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Abstract

A series of short events, called A-phases, can be observed in the human
electroencephalogram during NREM sleep. These events can be classified
in three groups (A1, A2 and A3) according to their spectral contents, and
are thought to play a role in the transitions between the different sleep
stages. A-phase detection and classification is usually performed man-
ually by a trained expert, but it is a tedious and time-consuming task.
In the past two decades, various researchers have designed algorithms to
automatically detect and classify the A-phases with varying degrees of
success, but the problem remains open. In this paper, a different ap-
proach is proposed: instead of attempting to design a general classifier for
all subjects, we propose to train ad-hoc classifiers for each subject using
as little data as possible, in order to drastically reduce the amount of
time required from the expert. The proposed classifiers are based on deep
convolutional neural networks using the log-spectrogram of the EEG sig-
nal as input data. Results are encouraging, achieving average accuracies
of 80.31% when discriminating between A-phases and non A-phases, and
71.87% when classifying among A-phase sub-types, with only 25% of the
total A-phases used for training. When additional expert-validated data
is considered, the sub-type classification accuracy increases to 78.92%.
These results show that a semi-automatic annotation system with assis-
tance from an expert could provide a better alternative to fully automatic
classifiers.
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1 Introduction

During the past decades, several studies have dedicated efforts to analyze and
understand the electrical information of the brain during sleep. This has per-
mitted important advances in the interpretation of normal and pathologic sleep.
For example, the effects of a fragmented sleep have been correlated to patholo-
gies such as metabolic syndrome [1], irritability, lack of concentration and traffic
accidents [2, 3].

Sleep evaluation is carried out by a clinical procedure called Polysomnogra-
phy (PSG), which involves the acquisition of electrophysiological signals: elec-
troencephalogram (EEG), electrooculogram and electromyogram. Thereafter,
these signals are used to segment the sleep time in stages (wake, 1-4 and REM)
based on the frequency content and temporal evolution of those signals. Fur-
thermore, when detailed information related to a specific pathology (i.e. sleep
apnea) is needed, other signals such as electrocardiogram, airflow and pulse
oxymetry could be also recorded [4]. In most cases, the sleep process has been
mainly characterized by the sleep stages. However, nowadays there exists evi-
dence of a oscillatory brain pattern composed by short events that seem to be
correlated with the dynamic of the sleep stages, as they play a role in main-
taining a sleep stage as well as generating the sleep stage transitions [5]. These
short events, lasting between 2s and 60s, are observed as oscillations that dis-
rupt the basal EEG rhythms of the sleep stages and are called A-phases. Each
A-phase presents particular spectral characteristics and duration, which allow
a subdivision in three groups:

• A1-phase. Characterized by bursts and K-complexes of Delta waves (0.5
Hz - 4 Hz).

• A2-phase. Presents rapid EEG waves (Alpha (8 Hz - 12 Hz) and Beta (12
Hz - 30 Hz)) that cover between 20% and 50% of the A-phase duration
and the Delta waves in the rest of the event duration.

• A3-phase. Characterized by Alpha and Beta waves, which cover more
than 50% of the A-phase duration.

In addition, A-phases are organized following some rules giving place to the
oscillatory pattern named the Cyclic Alternating Pattern (CAP) [5]. In recent
studies, a clinical index based on the percentage of the sleep time in CAP (CAP
index) has showed a high correlation with the sleep quality [6]. This shows the
importance of CAP evaluation in clinics. However, even if CAP index seems to
add valuable information about the sleep process with respect to the classical
procedure, the detection and classification of the A-phases is a tedious and long
visual procedure, requiring many months of training before becoming an expert
clinician in the field. In addition, the A-phase annotation procedure suffers
from large subjectivity and as a consequence there exists a high inter-scorer
variability [7].

