time-

domain, frequency domain, and information-theoretic indexes [1, 6, 9, 10]. Time-domain analysis can 

quantify the magnitude of variability either beat-to-beat, or overall within the considered timeframe. On 

the other hand, frequency-domain indexes are convenient to estimate the distribution of absolute or 

relative power into specific frequency bands [1]. Furthermore, information domain entropy-based 

measures allow to assess the complexity of HRV, which is related to the regularity of the temporal 

patterns found in the time series and is linked to the balance between sympathetic and parasympathetic 

ANS activity [1, 3, 7, 11-16]. Notably, the interest in the information-theoretic assessment of short-term 

cardiovascular variability is increasing, as documented by several recent studies focused not only on the 

analysis of HRV complexity, but also on the analysis of physiological interactions within cardiovascular 

and cardiorespiratory control system [3, 7, 11-16]. 

In recent years, there has been an upswing of the utilization out of clinical settings of 

Photoplethysmography (PPG), an optical technique capable of detecting microvascular blood volume 

changes in tissues [16, 17]. The simplest PPG devices usually consist of a light source illuminating the 

tissue, and a photodetector capable of sensing the small variations in reflected or transmitted light 

intensity [16-19]. The PPG working principle relies on a different absorption of infrared light by blood in 

comparison to the surrounding skin tissues, in order to obtain a signal proportional to changes in blood 

volume [16-19]. The growing interest towards PPG is mainly due to its ease of use, low cost, safety, 

minimal invasiveness and potential to carry out a wide range of physiological assessments, such as blood 

oxygen saturation and extraction of cardiovascular and respiratory parameters. Moreover, PPG signals are 

becoming more widely available thanks to the possibility to employ cameras embedded in smartphones 

and smartwatches for their acquisition [20, 21]. The PPG technique is used in the clinical and 

physiological research also to measure arterial pressure variability, employing medical devices that 
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exploit the volume-clamp method, such as Finapres and Finometer [17, 22-24]. Finapres (FINger Arterial 

PRESsure) devices were first developed in the early 1980s for providing a reliable continuous blood 

pressure (CBP) monitoring. Their working principle is based on the dynamic vascular unloading of the 

finger arterial walls using an inflatable finger cuff [17, 22-24]. In such devices, a PPG probe controls an 

air pump to counteract finger volume changes, so that the cuff pressure oscillations are a reflection of the 

arterial pressure signal and can be used as its surrogate [17, 22]. CBP and PPG signals are thus related to 

each other since a pulsation of the arterial diameter during a heartbeat produces a pulsation in the 

photodetected signal; e.g., timings of the CBP signal are based on plethysmographic principle [17, 23]. 

Starting from a PPG or blood pressure signal, a time series of pulse rate variability (PRV) can be 

extracted which can be considered as an alternative way for the recording of HRV [16-19]. However, 

PPG or CBP recordings are typically affected both by physiological factors related to the transmission of 

the pulse wave along the vascular bed, and by measurements errors due for instance to motion-induced 

signal corruption and to the lower accuracy of peak detection [16, 25]. Such drawbacks may impair the 

agreement between PRV and HRV, thus potentially limiting the usability of PPG-based approaches to the 

evaluation of HRV parameters. This issue has been widely investigated in recent years [21, 24, 26-37], 

and we refer the reader to [24] for a comprehensive review in this sense. Most of the papers [26-33] take 

into account time- and frequency-domain indexes for the analysis, while only a few consider also 

information-theoretic variables [34, 35]. While an overall good agreement has been found in the literature 

among PRV and HRV variables, results appear still controversial [24, 27-33]. 

The present study aims at contributing to the assessment of the reliability of PRV as a surrogate of 

HRV with a special focus on: (i) the exploration of a broad range of measures able to characterize short-

term cardiac control complexity; and (ii) the evaluation of the agreement during conditions of 

physiological stress. To this end we evaluate, in a group of healthy subjects monitored during supine rest, 

postural stress induced by head-up tilt, and mental stress induced by arithmetic tests, several measures 

typically used to quantify short-term HRV in the time domain (mean, variance, and root mean square of 

the successive differences (RMSSD)), frequency domain (low-to-high frequency power ratio LF/HF, HF 

band central frequency and spectral power) and information domain (entropy, conditional entropy, self 

entropy). To the best of our knowledge, this paper is the first which compares PRV to HRV taking into 

account, in the same study, 9 different indexes, also including information-theoretic domain ones. This 

approach considers the complex nature of beat-to-beat heart rate oscillations stressing the importance of 

their assessment using time series analysis tools in various domains. In addition, our work brings special 

focus on validation, performing a thorough analysis of the differences and relations between two assessed 

methods (PRV and HRV) exploiting three types of analysis (i.e., hypothesis testing, correlation analysis, 

Bland-Altman plots). Our intention was to complement the results already available in the literature in 

terms of when and to which extent PPG-based measurements can be used to assess HRV in place of the 

standard but more cumbersome ECG technique as regards the detection of stress states resembling those 

of daily life situations, with possible implications for homecare and fitness applications. The present work 

completes and extends results recently presented in a preliminary form in Ref. [38]. 
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II. MATERIALS AND METHODS 

A. Subjects and Experimental Protocol 

The present work makes use of a database previously collected to evaluate the effects of physiological 

stress and cognitive workload on cardiovascular variability [39]. Seventy-six young healthy volunteers 

(32 males, 44 females, age: 18.42.7 years), all normotensive and having a normal body mass index 

(BMI=21.32.3 kg/m2) participated to the study. All participants signed a written informed consent, and 

when the subject was a minor (age < 18 years) prior parental or legal guardian permission was gathered 

to allow the child to participate in the study. All the procedures were approved by the Ethical Committee 

of the Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia. 

