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Abstract 

Transcranial magnetic stimulation combined with electroencephalography (TMS-EEG) is 
widely used to study the reactivity and connectivity of brain regions for clinical or research 
purposes. The electromagnetic pulse of the TMS device generates at the instant of 
administration an artifact of large amplitude and a duration up to tens of milliseconds that 
overlaps with brain activity. Methods for TMS artifact correction have been developed to 
remove the artifact and recover the underlying, immediate response of the cerebral cortex 
to the magnetic stimulus. In this study, three such algorithms are evaluated. Since there is 
no ground truth for the masked brain activity, pilot data formed from the superposition of 
the isolated TMS artifact on the EEG brain activity are used to evaluate the performance of 
the algorithms. Different scenarios of TMS-EEG experiments are considered for the 
evaluation: TMS at resting state, TMS inducing epileptiform discharges and TMS 
administered during epileptiform discharges. We show that a proposed gap filling method is 
able to reproduce qualitative characteristics and in many cases closely resemble the hidden 
EEG signal. Finally, shortcomings of the TMS correction algorithms as well as the pilot data 
approach are discussed. 

 

Introduction 

Transcranial magnetic stimulation (TMS) is a noninvasive method for brain stimulation with 
electromagnetic pulses delivered via stimulation coils [1]. The pulse has short duration (< 1 
ms) and peak amplitude up to 3 Tesla. Short duration-high frequency induced electric 
currents are able to penetrate the cell membranes and depolarize pyramidal cells and 
interneurons. Depending on the equipment, the depth of the stimulation can be up to 6 cm 
[2,3]. The reaction of the cortex can be recorded by combining TMS and 
electroencephalography (TMS-EEG) [4] and depends on different factors such as: the precise 
site of stimulation [5], the direction of the coil, the type of the coil [6], the power of the 
pulse [7,8], the form of the pulse [9], the state of the cortex [10,11], and the level of 
consciousness [12]. The reaction occurs first at the stimulation area and then spreads to 
more distant areas as the activation is transmitted along existing neural pathways. Thus, 



TMS-EEG is an excellent tool to measure connectivity between distinct brain areas and 
reactivity to a specific stimulation pattern [13]. TMS-EEG has been utilized for diagnostic [14] 
and therapeutic purposes [15]. Repetitive TMS (rTMS) can act as a modulator of neuronal 
activation and leads to reorganization of cortex connections with numerous therapeutic 
implications [4]. 

A key issue in the preprocessing of TMS-EEG recordings is the correction of artifacts 
generated by the electromagnetic pulse of the TMS device and the unintended activation of 
physiological systems other than the brain per se (muscle and trigeminal nerve activation, 
eye movements) [4,6]. The artifact is observed in the EEG as fluctuations of several orders of 
magnitude larger than electrophysiological activity. Though several techniques have been 
suggested and are in use for reducing this effect, e.g. a sample-and-hold circuit [16,17,18], 
improved EEG amplifiers such as direct current coupled amplifiers [19] and use of TMS-
compatible EEG electrodes [20,21], the TMS-related artifact remains in the EEG recording, is 
relatively large in amplitude and has a duration up to 20 ms. Thus, early TMS evoked 
potentials (i.e. at a latency ≤ 20ms) are masked by the TMS-related artifact. Complete 
removal of channels heavily contaminated by the artifact from the analysis would mean that 
valuable information would be lost (since these channels would be exactly the ones close to 
the stimulation site), e.g. this could lead to a systematic error in source estimation [2]. 

The analysis of TMS-EEG requires the offline correction of the TMS related artifact, termed 
simply TMS artifact. Blind source separation methods have been proposed to separate 
cortical and non-cortical sources and thus remove the TMS artifacts, such as techniques 
based on independent component analysis (ICA) [3,4,22,23] and principal component 
analysis (PCA) [24,25], and the so-called signal-space projection [26,27]. ICA-based TMS 
artifact correction algorithms have been built in the FieldTrip toolbox [28], as well as the two 
recent Matlab modules for TMS-EEG processing, TMSEEG [29] and TESA [30]. In a different 
approach, rather than attempting to identify and remove the artifact from the signal, the 
whole signal affected by the artifact is treated as corrupted and considered as a gap to be 
filled by an interpolation method, such as linear or cubic interpolation [31,32]. A more 
advanced interpolation approach is proposed in [33], filling the gap from the weighted 
forward-backward prediction of a local state space model. 

The immediate cortex activity evoked by the TMS is not known as it is masked by the TMS 
artifact, and thus there is no ground truth to be used as reference for the evaluation of TMS 
artifact correction algorithms. For the evaluation of the algorithms, qualitative 
characteristics of the corrected signal are used, e.g. based on its time-frequency 
representation [34].  