To alleviate this problem, some studies have analyzed the A-phases and
their surroundings using various techniques, including spectral decomposition
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and complexity measures, from which one can obtain interesting characteris-
tics that support the visual annotations [8, 9]. Other studies have developed
computational methods to automatically detect the A-phases based on mod-
ern signal processing techniques such as wavelet analysis, and machine learning
procedures, e.g. Neural Networks and Support Vector Machines. Their results
reach levels of A-phase detection up to 78%, with or without distinction of the
A-phase type during the classification process [10, 11, 12].

Until recently, A-phase detection sequentially follows the steps of feature ex-
traction, selection, and classification, typically applied in data science. However,
new developments in the machine learning field , in particular regarding deep
learning, have led to models with the capability to carry out these steps together
in a more efficient way [13]. Deep learning has achieved an important success in
many application areas such as image recognition, sound processing and natural
language processing. Specifically, there has been a wide adoption of deep learn-
ing approaches to evaluate, characterize and classify biomedical signals (EEG,
ECG, EMG, EOG, MRI and CT) [14, 15, 16]. We can find applications of
deep learning methods in many challenging problems such as automatic ECG
evaluations in heart diseases [17, 18, 19] and pathologic event detection at EEG
[20, 21, 22, 23] . There are also a few studies with deep learning models for the
sleep stage classification. For instance, Supratak et al. [24] presented a method
using the combination of convolutional neural network (CNN) and bidirectional
long short- term memory (BLSTM), Tsinalis et al. [25] applied a CNN on single
EEG channel, Tripathy and Acharya [26] used RR-time series and EEG signals,
Chambon et al. [27] applied two-dimensional (2D) CNN model and Michielli et
al. [28] used a cascaded LSTM architecture. However, the application of deep
learning techniques for the detection and classification of A-phases has not yet
been fully explored.

For this reason, this study attempts to evaluate the feasibility of classify-
ing the EEG acquired during sleep in a two-fold task: 1) discriminate between
A-phase and not A-phase (N-phase) segments, and 2) classify the A-phase seg-
ments as A1-phase, A2-phase or A3-phase. The time-frequency decomposition
(spectrogram) for each 4s EEG segment is used as input to a CNN architecture
that is trained for each subject using a reduced amount of expert annotations,
and possibly refined under expert supervision. Unlike previous works, where
EEG segments of 1 second are often used for A-phase classification, we decided
instead to use 4-second segments since we are assuming that the potential onset
times of A-phases are known in advance. The detection of the onset times is a
problem that will be treated in a future publication.

2 Previous works

In the past 20 years, various works have been published with the aim of produc-
ing an automatic or semi-automatic scoring of the cycling alternating pattern
from EEG signals. This is a very complex task, which is why many of these
works focus on different sub-tasks; for example, some works focus on simply
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detecting phasic events (A-phases), while others focus on characterizing and
classifying the different types of events (e.g., A1, A2 and A3-phases). In most
cases, the accuracy of the results lies within the expected range of inter-scorer
agreement, and in this sense, they can be considered successful. On the other
hand, only a few proposals have been able to produce outstanding results, which
is probably due to most classifiers having problems to generalize their models
to data from new subjects.

One of the early works, by Rosa et al. in 1999 [29], proposes to first model
the EEG signal using a bank of parallel bandpass filters tuned to the classic EEG
rhythms, whose gains are estimated by maximum likelihood [30]. In this way,
a vector of gains for delta, theta, alpha and beta activity is obtained for each
1s segment of the EEG signal. A matched filter is then applied to the linear
combination of the estimated gains in order to detect A-phases, using pulse
waves with increasing lengths as templates. This results in a binary signal which
is then fed to a state machine that outputs a post-processed sequence ensuring
that the duration of A and B-phases is between 2 and 60 s. No distinction is
made between A1, A2 and A3 phases. The authors report an average accuracy
of 89.8% from tests with four subjects with no sleep pathologies.