Signals were recorded on subjects in five different phases of the experimental protocol: (a) 15 min 

with subjects resting in the supine position after initial stabilization of physiological parameters prior to 

measurement at a baseline level (Phase R1); (b) head-up tilt test was performed for 8 min in order to 

produce orthostatic stress (Phase T); (c) another phase of 10 min of supine rest allowed physiological 

parameters of the subjects to recover (Phase R2); (d) with subjects lying in the supine position, a mental 

arithmetic test lasting 6 min was executed to evoke cognitive load (Phase M); (e) another phase of 10 min 

of supine rest was allowed to let the physiological parameters to recover again (Phase R3). Head-up-tilt 

was performed in Phase T by tilting passively the motorized bed table on which the volunteers were 

laying to 45° upright position. The arithmetic test was carried out in Phase M using WQuick software 

with WIN 5 PMT test (Psycho Soft Software, s.r.o., Brno, Czech Republic) and consisted of a repetitive 

display on the ceiling of the room of randomly generated 3-digit numbers; subjects were asked to read the 

numbers and mentally sum up the digits as quickly as possible. If the result was a two-digit number, to 

keep summing the digits until reaching a one-digit number and the subject had to decide whether the final 

resulting number was even or odd by using a computer mouse to click the corresponding virtual button 

also projected on the ceiling. 

The analyzed data consisted of ECG and blood pressure recordings acquired simultaneously at a 

sampling rate of 1 kHz. ECG was obtained using horizontal bipolar thoracic leads and recorded by 

CardioFax ECG-96220 (Nihon Kohden, Japan), while blood pressure data were obtained using Finometer 

Pro device (FMS, The Netherlands), which measures beat-to-beat arterial pressure variability through the 

volume-clamp method [22, 23]. 

 

B. Time Series and Data Analysis 

Analyses have been carried out selecting windows of N=300 consecutive heartbeats, for each of the 

five phases described in the previous subsection.  The windows were selected during stable physiological 

conditions to avoid transition effects from one phase to another, thus favoring the stationarity of the time 

series. In detail, the 300-point windows were extracted from the recorded signals, respectively, starting 

~ 8 min after the beginning of Phase R1, ~ 3 min after the beginning of Phase T, ~ 3 min after the 

beginning of Phase R2, ~ 2 min after the beginning of Phase M, and ~ 5 min after the beginning of Phase 

R3. The analyzed 300-point windows were free of artifacts, including those related to calibration of the 

Finometer device (such calibration, which interrupts the measurement of CBP, was executed only in the 

last minute of phases R1 and R2). 



 

5 

 

 

Starting from the acquired data, the n-th RR interval (RRI) was calculated from the ECG as the time 

interval between the n-th and (n+1)-th QRS apexes, while the n-th pulse-to-pulse interval (PPI) was 

measured as the time interval between the n-th and (n+1)-th blood pressure maxima. RRI and PPI values 

were extracted using LabChart 8 (ECG analysis, Blood Pressure Modules) toolbox from ADInstruments. 

An example of the RRI and PPI time series measured for a representative subject during the phases R1, M 

and T is reported in Figure 1(a). 

For both the RRI and PPI time series measured in each phase, time domain analysis was performed 

computing the average value (MEAN), the standard deviation of the normal-to-normal intervals (SDNN) 

and the root mean square of successive RRI or PPI interval differences (RMSSD) [1, 40]. SDNN has been 

chosen as an index of interest since both sympathetic nervous system (SNS) and parasympathetic nervous 

system (PNS) activity contribute to its value, and also because it represents the "gold standard" for 

medical stratification of cardiac risk, although this has been proved on 24 h period recordings [1]. 

Instead, RMSSD reflects the beat-to-beat variability in pulse interval (or heart rate) and is the primary 

time-domain measure used to assess vagally-mediated changes in HRV [1], and was computed as [40] 

 𝑅𝑀𝑆𝑆𝐷 =  √
1

𝑁−1
∑ (𝑥(𝑛 + 1) − 𝑥(𝑛))2𝑁−1

𝑛=1    , (1) 

where x(n) can be either RRI(n) or PPI(n), indicating the n-th measurement of the interval, and N=300. 

Before performing frequency and information domain analyses, PPI and RRI time series were further pre-

processed removing slow trends (by means of a zero-phase IIR high-pass filter with a cut-off frequency 

of 0.015 Hz) and then reduced to zero mean by subtracting the mean value. Quasi-stationarity of the 

selected time series was verified by applying test described in [41], which checks a restricted form of 

weak stationarity by assessing the stability of mean and variance across sub-windows of the analyzed 

time series. 