In this study, we evaluate three of the artifact correction algorithms discussed above. The 
first two identify and remove the artifact from the signal, i.e. the FastICA algorithm [35] and 
the separation making use of PCA and the source to sensor forward model, termed here PCA 
model [2], and the advanced gap filling method in [33]. For the evaluation, we first estimate 
the artifact from TMS-EEG recordings at rest, obtained by averaging over several iterations 
of stimulation. The artifact is then added to three types of pilot high-density EEG signals: 
resting EEG, at the onset of an epileptiform discharge (onset ED)  and in the course of an 
epileptiform discharge (mid-ED). The correction algorithms are applied to the resulting 
signals. The signal derived from the superposition of TMS artifact and the initial EEG signal 
lacks the possible interplay of artifact and underlying neuronal activity but allows for using 
the initial EEG as reference for evaluating the corrective capacity of each algorithm.  

 

 



Methods 

The structure of the study is as follows. First, the three TMS artifact correction methods are 
discussed, and then the procedure for generating EEG signals added with TMS artifact as 
well as the estimation and evaluation of the correction methods are presented.  

 

TMS-related artifact correction methods 

FastICA 

FastICA is a time effective algorithm implementing independent component analysis (ICA). 
Possible pre-processing steps are data centering, whitening and dimensionality reduction, 
the latter being done by PCA in FastICA. The rationale of ICA is to separate independent 
sources being mixed in the observed multichannel EEG signal [36]. For this, the statistical 
independence is maximized to find the independent components (ICs) using a procedure 
that maximizes the non-Gaussianity. FastICA uses the so-called fast fixed-point algorithm to 
run faster and projection pursuit to find the ICs. The algorithm can be configured to produce 
the ICs one at a time (deflation approach) or converge to the set of ICs (symmetric 
approach). Statistical independence is a very strong condition in ICA and requires an infinite 
length of data to be verified. An acceptable lower limit for the length of a signal of N 
channels is    . For shorter EEG signals, PCA is used to reduce the dimension N.  

ICA generally outputs the ICs in random order. As FastICA uses PCA for pre-processing, ICs 
are given in decreasing variance (power) order and since the artifact has much larger 
variability than the physiological signal, the ICs corresponding to the artifact come first. 
Specifically, recognition can be done in two ways. Firstly, by observing the ICs themselves, 
and looking for large fluctuations at the time of the artifact that decay to zero when there is 
no artifact. These ICs can be identified automatically, by centering each IC around its average 
value, taking the absolute value and deciding for rejection according to a given threshold. 
The reconstructed artifact-free signal is then obtained by the remaining ICs. The second way 
is more complex and is based on the observation of the topography matrix that represents 
the spatial distribution of each IC. Knowing the stimulation site, the distribution of the 
artifact on the scalp can be estimated, identified and finally removed. ICA and FastICA 
implementations are standard in EEG processing software packages, such as EEGLAB [37] 
and Fieldtrip [28]. 

PCA model 

The method introduced in [2] attempts to separate the neuronal activity signal from artifact 
activity as ICA, but unlike the latter it makes no assumption about spatial or temporal 
independence of brain and artifact activities. However, it relies on the construction of a 
source model consisting of brain and artifact topographies. The source model and a linear 
inverse operator decompose the data into a linear combination of artifact and neural signals 
and finally the artifact signals are subtracted from the data. The model for the brain 
topographies requires that the head model and the electrode positions are known. Then 
activating a dipole with a known position produces a specific topography of activity at the 
electrode positions on the head surface. The information of this linear and fixed-to-time 
activation relationship is forwardly produced and stored in the lead field matrix. The artifact 
topographies are obtained from PCA decomposition of the averaged artifact using the 
minimum possible sources. For TMS–EEG data, this is the early signal (< 20 ms) that primarily 
represents the TMS artifact. 

If the topography of the neuronal sources is known in advance, models of previous studies 
can be used. In the general case, however, this is not feasible. So, this algorithm uses a two-



step iterative process to approximately model the neuronal sources. In the first step, 
neuronal activity is represented by a surrogate model, with 15 sources distributed around all 
major cortical regions. This model is capable of approximately reproducing any recorded 
activity on the surface, with an appropriate activation of each source. The artifact is 
corrected using the model derived by PCA and the surrogate neuronal model, and the 
corrected signal is used to build a new source model specifically for neuronal activity. In the 
second step, the correction is done using this improved model of neuronal sources in 
synergy with the lead field matrix for the artifact sources already calculated. So, the 
positions of the sources are not forced to be those of the surrogate model. 

The quality of separation of neuronal sources depends on the model of artifact sources, and 
vice versa [2]. This poses a problem, as an exact model for one cannot be produced in the 
presence of the other. The PCA model method [2] is included in the SPM package [38]. 