Navona et al. proposed using spectral EEG features obtained by averaging
the amplitude of the output of a bank of bandpass filters (also tuned at the clas-
sic EEG rhythms) within segments of two different lengths: 2s (short-window)
and 64s (long-window), computed every 0.5s. A descriptor for each band is then
computed as the relative difference between the short-window and long-window
averages. The idea is to characterize how much the local activity differs from
the surrounding background activity. A simple heuristic based on thresholds
is applied to detect A-phases from the spectral descriptors. Further heuristics
are applied to classify each A-phase as A1, A2 or A3. Results from 10 subjects
(where specific NREM segments were chosen from different sleep-cycles) showed
an accuracy of 77% for A-phase detection and 79% for A-phase classification
[10]. An updated version of this method was later proposed by Barcaro et al.,
reporting accuracies of 83.5% for the A-phase detection stage, and 73.7% when
A-phase classification was also taken into account [31].

Among the first works that used trained classifiers instead of heuristics for
A-phase detection and classification, are those by Mariani et al. The authors
computed several features from the EEG signals, including spectral descriptors
similar to those suggested by Navona et al., and used these data to train different
types of classifiers, such as linear and quadratic discriminants (LDA/QDA),
feed-forward neural networks, support vector machines (SVM) and adapting
boosting (AdaBoost). Each 1s segment of the EEG signal was thus classified as
belonging to an A-phase or not. The best results were obtained with a linear
discriminant and a feed-forward neural network, yielding accuracies of 84.9%
and 81.5%, respectively [12].

By 2012, the Physionet CAP Sleep database was released to the public,
allowing further studies to be conducted by research groups from many different
institutions. Mendez et al. have explored the discriminating power of several
EEG features, including spectral, statistical, entropy and complexity features,
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using simple classifiers such as k-Nearest Neighbors (kNN). These results show
high accuracy values (89% to 94%, in average) when discriminating between
the B-phase and A-phase around the onset of an A-phase, and competitive
accuracies (80% to 87%) when discriminating between the A-phase and B-phase
around the end of the A-phase, suggesting that a scoring approach based on
change-point detection could produce good results [32, 33]. More recent works
have explored more combinations of features and classifiers [34, 35], but accuracy
results have not been improved and remain between 70% and 80%.

For most of the works mentioned above, the focus lies in the detection of
A-phases; while only a few publications deal with the classification of A-phases
according to their sub-type (A1, A2 and A3). Among the latter, it is worth
noting the works by Barcaro et al. [10, 31] and by Mendez et al. [32], which have
already been discussed. Barcaro proposes an heuristic process to classify the
A-phases, whereas Mendez studies the discriminative power of several features
for A-phase classification (obtaining an accuracy of 82.23% for the training
data). A similar work by Machado et al. uses a set of 55 features to classify
the A-phases between two groups: A1 and A2/A3, using different types of
classifiers, including quadratic discriminant, k-Nearest Neighbors and Support
Vector Machines (SVM). The best result is obtained with an SVM, achieving
an accuracy of 71% [36, 37] for the classification of A-phases subtypes and
76% for discriminating between A-phases and B-phases. This suggests that
distinguishing among the sub-types of A-phases could be a harder problem than
distinguishing between A-phases and B-phases. Finally, Mostafa et al. employed
a deep neural network to classify 2s segments as A-phases or non A-phases,
achieving an accuracy of 67% [38]. This approach is particularly interesting
since it is not based on computing a large set of features; instead, the EEG
signal is fed into the network, and the first layers of the network learn how to
encode the signal for the classification stages. We believe similar approaches
should be further explored.

Based on the results of the works discussed above, automatic classification
of A-phases seems to be a very difficult problem. One of the factors that make
this problem so difficult is the large variability between subjects and acquisition
protocols; indeed, the Physionet CAP database contains registers using different
EEG traces and different sampling frequencies. On the other hand, given that
the CAP inter-scorer agreement lies around 70% [7], there is some uncertainty
about the expert annotations used to train the automatic classifiers. For these
reasons, designing a fully automatic classifier that correctly classifies data from
new subjects, is a very complex task. A more practical approach could be to
design an ad-hoc classifier for each subject, based on a small set of annotations
for that same subject. In this way, an expert scorer could annotate only a
few representative A-phases, and then let the system detect and classify the
rest, with some degree of confidence. While such a system would not be fully
automatic, it could still save plenty of the expert’s time.
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3 Methodology

In this section, we describe data and used methodology to classify EEG segments
as A-phases and non A-phases (N-phases), as well as A-phases according to their
sub-type (A1, A2 and A3). In this approach a Deep-Learning strategy is used,
specifically, we propose to train a Convolutional Neural Networks (CNN) as
classifier. First, we define an architecture to distinguish between A-phases and
N-phases; second, another network is trained to classify sub-types A-phases.