Parametric spectral analysis was then carried out fitting the pre-processed time series with an 

autoregressive (AR) model of the form 

 

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p

k
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where ak are the linear regression coefficients that weight the linear dependence of the current sample of 

the time series, x(n), on the past samples, x(n-k) with a delay k=1,...,p, p is the model order, and w(n) an 

uncorrelated Gaussian white noise process with zero mean and variance 2
w . Here, model identification 

was performed through the ordinary least squares method and, instead of using standard model order 

selection criteria, a model order of p=10 was selected to allow representation of different oscillations 

within the low-frequency (LF, range: 0.04-0.15 Hz) and high-frequency (HF, range: 0.15-0.4 Hz) spectral 

bands [38]; in general, it has been proven that orders from p=9 to p=25 generate statistically similar 

normalized spectral parameters [42]. Then, the power spectral density of the AR process was computed in 

the frequency domain starting from the AR coefficients as [43] 
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Figure 1. Examples of RRI and PPI time series (top row panels), spectral decomposition (mid row panels) and probability 

distributions (bottom row panels) for a representative subject monitored at rest (a, phase R1), during orthostatic stress (b, phase 

T) and during mental workload (c, phase M). Black lines/plots represent RRI data, while blue lines/plots denote PPI data. 

Dotted lines in mid row panels indicate the k components obtained from spectral decomposition representing the oscillatory 

structure of the process. In this example, the indexes measured in the three phases (R1, T and M) were: MEAN (911.24, 720.08, 

843.09 ms from RRI; 911.24, 720.13, 843.09 from PPI), SDNN (40.33, 52.74, 40.74 ms from RRI; 42.18, 57.19, 45.24 ms 

from PPI) and RMSSD (40.82, 29.24, 33.16 ms from RRI; 42.18, 39.57, 45.70 ms from PPI) for the time domain analysis; fHF 

(0.336, 0.166, 0.191 Hz from RRI; 0.336, 0.171, 0.189 Hz from PPI), HF (606.19, 608.32, 527.81 ms2 from RRI; 726.38, 

744.60, 727.46 ms2) and LF/HF (0.999, 3.028, 1.002 from RRI; 0.826, 3.116, 0.732 from PPI) for frequency domain analysis; 

and H (5.046, 5.209, 4.842 nats from RRI, 5.035, 5.321, 5.009 nats from PPI), CE (2.067, 1.470, 1.700 nats from RRI; 2.042, 

1.839, 1.974 nats from PPI) and SE (0.116, 0.547, 0.122 nats from RRI; 0.119, 0.395, 0.062 nats from PPI). 

In this work, we used a spectral decomposition method to split P(f) into k components reflecting the 

oscillatory structure of the process [44], each associated with a central frequency fk and a power Pk 

computed from the roots of the polynomial A(z) [16]. An example of spectral decomposition performed 

from RRI and PPI time series during R1, M and T is shown in Figure 1 (mid row panels). As frequency 

domain indexes, we have selected the central frequency of the most prominent peak located in the high 

frequency band (fHF), the HF spectral power in absolute units, and the ratio of the total power located in 

the LF band to that found in HF band (LF/HF). In detail, LF power may reflect the activity of both PNS 

and SNS; however, SNS usually does not generate rhythms much above 0.1 Hz, while the PNS can affect 

heart rhythms down to 0.05 Hz [1]. The power content in the HF band reflects parasympathetic activity 

and a strong relationship between the HF central frequency and respiratory influences has been observed 

[1]; moreover, lower HF power has been correlated with stress, panic, anxiety, or worry conditions [1]. 

Finally, LF/HF power ratio has been chosen since it has been long used as an index reflecting the 

proportion of sympathetic to parasympathetic activity [1], although its reliability as a measure of the 

autonomic balance is largely debated [45, 46]. In addition to these indexes herein analyzed, also the LF 

spectral power (both in absolute and normalized units), the central frequency of the most prominent peak 
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located in the LF band, and the normalized power in the HF band have been considered; description and 

relevant results are included as electronic supplementary material (Online Resource 1). 

Finally, information-domain analysis was carried out to assess the amount of information contained in 

the most recent sample of the time series x(n), as well as the information shared between x(n) and the past 

samples x(n-1),..., x(n-m) and the residual information contained in x(n) but not in x(n-1),..., x(n-m). 

These quantities reflect, respectively, the entropy of the time series (H), the part of this entropy which can 

be derived from the past history (self entropy, SE) and the part that cannot be derived from it (conditional 

entropy, CE)  [11, 47, 48]. In detail, entropy, conditional entropy and self entropy are given by: 
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where, for the generic random variables a and b, p(a) is the probability of a and p(a|b)=p(a,b)/p(b) is the 

conditional probability of a given b. An example of the probability distribution p(x(n)), computed using 

histogram quantization where x(n) is RRI(n) or PPI(n), is reported in Figure 1 (bottom row panels). In 

this work, we applied two different model-free approaches, described in detail e.g. in Ref. [48], to 

compute the information measures defined in Eq. (4). The conditional entropy was computed using the 

kernel estimator, which yields the estimate of CE very well known as Sample Entropy [12]. This is 

achieved computing the kernel density estimate of the probability distribution, i.e. computing the 

probability of a generic vector v(n) from M realizations  as 

 
 

M

nii
inMnp

,1
1 ||))()((||)1())(( vvv  where ||∙|| is the maximum norm and  is the Heaviside 

kernel with threshold distance r (i.e., the vectors v(n) and v(i) are similar if the maximum distance 

between their scalar components is lower than r), and then using the kernel estimator for computing 