Gap filling 

This is an interpolation method discarding the signal with artifact, treating it as totally 
corrupted and assigning it to gap, and then filling the gap with an appropriate data driven 
model (see Fig. 1). The edges of the gap depend on the type of artifact, and in [33] the 
segment [-10, 30] ms around the TMS onset was assigned to gap. The interpolation model 
proposed in [33] is a local state space model stemming from the nonlinear analysis of time 
series under the perspective of dynamical systems theory. The hypothesis is that there is a 
dynamical system underlying the signal from the electrode, and the missing signal can be 
reconstructed by a model of this dynamical system extrapolating it forwards and backwards 
in time from the beginning and end of the gap, respectively. 

 

Figure 1: An EEG segment demonstrating the gap filling method having the TMS onset at time zero: (a) signal with 
TMS artifact, (b) the corrupted part of the signal of (a) in the time interval [-10, 30] ms is treated as a gap, (c) the 
missing part is filled by weighted forward and backward prediction using the time series on the left and right of 
the gap, respectively. Note that the signal outside the gap is the same but in (a) it is at a much larger scale. The 
scale of voltage in (a) is broader to display the whole artifact being 10 times larger in amplitude than the neuronal 
activity. The depicted unfiltered EEG signal is plotted with negativity as an downward deflection. This polarity 
convention is followed in all subsequent figures. 

 

The model requires the reconstruction of the state space from the measurements of the 
variable   , where   is the brain potential measured at an electrode and   is the time index 
(multiple of the sampling time). The point at time   in the reconstructed state space of 



dimension   is                         , where τ is the time delay parameter. In [33], an 

embedding dimension of      and delay τ = 1 were selected, and the number of 
neighbors k defining the neighborhood around    for which the model is valid was set to 
k=2. The prediction of the next observation      is given by the average of the one-time 
ahead observations of the k=2 nearest neighbors of   . The prediction is iterated for the 
target point     , formed in the same way and given the predicted observation     , and 
until the whole missing segment is estimated, covering the interval [-10,30] ms with 
reference to the stimulation time point. A very small k=2 is used to preserve the local 
approximation in a very high dimensional space (    ), and k=1 is avoided to preclude 
predicting reoccurring segments [39]. We let τ = 1 and      to include all details of the 
fluctuating signal of 50 time units long in the search for similar preceding segments (nearest 
neighbors). For the prediction of the missing segment the nearest neighbors are sought in 
the last 210 ms, i.e. the interval [-220, -10] ms (forward prediction). The same missing 
segment is predicted again by shifting the direction of time and using the interval [30, 280] 
ms to search for nearest neighbors (backward prediction). The forward and backward 
predictions for each predicted observation in [-10,30] ms are weighted and the weights 
change linearly going from 1 to 0 for the forward prediction and from 0 to 1 for the 
backward prediction as the prediction time goes from -10 ms to 30 ms, so that the sum of 
the weights always gives 1. There may be considerable changes in the signal before and after 
the gap, and by this weighting scheme the algorithm adjusts the gap filling to the closest 
state, before and after the gap [33].  

Data 

The TMS-EEG data were recorded at the Lab of Clinical Neurophysiology, the Medical School 
of Aristotle University of Thessaloniki, from a 37-year-old female patient with Juvenile 
Absence Epilepsy, a subtype of Genetic Generalized Epilepsy. Recordings were performed in 
an electrically-shielded room according to TMS-EEG methodological guidelines [4]. The EEG 
recordings of 60 channels in 10-10 montage were recorded with a TMS compatible EEG 
system (eXimia, Nexstim Ltd) at a sampling rate of 1450 Hz and bandpass filtered between 
0.1 and 500 Hz. Brain stimulation was performed with a Magstim Rapid2 magnetic 
stimulator (The Magstim Company Ltd) with a circular coil centered over the vertex, which 
employs a sample-and-hold circuitry to eliminate the TMS artifact [20]. Still, the TMS 
administration gives rise to high amplitude sharp fluctuations up to 20 ms post-TMS,  
masking the brain activity in the EEG. The data were processed in Matlab (Mathworks, 
Matlab R2012a and R2016a) using the FastICA and SPM8 packages.  

The sampling frequency and the cutoff frequency of the pre-filter affect the shape of the 
TMS artifact. The TMS artifact fluctuations have sharp slopes and thus contain considerable 
power in higher frequencies (>100 Hz). However, if a slow sampling frequency, or 
equivalently a low cutoff frequency is used, the artifact is reduced in power but also spread 
over time. To avoid this, a sampling frequency at least 5 times the maximum frequency in 
the artifact spectrum and a cutoff frequency not below 1000 Hz are recommended [17]. On 
the other hand, the stretch in time could be corrected since a big part of the artifact power 
will be gone by the filtering that caused the stretch. The TMS artifact correction algorithms 
were applied to the raw EEG without any filtering. Filtering before applying the correction 
algorithms was also tested. In this case, a bandpass filter at 1-100 Hz was used, since the 
study is not limited to a particular brain rhythm. 