3.1 Database

Polysomnographic recordings of nine healthy subjects were used in this study.
The recordings belong to four females and five males, with ages between 23 and
37 years old (mean = 31.66 ± 4.27). The dataset is freely available from the CAP
Sleep Database of Physionet [39] and has a number of one-night polysomno-
graphic recordings from both normal and pathologic subjects. These recordings
were registered and annotated at the Sleep Disorders Center of the Ospedale
Maggiore of Parma, Italy. Data includes information of at least three EEG chan-
nels (F3 or F4, C3 or C4 and O1 or O2), three electromyography signals, two
electrooculographic channels, respiratory signals and electrocardiogram. The
recordings presented different sampling rates between 256 and 512 Hz. However,
all the recordings were resampled at 512 Hz using cubic spline interpolation.

The scoring for macrostructure and microstructure was performed by expert
neurophysiologists and this information is also available with the data. The
macrostructure was annotated according to the R&K rules [4], while CAP was
annotated in agreement with Terzano reference atlas [5].

From each A-phase two segments were extracted: a) four seconds before the
A-phase onset (N-phase) and b) four seconds after the A-phase onset (A-phase).
Fig. 1 shows examples of A-phases at sleep stage 2 (SS2) and 4 (SS4). The ver-
tical black line is the A-phase onset. The segment from the left dashed line until
the onset corresponds to the N-phase, whereas the segment from the onset until
the right dashed line corresponds to A-phase segments used in this study. A
total of 2887 N-phases and 3690 A-phases were obtained from the recordings.
There is a smaller number of N-phases since we discarded the N-phases that
overlapped with a previous A-phase (recall that the distance between two con-
secutive A-phases can be as small as 2s). For each A-phase type we have 2373
segments of type A1, 680 of type A2 and 637 of type A3. A summary of the
data per subject can be found in Table 1.

3.2 Methods

In this section, we describe the methods used to classify A-phases and N-phases,
as well as A-phases according to their sub-type (A1, A2 and A3). The clas-
sification procedure is carried out with a deep learning strategy; specifically,
we propose to train an ad-hoc Convolutional Neural Network (CNN) for each
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Table 1: Number, total time and average duration of A-phases for each subject
and each A-phase type (A1/A2/A3). Duration is shown as average ± standard
deviation.

Number of A-phases Total time in A-phase(s) Duration A-phase(s)
A1 A2 A3 A1 A2 A3 A1 A2 A3

S1 363 94 80 2217 747 1135 6.11 ± 3.32 7.95 ± 4.48 14.19 ± 9.59
S2 186 72 94 1188 688 1239 6.39 ± 3.05 9.56 ± 4.94 13.18 ± 6.88
S3 141 106 108 656 631 1043 4.65 ± 2.17 5.95 ± 3.98 9.66 ± 8.04
S4 462 24 60 2863 328 784 6.20 ± 3.01 13.67 ± 8.33 13.07 ± 8.21
S5 164 34 61 1489 336 922 9.08 ± 3.53 9.88 ± 4.23 15.11 ± 10.00
S6 235 80 50 1724 583 796 7.34 ± 3.25 7.29 ± 5.12 15.92 ± 9.37
S7 303 115 94 1871 976 1414 6.17 ± 2.51 8.49 ± 3.60 15.04 ± 9.43
S8 307 99 42 1616 565 480 5.26 ± 2.75 5.71 ± 3.39 11.43 ± 10.65
S9 212 56 48 1036 377 678 4.89 ± 1.96 6.73 ± 3.69 14.12 ± 11.55
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Figure 1: Example of A1-, A2- and A3-phases during sleep stage 2 (SS2) and 4
(SS4). The vertical black line indicates the onset of the A-phase and the vertical
dashed lines are placed four seconds before and after A-phase onset, delimiting
the N-phase and A-phase segments.

subject. First, we define an architecture to distinguish between A-phases and
N-phases; second, another network is trained to classify A-phase types.