))(),...,1(),(( mnxnxnxp   and ))(),...,1(( mnxnxp   to be plugged in (4) to estimate Cx. As to the 

estimate of entropy and self entropy, here we adopted an approach based on k-nearest neighbor method 

for the estimation of probability density functions [48, 49] that is more accurate and less biased than the 

kernel entropy estimation methods commonly used for Cx [12]. With this approach, estimates of the 

quantities Hx and Sx defined in (4) are obtained in practice as follows: 
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where (∙) is the digamma function, (n) is twice the distance from x(n) to its k-th nearest neighbor in the 

one-dimensional space, ))(),...,1((),( mnxnxmnx  , )1,(  mn  is twice the distance from )),(),(( mnxnx  

to its k-th nearest neighbor in the (m+1)-dimensional space, and ),( mnxN  and )(nxN  are the number of 
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points whose distance from x(n,m) and x(n), respectively, is smaller than 2/)1,(  mn . Details about the 

estimation of these measures can be found in [48, 49]. In this study, before evaluating information-

domain indexes, the time series were normalized to unit variance. Then, in accordance with the literature 

standards for short-time series [12, 49], the parameter m was set equal to m=2, the threshold distance for 

the kernel estimator was set to r=0.2 and the number of neighbors to be used in (5) was set to k=10. 

 

C. Statistical analysis 

The main aim of the analyses carried out in this work was to assess to what extent PPI-based measures 

can be used to evaluate HRV in place of the gold standard ECG technique. For this reason, the agreement 

between PPI- and RRI-based approaches has been assessed comparing the distributions of the nine 

indexes described in section II.B across the 76 subjects, using three different testing approaches: (a) 

hypothesis testing, (b) correlation analysis and (c) Bland-Altman plots. 

For each of the five phases described in section II.A, we have applied the Wilcoxon signed rank test to 

check whether RRI-based and PPI-based distributions come from a distribution of the same median. The 

null hypothesis is rejected (i.e., p-value < 0.05) when there is no agreement between the two distributions 

under test. Moreover, to test the statistical significance of the differences in median of the five 

distributions of each measure evaluated across conditions (R1, T, R2, M, R3) we used the Friedman 

ANOVA test, followed by post hoc Wilcoxon signed rank test to assess pairwise differences (e.g., R1 vs 

T, R1 vs R2, R1 vs M, R1 vs R3 and so on), also employing the Bonferroni correction for multiple 

comparisons. 

As regards correlation analysis, a robust regression technique was used to calculate the slope (a) and 

the intercept (b) of the regression line, in order to quantify the agreement between RRI-based and PPI-

based measurements according to the linear prediction model 𝑦 = 𝑎𝑥 + 𝑏, where x and y represent values 

of  measures assessed from RRI and from PPI time series, respectively. Moreover, the standard linear 

regression technique was employed to calculate the Pearson correlation coefficient R, which was taken as 

a measure of the agreement between the two distributions under test. 

Finally, the Bland-Altman plots were used to assess the agreement between the two approaches in 

terms of the differences between RRI-based and PPI-based measurements (in the y axis) plotted versus 

their average (in the x axis). The agreement was quantified as a ratio between half the 95% confidence 

interval for the difference and the mean of the averaged values [50]. 

 

III. RESULTS 

Figure 2 shows the comparison of the distributions of time-domain indexes (i.e., MEAN, SDNN and 

RMSSD) across the 76 subjects in the five considered conditions.  

As reported, for all the three considered indexes, the phase-by-phase comparison shows that the 

distributions in supine rest conditions (R1, R2, R3) are not statistically different. On the contrary, all 

indexes were significantly lower (p < 0.05) during mental arithmetic and head up tilt if compared with 

each of the three resting conditions. 
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Figure 2. Boxplot distributions of time domain indexes, i.e., (a) MEAN, (b) SDNN and (c) RMSSD calculated from 

PPI (white) and RRI (gray) time series during supine rest phases (R1,R2,R3), head-up tilt (T) and mental arithmetic 

test (M). Statistical tests: Phase name, p<0.05 Ph.1 vs Ph.2; *, p<0.05 PPI vs RRI. 

 

Importantly, the results of the significance tests were exactly the same when the indexes were 

computed from RRI or from PPI measurements. Regarding the comparison between the two approaches 

to compute the same index in a given phase, we observed that the distributions of the MEAN index were 

statistically similar. On the contrary, the values of SDNN and RMSSD were significantly higher if 

assessed from PPI than from RRI time series.  

Figure 3 depicts the comparison of the distributions of frequency-domain indexes, i.e., fHF, HF and 

LF/HF. The central frequency of the HF peak in the power spectrum did not show any statistically 

significant difference across the analyzed experimental conditions, while the HF spectral power was 

significantly lower during M and T than during any of the supine rest conditions. Analysis of the LF/HF 

power ratio (Fig. 3(c)) shows that, while the three resting conditions did not exhibit significant 

differences with each other, the ratio was significantly higher during T and M than during rest, and was 

significantly higher during T than during M. For the HF and LF/HF indexes we note also that the PPI-

based values are significantly different than the RRI-based values in all conditions, the difference being 

more positive (larger PPI) for HF and negative (larger RRI) for LF/HF. 

 

Figure 3. Boxplot distributions of frequency domain indexes, i.e. (a) fHF, (b) HF and (c) LF/HF, calculated from 

PPI (white) and RRI (gray) time series during supine rest phases (R1,R2,R3), head-up tilt (T) and mental arithmetic 

test (M). Statistical tests: Phase name, p<0.05 Ph.1 vs Ph.2; *, p<0.05 PPI vs RRI. 