Artifact estimation and pilot signals 

To estimate the TMS artifact, the average is taken over nine TMS epochs spanning the time 
interval [-10, 30] ms with reference to the stimulation onset. All TMS epochs are taken from 
the first TMS pulse in a train of TMS pulses, repeated throughout a recording at rest. The 



train comprises a block of two TMS pulses at 4 Hz frequency followed after 1 s by a block of 
5 TMS at the same frequency, as shown in Fig. 2. Note that the subsequent TMS epochs in 
the same TMS block may contain effects of the previous TMS pulse [40], and therefore only 
the first TMS in the block is considered. The artifact differs across channels, so the addition 
of TMS artifact is channel specific. 

 

Figure 2: An EEG segment containing a pattern of 2-block TMS followed by a 5-block TMS.  

The immediate neuronal reaction to the stimulation (TMS-evoked activity) is likely to be 
similar across blocks and much smaller in amplitude than the artifact. Any other brain 
activity (spontaneous EEG activity) is expressed as fluctuations around the baseline in the 
EEG signal and they are expected to cancel out across blocks and not add any systematic 
pattern in the interval of the average TMS artifact. 

The artifact in our measurements appears within the first 30 ms after the pulse, but after 
estimating it with the aforementioned method we find that at its margins the signal 
amplitude is still about 3 times larger than that of the EEG at rest. To avoid discontinuities 
after the artifact is added to the pilot signals, which will introduce high frequencies in the 
signal and affect filtering, the calculated artifact is multiplied by a steep Tukey window to fix 
its marginal values at - 10 and 30 ms to zero. 

The average TMS artifact spanning a time interval of 40 ms, regarding the period of interest 
[-10, 30] ms, is added to EEG signals of three types: a) at rest, b) in the beginning of an 
epileptiform discharge (onset ED), and c) within the ED (mid-ED). The selection of the types 
b) and c) is motivated by settings that have occurred in studies of our group, namely 
induction of ED by TMS for b) [14,41], and abortion of ED by TMS for c) [33,42].  The length 
of each EEG signal on which the TMS artifact is added is 460 ms (669 observations) to 
account for practical constraints, where the TMS onset is at 210 ms to allow for baseline 
activity estimation prior to TMS administration and the 250 ms after TMS is in accordance 
with repeated TMS at a frequency of 4 Hz. 

Results 

In this section we assess the quality of TMS artifact correction with reference to the true EEG 
for each of the three studied methods. 

FastICA 

The rationale of FastICA method is to identify and remove ICs corresponding to the TMS 
artifact. Initially, the method was applied to all but Cz channels and without PCA dimension 
reduction and gave 59 ICs. An example of five randomly chosen EEG signals and ICs is shown 
in Fig. 3a and d. 



 

 

Figure 3: The TMS artifact correction with FastICA on 59 EEG channels: (a) five randomly selected original EEG 
signals, (b) reconstructed EEG signals after removing ICs containing strong TMS artifact, (c) the difference of EEG 
signals before and after TMS artifact correction, (d) five randomly selected ICs, (e) absolute value of ICs with the 
horizontal line denoting the threshold, (f) three of the 31 ICs having amplitudes less than the threshold in (e) (note 
the different voltage scale). 

It appears that many ICs signals exhibit peaks of varying amplitude at the time of TMS and 
thus it is hard to identify ICs containing the TMS artifact and others containing only brain 
activity. We set a threshold for the amplitude to identify the ICs having stronger TMS artifact 
elements, as shown in Fig. 3e. This threshold was found by simple visual inspection of the ICs 
and was set to 5 μV for TMS during resting state and 6.5 μV otherwise, since these values 
always separated ICs with a strong component during the TMS pulse. The 31 remaining ICs 
having amplitude smaller than the threshold, three of which are shown in Fig. 3f, seem to 
lack any activity at the time of TMS. The 59 EEG signals reconstructed from the 31 ICs of low 
amplitude, shown in Fig. 3b, also do not exhibit any neuronal activity at the time window of 
the TMS artifact and display merely a straight line. On the other hand, the discarded ICs of 
large amplitude do not go to zero at times outside the TMS window, indicating that they 
carry some information about neuronal activity as well. Apparently, the artifact cannot be 
isolated from the rest of the neuronal activity in any subset of ICs. As a result, the 
reconstructed EEG signals exhibit significantly deformed neuronal activity outside the TMS 
window, as can be seen from the large difference in EEG before and after the artifact 
correction in times outside the TMS window, shown in Fig. 3c. 