7



0 0.5 1 1.5 2 2.5 3 3.5 4
SECONDS

-30

-25

-20

-15

-10

-5

0

5

10

15

20

EE
G
-S
IG
N
AL

a) EEG Signal

SPECTROGRAM

0 0.5 1 1.5 2 2.5 3 3.5
SECONDS

0

20

40

60

80

100

FR
EQ

U
EN

C
Y

-3

-2

-1

0

1

2

b) Log-Spectrogram

Figure 2: EEG Log-spectrogram representation.

3.2.1 Preprocessing

In EEG signal analysis, it is often useful to characterize a signal by the time
localization of its frequency components. This is particularly important for A-
phase classification, since the A-phase sub-types are defined in terms of their
spectral content. A popular time-frequency decomposition technique is the
short-time Fourier transform, which has a good characterization in both do-
mains. The magnitude of the short-time Fourier transform is also known as
a spectrogram [40]. In the present work, we compute the spectrogram S(x, y)
representation of the A-phases and N-phases (4s segments), so that the x-axis
represents time and the y-axis represents the frequency, and at each coordinate
S(x, y) represents the energy of a frequency component at a particular time.
Under this representation, a signal can be seen as an image in such a way that
it is possible to use deep convolutional neural networks designed for image clas-
sification. Furthermore, to emphasize differences between classes, a logarithm
function is applied to the spectrograms, since the dynamic range of the am-
plitude is too large and masks the discriminatory information. Fig 2 shows
a 4-second A-phase sample and its log-spectrogram; notice that the frequency
content of the EEG signal ranges from 0.5 to 100 Hertz, thus we are using 120Hz
as the maximum frequency for our analysis.

3.2.2 CNN-Architecture

To differentiate A-phases and N-phase represented by their spectrograms, we
used a Convolutional Neural Network (CNN). It is well known [41, 42, 43] that
this kind of deep neural network has some properties which make them an ef-
ficient alternative for supervised classification. Its main attribute is to extract
image features by means of learnable convolution operators, whose responses in
turn are transmitted to a full neural network to carry out an accurate classifi-
cation.

The CNN-architectures used in this work are depicted in Fig. 3. The first
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Figure 3: Proposed CNN architectures for A-phase classification.

network, panel a), is composed by a first convolution layer of two 3 × 3 kernels
followed by a rectified linear unit (shortened to ReLu). The second layer is
similar to the previous one except it uses four 3× 3× 2 kernels. A max-pooling
operation is applied to each of the first two convolution+ReLu layers with the
aim of reducing the size of the data by half. The next layer has eight 3 × 3 × 4
kernels, a ReLu, and a dropout method to randomly ignore 50% of its outputs
during training in order to reduce overfitting. Finally, a two full-connected
neural network, which is a classical artificial network, is connected to a two
output layer to classify A-phases and N-phases. A detailed description of each
layer and their outputs can be found in Table 2.

The second network, shown in panel b), is nearly identical to the first one,
but differs in the output layer, which in this case is designed to classify the
A-phases in three classes A1, A2, and A3.

For the training of both CNN, the same set-up was used, which consisted in
stochastic gradient descent with momentum equal to 0.9, initial learning rate
was set to 0.01, the maximum number of epochs for training was 200. Training
was performed using mini-batches with 128 observations at each iteration, and
a loss function based on cross entropy with l2-regularization. It is worth men-
tioning that the final architecture as well as the parameter values were chosen
based on experimentation with several alternatives.