 

10 

 

 

 

Similar remarks can be made from the comparison of the distributions of information-domain indexes, 

i.e., H, CE and SE, shown in Fig. 4. Again, RRI-based or PPI-based distributions of supine resting phases 

are similar, while T and M are statistically different. In particular, significant differences can be observed 

for H during both T and M (a significant decrease), for CE during T (a decrease), and for SE during T (an 

increase). RRI-based and PPI-based values of the indexes are statistically different as the PPI method 

overestimates H and CE and underestimates SE (p-value < 0.05), the difference being more remarkable 

during T. 

 

Figure 4. Boxplot distributions of information domain indexes, i.e., (a) H, (b) CE and (c) SE calculated from PPI 

(white) and RRI (gray) time series during supine rest (R1,R2,R3), head-up tilt (T) and mental arithmetic test (M). 

Statistical tests: Phase name, p<0.05 Ph.1 vs Ph.2; *, p<0.05 PPI vs RRI. 

Table 1 summarizes the results of the linear correlation analysis between RRI-based and PPI-based 

measurements of, respectively, time-domain, frequency-domain and information domain indexes, 

assessed through robust regression in the five different conditions (R1, R2, R3 shown together in the left 

panel in each figure, T in the central panel, M in the right panel). In detail, the numerical values of the 

correlation coefficient (R), slope (a) and intercept (b) of the regression lines are reported in Table 1. 

With regards to time-domain indexes an almost perfect agreement (i.e., correlation coefficient and 

slope of the regression of 1.00) is observed in resting conditions (R1, R2, R3), while a slightly lower 

slope has been obtained in case of RMSSD in T (a 0.97) and M (a 0.98) phases. 

Regression analysis of frequency-domain indexes demonstrates again a very good agreement of 

central frequency and HF spectral power in resting conditions, with almost unitary slope values and 

correlation coefficients higher than 0.93. As to the LF/HF power ratio, the agreement is lower than 

expected during the R1 condition due to the presence of some outlier values, but the correlation is very 

high in the two other resting phases R2 and R3. The lowest value of the slope of the regression line has 

been obtained also in this case during the T condition. 
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TABLE 1. RESULTS OF REGRESSION ANALYSIS 

Regression analysis of information-domain indexes shows similar results to the previous analysis, 

demonstrating again a very good agreement of all the considered indexes (i.e., H, CE and SE) in the 

supine resting conditions (R1, R2 and R3), with high values of the correlation coefficient in all the cases; 

lower correlation values were obtained for CE (computed with the kernel estimator) compared with H 

and SE (computed with the nearest neighbor estimator). In a similar way, the slope of the robust 

regression line was higher than 0.9 during the three rest conditions when assessed for H and SE, while it 

was lower for CE. Again, a worse agreement is observed moving from rest to stress, with generally lower 

R and a values obtained in the M and especially in the T phases. The worst agreement is observed during 

head-up tilt for SE (R0.79, a0.63) and for CE (R0.79, a0.61).  

Figures 5, 6 and 7 depict Bland-Altman plots, respectively for the time-domain, frequency domain and 

information domain indexes, during all the five conditions; again, the resting phases R1, R2 and R3 have 

been analyzed together. Diagrams have been obtained plotting the differences between RRI-based and 

PPI-based measurement versus their average. The average difference is indicative of the bias of PPI-

based measures compared to RRI-based ones, while the width of the 95% confidence intervals of the 

differences PPI-RRI is indicative of the dispersion of PPI-based measures around RRI-based ones. 

Numerical values of the agreement between PPI-based and RRI-based measures are reported in Table A 

of the electronic supplementary material (Online Resource 1). 

With regard to time-domain indexes (Fig. 5) there is an almost perfect agreement for the MEAN 

parameter between RRI-based and PPI-based measurements (around 10-4) in all the conditions. 