We apply FastICA employing PCA dimension reduction using the ‘symmetric’ approach and 
retain 15 ICs, which is the maximum that can be obtained for waveforms of 669 observations 
according to the     rule. We apply the same thresholding resulting to only two ICs of low 
amplitude and thus the 59 reconstructed EEG signals from these two ICs are heavily 
correlated and look very similar. The very large amplitude of the TMS artifact results in 
almost all ICs being required to describe the variability of the TMS artifact, leaving only few 
ICs (two here) to be more representative of the neuronal activity. The opposite would be 
desired, i.e. few ICs to represent the TMS artifact and be further discarded, but the 
algorithm cannot attain this. 

In an attempt to assess the effectiveness of the algorithm if the TMS artifact would not have 

such large amplitude, we selected for TMS artifact correction a subset of 28 EEG channels 



having the smallest amplitude of TMS artifact, excluding some irrelevant channels in 

perimeter areas, as well as nearby channels with almost identical artifact, so as to include 

channels from all scalp regions. We applied PCA dimension reduction to 15 ICs using the 

‘symmetric’ approach and after thresholding we obtained three ICs. The ‘deflation’ approach 

gave four ICs. In both cases the 28 reconstructed EEG signals had distinctly larger amplitudes 

at the time window of the TMS artifact, indicating that the TMS artifact was not successfully 

corrected, and moreover the TMS artifact was not isolated and a great deal of neuronal 

activity outside of the TMS window was lost.  

In an effort to obtain more ICs without TMS artifact components, EEG channels were further 
reduced to 18 channels relaxing the criterion of having channels from all scalp regions. 
Again, using PCA dimensional reduction to 15 ICs, the symmetric approach and thresholding, 
we obtained four ICs and the reconstructed EEG signals were distinctly different at times 
outside the TMS artifact, indicating that the method is unable to separate the neuronal 
activity from the TMS artifact. 

In a last attempt to find positive results with this method, we first filtered the EEG signals 
with a low pass filter at 100 Hz. The benefit of this is that TMS artifact amplitude is reduced 
as it contains frequencies higher than 100 Hz, while neuronal activity is not altered as it is 
mostly found in frequencies lower than 100 Hz. Also, the filtering of the background noise at 
high frequencies increases the efficiency of the PCA dimension reduction. However, the 
results did not improve. FastICA did not converge when 18 channels were selected and the 
reduced dimension was set to 15, and therefore no dimension reduction was applied. When 
the ‘deflation’ approach was used, the reconstructed EEG signals again differed significantly 
from the original ones outside the period of the TMS artifact. 

So far, we have seen results from resting EEG. During an epileptic seizure, EEG is much larger 
in amplitude, which makes the difference between neuronal and artifact signals less 
prevalent. As seen in Fig. 4a for the case of 18 EEG signals, large peaks outside the [0, 40] ms 
window, corresponding to the epileptic activity, are reproduced satisfactorily by the FastICA 
method (PCA dimension reduction set to 15 ICs and ‘deflation’ approach was used, as the 
‘symmetric’ approach did not converge). These large epileptic fluctuations are represented 
well by some ICs. However, the error amplitude remains at the order of neuronal activity at 
rest. Moreover, as shown in Fig. 4b, the correction of the TMS artifact leads to a high 
frequency oscillation of smaller amplitude in the artifact window because again the 
discarded ICs assigned to TMS artifact carry information on neuronal activity during the ED. 
These results are similar to the ones obtained with the same procedure (the 'symmetric' 
approach is shown here since it converged) on the third EEG signal type having TMS in the 
beginning of ED, as can be seen in Fig. 4c and d. 

 



 

Figure 4: FastICA results for 18 channels and dimension reduction to 15 for the TMS administration during ED with 
the TMS artifact in (a) and with the TMS artifact corrected in (b), and for the TMS administration inducing ED with 
the TMS artifact in (c) and with the TMS artifact corrected in (d). 

PCA model  

The application of FastICA,First showed that the TMS artifact has large amplitude varying 
across channels, so that the artifact cannot be captured by a small subset of components of 
the ICA applied to the set of EEG signals. The same is expected to apply for PCA. The PCA 
model method uses PCA expecting that the artifact will be expressed only in the first 
principal components. This does not seem to be the case, as confirmed by our results on the 
set of 55 channels. For the resting state EEG signals, the method only reduces the TMS 
artifact amplitude to a lesser or larger degree (Fig. 5a and b, respectively). The reduction of 
the TMS artifact comes also at the cost of distortion of the signal outside the TMS artifact.  

The distortion of the signal outside the TMS artifact was larger for the other two scenarios of 
TMS on ED and TMS inducing ED, and the amplitude of the TMS artifact was less reduced 
compared to the resting state (Fig. 5c). This is also attributed to the different intensity and 
shape of the TMS artifact across the 55 channels. 

In an attempt to modify the setting of the TMS artifact in favor of the PCA model we 
selected 18 of the 55 channels having the lowest TMS artifact amplitude and similar shape. 
The results for resting state (Fig. 5d) were slightly better as there was a better suppression 
of the artifact, with only small increases in a few channels, but the same problems remained. 

 



 

Figure 5: The EEG signal with TMS artifact and the corrected signal from the PCA model method applied to 55 EEG 
channels: (a) CP3 signal at resting state, (b) P4 signal at resting state, (c) C1 signal with TMS during ED. In (d) the 
raw and corrected FP2 signal at resting state is shown where the PCA model method is applied to the 18 channels 
having low artifact amplitude. 

Gap filling: 

In contrast to the FastICA and PCA model artifact correction, the gap filling method gave 
satisfactory results on resting state EEG signals. In general, the oscillations of the neuronal 
activity masked by the TMS artifact were closely approximated, in cases succeeding also to 
be in phase (Fig. 6a) and in other cases with a time lag (Fig. 6c). Less frequently, it failed to 
capture the original oscillations at a lesser or larger extent (Fig. 6e). To show the correction 
more clearly in the three representative examples in Fig. 6, the same signals are shown after 
low pass filtering at 100 Hz in Fig. 6b, c and d, respectively. 

 

 



 

Figure 6: Three examples of TMS artifact correction with gap filling demonstrating different types of 
approximation of the true EEG signal. Each panel shows the true EEG signal, the EEG signal with the superposition 
of the TMS artifact, and the corrected signal, as shown in the legend in (a), (c) and (e): (a) EEG signal F5, (c) EEG 
signal T3 and (e) EEG signal C4. In (b), (d) and (f) the true and corrected EEG signals are shown as in (a), (c) and 
(e), respectively, but after low pass filtering at 100 Hz. 

The results from artifact correction during epileptiform discharge (ED) showed that unlike 
the case of resting EEG the corrected signals may deviate in shape substantially from the 
original ones. While in some cases the corrected signal has similar shape to the original one 
(Fig. 7a), in many other cases, peaks appear in the corrected signal not existing in the 
original one (Fig. 7b). This is to be expected, as seizures last for a few seconds and the large 
amplitude oscillations have period of about 1/4 of a second, being half the time window of 
the training set for the gap filling model. Even when the deviation appears to be relatively 
small (Fig. 7a), it is still large compared to the rest EEG case. Thus, the artifact correction 
cannot approximate the original EEG signal but nevertheless the produced signal by the gap 
filling method contains oscillations that could be considered as part of the ED activity. 

 

  



Figure 7: Two examples of TMS artifact correction with gap filling when TMS is administrated during an ED in (a) 
and (b) and one example when TMS is administered at rest and induces ED in (c). In (a), (b) and (c) the EEG signal 
is from F5. In (d), the signal at resting state shown in Fig.6a is first low pass filtered at 100 Hz, resulting in longer 
duration of the artifact, and then corrected. 

The onset ED signal (TMS-induced ED) has similar features with the mid-ED signal (slow 
waves) at the part after the magnetic stimulus and therefore it is likewise difficult to retrieve 
the masked signal by the TMS artifact. However, as the first part before the TMS is at rest, 
the deviation from the true EEG signal was smaller than for the mid-ED signal, as shown in a 
representative example in Fig. 7c. 

Filtering the TMS corrupted EEG signal prior to applying the gap filling method could possibly 
improve the predictability of the method. However, filtering increases the duration of the 
artifact. As shown in Fig. 7d, the TMS artifact after filtering extends in both edges and the 
duration goes from 40 ms before filtering to about 70 ms after filtering. Thus, the gap to be 
filled by the forward-backward prediction method is longer and the overall approximation of 
the true signal is worse, as shown in the example of the filtered signal in Fig. 7d, to be 
compared to the raw signal in Fig. 6a and b. The increase in TMS artifact duration with 
filtering depends on the artifact amplitude. For the 100 Hz cutoff filtering the variance of the 
artifact is reduced by a factor of about 1.4. Using a larger cutoff results in smaller variance 
reduction and artifact duration increase, e.g. for 200 Hz cutoff the duration is at about 60 ms 
and the correction is still worse than that of the raw signal. 