Parameter 
Correlation coefficient R Robust Fitting coefficients 

R1 T R2 M R3 R1 T R2 M R3 

MEAN 

[ms] 
1.000 1.000 1.000 1.000 1.000 

a=1.000 

b=1.451×10-2 

a=1.000 

b=-9.599×10-2 

a=1.000 

b=3.393×10-3 

a=1.000 

b=-1.848×10-2 

a=1.000 

b=-9.332×10-2 

SDNN 

[ms] 
0.999 0.998 0.999 0.999 0.999 

a=1.010  

b=1.227 

a=1.006 

b=2.085 

a=1.002 

b=1.474 

a=1.001 

b=1.477 

a=1.002 

b=1.519 

RMSSD 

[ms] 
0.999 0.988 0.999 0.998 0.998 

a=0.998 

b=3.165 

a=0.968 

b=5.161 

a=0.987 

b=3.626 

a=0.979 

b=3.550 

a=0.981 

b=3.906 

fHF  [Hz] 0.936 0.893 0.999 0.870 0.983 
a=0.999 

b=1.562×10-4  

a=0.998 

b=5.754×10-4 

a=1.000 

b=-5.832×10-6 

a=1.001 

b=-4.044×10-4 

a=1.001 

b=-6.298×10-4 

HF [ms2] 0.998 0.955 0.998 0.998 0.998 
a=1.055 

b=52.848 

a=1.185 

b=59.733 

a=1.018 

b=103.711 

a=1.051 

b=40.571 

a=1.035 

b=63.317 

LF/HF 0.889 0.805 0.961 0.949 0.953 
a=0.950 

b= 1.541×10-3 

a=0.591 

b=0.369 

a=0.929 

b=2.365×10-2 

a=0.895 

b=3.905×10-2 

a=0.987 

b=-2.276×10-2 

H [nats] 0.995 0.991 0.996 0.995 0.997 
a=0.976 

b=0.168  

a=0.934 

b=0.418 

a=0.974 

b=0.174 

a=0.955 

b=0.280 

a=0.960 

b=0.251 

SE [nats] 0.958 0.788 0.962 0.860 0.928 
a=0.925 

b=-1.363×10-3 

a=0.631 

b=9.943×10-2 

a=0.951 

b=-3.085×10-3 

a=0.826 

b=6.136×10-3 

a=0.965 

b=-9.211×10-3 

CE [nats] 0.852 0.788 0.828 0.806 0.852 
a=0.850 

b=0.326  

a=0.613 

b=0.748 

a=0.683 

b=0.600 

a=0.777 

b=0.475 

a=0.872 

b=0.265 
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Figure 5. Bland-Altman plots of time domain indexes, i.e., (a) MEAN, (b) SDNN and (c) RMSSD showing mean 

values of RRI-based and PPI-based indexes against their difference, computed for the five considered conditions. 

For each figure, the left panel shows results obtained in resting conditions (R1 in blue, R2 in green and R3 in red), 

the central panel those extracted for head up tilt (T) case, and the right panel those computed for mental arithmetic 

test condition (M). Horizontal lines denote median (dotted lines) and 95% confidence intervals of the difference 

PPI-RRI (solid lines). 

Moreover, the average values PPI-RRI are very small, as also seen by the almost null median values of 

the plots. Also SDNN shows a very good agreement, with index lower than 0.05 for all the cases and 

especially for low the resting conditions. However, the average values PPI-RRI and the median of their 

distribution show that PPI measurements overestimate SDNN for all the conditions, especially during 

head-up tilt. The same remarks can be made for RMSSD in terms of overestimation in case of PPI 

measurements. In addition, the agreement was very good (~ 0.05) for resting phases, but lower for other 

conditions, being 0.09 during M and 0.13 during T. 
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The Bland-Altman analysis carried out on frequency domain indexes (Fig. 6) shows quite different 

results. First, the bias is very low for fHF in all the considered conditions. A larger positive bias was 

instead found for HF, indicating that PPI-based measures overestimate HF power. 

 

Figure 6. Bland-Altman plots of frequency domain indexes, i.e., (a) fHF, (b) HF and (c) LF/HF showing mean 

values of RRI-based and PPI-based indexes against their difference, computed for the five considered conditions. 

For each figure, the left panel shows results obtained in resting conditions (R1 in blue, R2 in green and R3 in red), 

the central panel those extracted for head up tilt (T) case, and the right panel those computed for mental arithmetic 

test condition (M). Horizontal lines denote median (dotted lines) and 95% confidence intervals of the difference 

PPI-RRI (solid lines). 

The agreement is quite good (~ 0.01) only for fHF, while it is worse otherwise. In detail, agreement is bad 

(> 2) for the LF/HF power ratio during R1,R2,R3 (considered together) and during T, being only a little 

better in the M phase. The difference in the agreement among the various conditions is very marked for 

HF, ranging from ~0.16 in the supine resting conditions to ~ 0.83 during T.  
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Fig. 7 reports the results of the Bland-Altman test executed for the information domain indexes. The 

bias, which documents the average of the differences, is positive for the indexes H and CE and is negative 

for SE, confirming that PPI-based measures overestimate entropy and complexity and underestimate the 

regularity of HRV. Moreover, the bias was small during rest and M and larger during T for all indexes. 

As to the agreement, it is very good (~ 0.02) in all conditions for the index H, while it is larger for the 

indexes CE and SE, ranging from ~0.14 to ~0.5.  

 

Figure 7. Bland-Altman plots of frequency domain indexes, i.e., (a) H, (b) CE and (c) SE showing mean values of 

RRI-based and PPI-based indexes against their difference, computed for the five considered conditions. For each 

figure, the left panel shows results obtained in resting conditions (R1 in blue, R2 in green and R3 in red), the central 

panel those extracted for head up tilt (T) case, and the right panel those computed for mental arithmetic test 

condition (M). Horizontal lines denote median (dotted lines) and 95% confidence intervals of the difference PPI-

RRI (solid lines). 
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We highlight that similar remarks can be made when analyzing LF spectral power and also normalized 

power values, which are other frequency-domain indexes widely employed in the literature [1, 6]. We 

refer the reader to the electronic supplementary material (Online Resource 1) for this analysis. 

IV. DISCUSSION 

The aim of the present study was to investigate to what extent measures of PRV derived detecting 

blood pulsation in the peripheral circulation can substitute traditional HRV measures derived from the 

ECG, with focus on descriptive indexes based on short term analysis performed in time, frequency and 

information domains. For PRV analysis we have employed blood pressure data acquired via a Finometer 

device (previously collected for other purposes). We are aware that volume clamp 

photoplethysmography-based devices, being less portable and more expensive when compared to basic 

PPG devices, are not the way to go for practical applications if the purpose is to measure PRV. However, 

as the CBP and PPG signals are strictly related to each other in terms of pulsation timings, both have been 

proposed to compare HRV and PRV [24], and this suggests that our results should also reflect the 

agreement between HRV and PRV when the latter is assessed through portable photoplethysmographic 

devices [17, 23]. 

In the literature different works have been devoted to comparing PRV and HRV variables [24, 27-33]. 