Exact predictions of such a complex signal cannot be anticipated by any interpolation 
method and the question of interest would rather be whether the method can fill the gap 
with neuronal-like activity relevant to the brain state in this time window. For this, there is 
no direct way to assess the quality of correction of the TMS artifact with the gap filling 
method even when the true masked signal is known. Indeed, the method is not meant to 
provide an accurate prediction of the true signal, so that one can quantify the prediction 
error. However, a measure of prediction error can still indicate whether the shape of the 
signal (amplitude, period) is well preserved. We compute the root mean square error 
(RMSE), i.e. the square root of the mean of the squares of the differences between 
predicted and true signal values in the window of correction for every channel and epoch. 
The RMSE is not always an indicative measure of the preservation of the neuronal-like 
activity in the corrected signal, e.g. the correction may be the same to the original signal but 
with a time lag and then RMSE is large (see Fig. 6d). To this respect, the normalized RMSE 
(NRMSE), defined by dividing RMSE with the SD of the true signal, can be a better indicator 
as it quantifies the deviation from the mean prediction (for the mean prediction NRMSE=1). 
Thus, if the shape of neuronal activity is preserved we expect to have NRMSE close or only 
slightly higher than one and if other characteristics of larger amplitude appear in the 
corrected signal, such as peaks, NRMSE would be much larger than one. The average RMSE 
and NRMSE for every channel and epoch for the three states and for raw and filtered signal 
are shown in Table 1. 

 Resting EEG Onset ED Mid-ED 

RMSE (μV) - no filter 13.95 20.23 44.29 

NRMSE – no filter 1.353 1.140 2.651 

RMSE (μV) - Lowpass at 100 Ηz 11.00 19.73 43.86 

NRMSE - Lowpass at 100 Ηz 1.479 1.192 2.711 

Table 1 – Average RMSE and NRMSE for the gap filling correction of EEG signals of the three different types, with 
and without a filter after correction. 



The filtering gives significant improvement of RMSE in resting EEG due to the reduction of 
noise. There is no significant improvement in onset ED and mid-ED signals, since the same 
level of noise is small compared to the signal amplitude. The correction for the resting EEG is 
far better than for mid-ED and better than for the onset ED EEG and this is apparently due to 
the smaller amplitude of the signal in resting EEG. For the same reason the correction for the 
onset ED EEG is better than for the mid-ED EEG (the first part of onset ED EEG has much 
smaller amplitude than for the mid-ED EEG). The NRMSE values are close to one for the 
resting EEG and onset ED EEG indicating that the corrected signal has similar fluctuations to 
the original one. However, for the mid-ED EEG, the often-observed peaks in the corrected 
signal that do not exist in the true EEG signal results in much larger NRMSE. There is a slight 
increase of NRMSE with filtering for all three signal types because the corrected signals tend 
to be smoother and thus closer to the mean prediction. 

For this method we explore two free parameters, the length w of the time window before 
and after the gap and the embedding dimension m. Regarding m, the reason for initially 
selecting m=50 is to have long enough information from the past in the regressor vectors for 
the prediction in longer horizon to be more accurate. Moreover, a large m allows for better 
representation and estimation of longer duration signals, such as the epileptic seizure cycle 
of about ¼ s. However, the span to the past determined by m is in dependence to the length 
of the time series the training data are formed from, here defined by w. As the RMSE and 
NRMSE for both filtered and non-filtered mid-ED EEG signals show in Table 2, for the 
relatively small w=460 used in the original study in [33] and here as well, the choice m=25 
gives fluctuating signals for the gap closer to the true EEG signal. On the other hand, 
increasing m to 100 does not change the RMSE and NRMSE figures, but we have experienced 
more often false peaks in the gap filled signals. It is noted that the choice of the time 
window of duration 250 ms after the gap was imposed by the use of block TMS with a 
frequency of 4 Hz (250 ms). We repeated calculations with the gap filling method on mid-ED 
EEG for larger w=2400 ms. The RMSE and NRMSE for m=50 got smaller than for the small w 
and for larger m (up to 300) the results do not change (see Table 2). Thus, if the stimulating 
setting allows the use of a larger data window before and after the TMS, e.g. single-pulse 
TMS or TMS blocks of lower frequency, the fluctuating signals filling the gaps can be closer 
to the true EEG mid-ED signals in shape. Repeating the same experiment on onset ED EEG 
the fitting was somewhat worse. For the window length w, we also tried other values 
between 460 ms and 2400 ms and for the same m we did not observed any improvement in 
the quality of the TMS artifact correction. For example, when we doubled the data window 
(from left and right of the TMS artifact) for the resting EEG signal the RMSE was about the 
same as for the standard window length. 

Type Parameters No filter Filter at 100 Hz 

 m w RMSE NRMSE RMSE NRMSE 

Mid-ED 25 460 34.46 2.10 34.17 2.15 

Mid-ED 50 460 44.29 2.65 43.86 2.71 

Mid-ED 100 460 44.37 2.90 43.88 3.00 

Mid-ED 50 2400 34.81 2.80 34.74 2.73 

Mid-ED 300 2400 35.92 2.86 35.52 2.69 

Onset ED 50 2400 41.76 1.49 41.53 1.53 

Table 2 – Average RMSE and NRMSE with and without filtering after signal correction for varying values of the 
free parameters in the gap filling method, the window length w and the embedding dimension m.  



Discussion 

In the present study, three methods for correction of the TMS artifact on EEG signals (i.e. 
FastICA, the PCA model and the gap filling method) were tested and compared on the same 
set of high-density EEG signals. The EEG signals were constructed by superimposing a 
representative TMS artifact signal on the raw EEG signal. The TMS artifact signal was 
extracted as the average of an ensemble of aligned EEG segments at resting state containing 
a single TMS pulse. The tested EEG signals had the TMS artifact at resting state, during 
epileptiform discharge (ED) and at the beginning of the ED (as if TMS were inducing the ED). 

Both FastICA and the PCA model use a transform on the set of signals, ICA and PCA, 
respectively. It turned out that the TMS artifact was expressed in many components of ICA 
and PCA in a non-systematic manner, so that it could not be isolated by a small subset of 
components. Therefore, both FastICA and PCA model methods could not correct the TMS 
artifact and the corrected signal still contained the artifact (in smaller amplitude) and in 
addition the rest of the signal outside the TMS artifact window was also distorted. For 
FastICA, many ICs were removed to reduce the TMS artifact, but these ICs contained also 
neuronal activity, so that either the TMS artifact was not substantially reduced or the 
corrected EEG signal outside the artifact deviated substantially from the true signal. The PCA 
model method had similar problems. Specifically, the effectiveness of the algorithm is based 
on the assumption that the artifact is fully recovered by the first few PCs [2], which was not 
the case with our data of TMS artifact. Like FastICA, the PCA model method reduced the 
amplitude of the TMS artifact, while simultaneously under-representing neuronal activity 
outside the artifact window, e.g. the peaks occurring during ED were smoothed out.  

The third method, the gap filling method, is applied to each channel independently and 
unlike the other two methods it does not attempt to correct the TMS artifact but rather it 
assigns it to a gap and attempts to predict the signal in the gap. The prediction is based on 
the segments on the left and right of the gap combining a forward and backward prediction 
with a local state space method. This method by construction does not distort the signal 
outside the TMS artifact and does not preserve any feature of the TMS. Indeed, for our 
tested EEG signals corrupted by TMS artifact the gap filling method gave quite satisfactory 
results and the predicted signal during the period of the TMS artifact bore some similarity to 
the true EEG signal. Thus the gap filling algorithm offers a far better alternative in relation to 
linear interpolation, which distorts the spectral content of the signal and replaces the gap 
with a signal that is not EEG-like. 

The results on the tested EEG signals should be treated with caution. By simply 
superimposing the TMS artifact to the EEG signals, the possible causal relationship between 
the artifact and the induced neuronal activity is not preserved. However, excluding this 
property makes the data setting simpler. If a method is not capable of isolating the TMS 
artifact under these favorable conditions, then it will be unable to isolate the TMS artifact 
when trying to correct actual data, that is, when a causal coupling between the TMS artifact 
and neuronal activity does exist. For FastICA that assumes statistical independence between 
artifact and neuronal activity, our setting should be particularly favorable, but still FastICA 
did not succeed to correct the TMS artifact. 

Also, the fact that the gap filling algorithm performs well here is not an indication that it will 
also perform well when there is a strong causal relationship between artifact and induced 
neuronal activity. The hypothesis when using this algorithm is that there is no excess 
information in the window of the TMS artifact to be corrected, so this part of the signal can 
simply be replaced by the predicted signal using information from the rest of the signal. So, 
if the neuronal activity after the period of the TMS artifact is changed as a result of the 



causal effect of TMS, stationarity for the whole signal (including the part replaced with a 
gap) is not established and the method may fail. 

Estimating the efficiency of an artifact correction algorithm is a process complicated by the 
issue of finding the ground truth. If the ground truth of neuronal activity is not known, the 
output of the method cannot be evaluated. The EEG signals employed in this work, 
containing a superimposed TMS artifact to EEG signals at different states, represent an 
attempt to address this issue. An alternative approach would be to reside in qualitative 
measures, using time-frequency diagrams [34]. The gap filling algorithm cannot promise to 
find the discarded signal, but its rationale is to replace the gap with a signal with statistics 
similar to that of EEG. Whereas ICA and PCA tend to eliminate oscillations, the gap filling 
algorithm preserves them, without necessarily preserving their phase. If, however, we were 
to receive the Fourier transform of the corrected signal, it would closely resemble an EEG 
signal without the TMS artifact. So, one approach for developing a gap filling correction 
algorithm would be to minimize the distortion of the spectral content of the EEG signal, 
which is a topic for further research. 
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