Even if an overall good agreement has been obtained in most papers for time and frequency-domain 

indexes, the results appear still somewhat controversial [24, 27-33], especially with regard to RMSSD and 

some frequency-related variables, such as LF, HF, LF/HF [27-29] or during head-up tilt, exercise [26, 27] 

or mental stress [29]. Also a few studies using blood pressure (Finapres) data tend to confirm a greater 

disagreement between PRV and HRV variables in the short-term or HF domain [30-33]. In particular, in 

[30] a comparative study of ECG and CBP signals recorded during a variety of situations (e.g., supine, 

seated rest, orthostatic tilt, psychological tasks) has been carried out, again taking into account time- and 

frequency domain indexes. However, data were analyzed by intraclass correlation reliability coefficients 

only [30]. More recent research papers have investigated the feasibility to assess the reliability of pulse-

rate variability measurements obtained from PPG signals acquired by videocameras [36], smartphones 

[21] or smartwatches [37]. Also in such works, only time and-frequency-domain indexes have been taken 

into account, finding an overall good agreement of temporal parameters, but bigger differences and 

disagreement for LF and HF powers [21, 37] or during standing if compared to resting position [36]. 

Our results complement the findings already available in the literature, highlighting the feasibility of 

extracting HRV indexes from PPI-based data, in several different conditions. Overall, the relatively good 

agreement of PPI-based measures with the corresponding RRI-based gold standard is demonstrated by 

their ability to detect changes in the autonomic nervous system state during physiological challenges, by 

generally low difference of their absolute value (Figs. 2 to 4), high correlation (Table 1) and low 

dispersion of differences (Figs. 5 to 7). The agreement was almost perfect in resting supine positions (R1, 

R2, R3), while resulted to be worse in the 45 upright position (T) and during mental arithmetic test (M). 

In particular, PPI-based measures of the time domain indexes exhibited higher bias and coefficient of 

agreement according to Bland-Altman analysis (Fig. 5). As to frequency domain indexes, resting 

conditions presented a better agreement documented in terms of correlation coefficient (Table 1) and 

Bland-Altman plots (Fig. 6), compared to mental and especially to postural stress. The HF spectral power 
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resulted significantly lower during M and T than during any of the supine rest conditions, suggesting that 

the HF power decreases during M and especially during head up tilt due to reduced parasympathetic 

activity. Moreover, the LF/HF ratio was markedly higher during T, confirming the well-established 

behavior that in this case the LF component becomes dominant, reflecting sympathetic activation; this 

occurred without any significant changes of LF spectral power in absolute units if compared to resting 

conditions, due to the decrease of the total variance [6]. Moreover, the reduction of HF spectral power 

during mental arithmetic test can be due to the fact that decreased parasympathetic tone reflected in a 

lower HF power is correlated with stress states [1]. In the information domain, supine resting conditions 

showed a close agreement between the two approaches, being instead worse during stress, especially in 

the case of conditional entropy and self entropy computed during head-up tilt. A possible explanation of 

the worse agreement for information measures during physiological stress is that the higher variability 

exhibited by PRV compared to HRV is likely determining more complex patterns in the time series, 

which cause the higher CE and lower SE found in our study (Fig. 7). This finding has potential 

physiological and clinical relevance, since information measures such as the CE and the SE have been 

shown to respond to different degrees of neural sympathetic activity during postural stress, and are thus 

believed to respond to sympathetic control [7, 13]. 

When comparing the different descriptors in the time, frequency and information domains, we observe 

that PRV is more in disagreement with HRV regarding the computation of the LF/HF power ratio. For 

this index, the accordance between PPI- and RRI-based data was worse both in terms of correlation 

coefficient and of Bland-Altman agreement. In the literature, the agreement between PPI- and RRI-based 

values of the LF/HF index has been controversial [24]. In particular, similarly to our results, in different 

previous works the LF/HF ratio presented a negative bias and a lower agreement when compared to other 

indexes [24, 29, 51]. The reason behind this may be physiological as the LF/HF ratio, though traditionally 

used as an indicator of sympathovagal balance, is actually a measure affected by several factors which 

determine its high variability across subjects and conditions. In fact, its use as a measure of balance 

between sympathetic and parasympathetic activity has already been widely questioned [1, 45, 46], since 

the underlying assumption in using LF/HF ratio (i.e. that an increased sympathetic activity is 

accompanied by a decreased parasympathetic activity) is not always valid and instead depends on specific 

measurement conditions, especially in case of short-term HRV (5-min data) [1, 45]. Moreover, LF power 

is not a pure index of sympathetic activity, being a significant portion of the variability in this frequency 

band mediated by the PNS [1]. The situation may change during head-up tilt, when sympathetic 

activation induces a shift in the sympathovagal balance that generally increases the value of LF/HF [6]; 

this may also explain the fact that in our study LF/HF did not show the higher disagreement during tilt 

displayed by most of the other indexes. 

The analysis of the distribution of values for each index computed over the 76 subjects analyzed 

showed that PPI-based distributions present in most cases a small but statistically significant deviation 

from reference RRI-based measures, with a bias which is positive for SDNN, RMSSD, HF, H, and CE, 

and negative for LF/HF and SE indexes. However, such deviation does not affect the capability of the 

PPI-based method to assess in almost all the cases the differences across the different conditions (resting 

and T and M), as using the RRI-based analysis. Moreover, the detected deviations are not surprising, 

since previous studies evidenced bias in the estimation of PRV-based indexes, especially regarding fast 
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variations in the cycle length reflected by the RMSSD measure in the time domain and by the HF activity 

in the frequency domain [26, 34].  

The discrepancies observed between HRV and PRV can be due to inaccurate detection of the pulse 

rate and/or to noise and movement artifacts which are known to affect CBP and PPG recordings. In our 

study, we tend to exclude the second reason because our acquisitions were executed in carefully 

controlled laboratory settings, also avoiding transition effects from one phase to another, and the analyzed 

time series were selected as free of artifacts and fulfilled the test for restricted weak-sense stationarity 

[41] (see section II.B) [3, 39]; however, random errors due to localization of the maxima in the round-

shaped pulse waves of the blood pressure signal may play an important role in determining different 

values of PPI compared to RRI. Another plausible reason for the observed discrepancies can be related to 

physiological factors. PRV differs from HRV due to the distorting effect of non-constant pre-ejection 

period (PEP), which depends mainly on left ventricular contractility [52-55], and to pulse transit time 

(PTT), which has been also shown to exhibit physiological variability [24, 56-61]. PTT is the time that a 

pressure pulse takes to travel between two arterial sites and depends on the current condition of the 

vessels and on blood pressure [59, 60]. We refer to [60] for propagation models establishing the 

relationship between PTT and arterial elasticity, which may play a role in determining the discrepancy 

between short-term PRV and HRV and between the related descriptive indexes. PEP is one of the 

components of the time delay between R wave from ECG and pulse wave from PPG, and several 

previous studies demonstrated its dependence on the autonomic nervous system state and ventricular 

filling (venous return) [52-55]. PEP depends on the electromechanical functioning of the heart and can 

thus vary independently of PTT (e.g., PEP changes in the same direction as PTT during exercise but in 

the opposite direction during vasoconstriction) [61]. Finally, we note that a main role in determining 

physiological differences between PRV and HRV is played by respiration, which may affect ventricular 

loading and thus PEP, as well as intra-thoracic pressure, stroke volume and arterial blood flow, and thus 

PTT. Future studies are needed to clarify better the role of inaccuracies in PPI measurement vs. 

physiological factors in determining the differences between HRV and PRV. 

In spite of the discrepancies discussed above, our results demonstrate that it is feasible to employ PPI-

based measures to assess statistically significant variations of both standard and novel descriptive indexes 

of short-term HRV computed in the time, frequency and information domains in response to 

physiological changes related to orthostatic stress or cognitive workload. Indeed, a number of changes 

observed in the descriptive indexes of HRV across different experimental conditions were observed 

identically also for the corresponding indexes based on PRV. These changes are specific for the ANS 

state modification and reflect the well-known physiological regulatory mechanisms responsible for the 

cardiovascular system control [3, 13, 62, 63]. In detail, orthostatic and mental stress induce tachycardia as 

well as an overall decrease of HRV associated with a reduced PNS activity and/or elevated SNS activity, 

here reflected by the lower values of the MEAN, SDNN and RMSSD indexes. In the frequency domain, 

orthostatic stress is reflected in this study by higher values of the LF/HF power ratio, which are seen, 

even though to a lesser extent, also during mental stress induced by the arithmetic test. With regards to 

the entropy measures, the decrease of conditional entropy, a measure associated with system complexity 

[7], as well as the increase of information storage (i.e., the self entropy, SE) [38, 64] induced by head-up 

tilt in short-term HRV series is a well-known result which has been ascribed to the shift in the 
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sympathovagal balance occurring during head up tilt causing simpler cardiac dynamics with dominant 

oscillations centered around the frequency of Mayer waves [3]. It is worth noting also that, in agreement 

with recent findings [11, 65], conditional entropy and information storage were altered by postural stress 

but not by mental stress. 

Correlation analysis and Bland-Altman plots confirmed the good agreement between PPI and RRI 

based measurements in all the resting conditions. The agreement decreases for mental arithmetic test and 

even more for head-up tilt: in detail, lower correlation coefficients and/or higher deviation of the robust 

regression line from the optimum condition of a=1, b=0 have been obtained, especially for LF/HF, CE 

and SE. Such results are in agreement with other works in literature which demonstrated that the 

consistency between PPI- and RRI-based measures decreases during physiological stress [26, 34], most 

probably due to the usually lower magnitude values of HRV in such conditions [6]. Again, while the 

administration of stressors generally favors noise and motion artifacts, physiological factors may 

contribute to the observed higher discrepancies. These factors may include the reduced variability of RRI 

during orthostatic and mental stress, and the stronger mechanical coupling between respiration and the 

thoracic vascular system in the upright position compared to the supine [66]. 

V. CONCLUSIONS 

This work presents an in-depth comparison of PRV and HRV as regards the computation of 

descriptive indexes of the heart period variability in different physiological states ranging from the resting 

supine position to head up tilt and mental arithmetic test. Our results speak in favor of the utilization of 

PRV to characterize the short-term cardiovascular control, both at rest and in response to postural and 

mental stress. Nevertheless, the larger disagreement found during mental stress and particularly during 

postural stress suggests that some caution should be adopted to use PRV measures in place of HRV 

measures during altered physiological states, especially when subtle modifications in cardiovascular 

control are sought. Future works should focus on studying how the agreement/disagreement between 

PRV- and HRV-based indexes of short-term variability varies with age and in presence of cardiovascular 

pathologies and what are its major determinants. 
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