Once the architecture was defined, it is important to prepare the data for
training. As described above, two networks are trained for each subject using the
log-spectrograms corresponding to the A-phase and N-phase segments. The first
network is designed to distinguish between A-phases and N-phases; therefore, it
will be trained using both kinds of segments (A and N). The second network is
designed to determine the sub-type of a given A-phase; thus it will be trained
using A-phases only. In order to avoid training bias due to the differences in the
number of data samples in each class, the training data was balanced such that
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Layer Description Output-shape
Input (120,64,1) images
2D Convolution 2 3x3 convolutions, stride [1 1] (120,64,2)
Batch Normalization Batch normalization (120,64,2)
ReLu ReLu (120,64,2)
Max Pooling 2x2 max pooling, stride [2 2] (60,32,2)
2D Convolution 4 3x3x2 convolutions, stride [1 1] (60,32,4)
Batch Normalization Batch normalization (60,32,4)
ReLu ReLu (60,32,4)
Max Pooling 2x2 max pooling, stride [2 2] (30,16,4)
2D Convolution 8 3x3x4 convolutions, stride [1 1] (30,16,8)
Batch Normalization Batch normalization (30,16,8)
ReLu ReLu (30,16,8)
Dropout 50% dropout (30,16,8)
Fully Connected Dense layer 3840
Fully Connected Dense layer 3840
Output Classification Output 2 units (A,N)

or 3 units (A1,A2,A3)

Table 2: Description of the layers of the proposed deep networks.

all classes had the same number of elements. To do this, the training set for
classes with less data was augmented by copying randomly (with replacement)
from the same set until all classes were equally represented.

4 Results and discussion

In order to test the proposed methodology, we have trained and evaluated mul-
tiple ad hoc CNNs for each of the nine subjects from the Physionet database.
One of the main questions that arise from this study is how many training data
are required to obtain a competitive classifier, with respect to the accuracy rates
achieved by previous studies (i.e., between 70% and 80%). To answer this ques-
tion, we have trained the networks using different percentages of each subject’s
data, and evaluated the network with the remaining data. These percentages
are 12.5%, 25%, 37.5% and 50%. Assuming that the sleep time for each subject
is approximately 8 hours, then the percentages of training data roughly cor-
respond to 1, 2, 3 and 4 hours of sleep time. However, training samples were
chosen randomly for each subject from all of the data, not specifically from the
first hours of sleep.

4.1 Accuracy vs percentage of training data

Two experiments were performed. In the first one, which will denoted as A/N,
the goal is to distinguish between A-phases (regardless of their sub-type) and
N-phases (non A-phases). In the second experiment, denoted as A1/A2/A3, the
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goal is to classify A-phases according to their sub-type (A1, A2 or A3); in this
case, N-phases are not used either for training or testing.

A total of 20 networks with the proposed architecture were trained for each
experiment, for each subject and each percentage of training data. For each
network, the training set was randomly chosen from the corresponding subject’s
data, while the remaining data (from the same subject) was used for evaluating
the network’s performance. Each training set is composed of a different number
of samples from each class; however, training batches were chosen from the
training data by sampling with replacement, so that the same number of samples
from each class was used in each batch, avoiding biasing the network towards
the most probable class. Once a network was trained, its classification accuracy
was measured as the percentage of test data points that were correctly classified.
For each experiment, subject and training percentage, the average accuracy and
its standard deviation were computed from the 20 runs.

Results for both experiments are shown in Figure 4, whereas the average
accuracy across the nine subjects is shown in Table 3. For A/N classification,
it is clear from Figure 4a that even the smallest training percentage (12.5%) is
enough to obtain competitive results (accuracy > 70%) for most subjects, with
the notable exception being Subject 8. As expected, the accuracy increases as
the percentage of training data is increased, reaching accuracies over 90% for
some subjects. It is worth noting that 12.5% of each subject’s data represents
a very small number of EEG segments, which averages 50 samples per class,
according to the lower section of Table 3; in contrast to previous works where
a large number of data segments from many subjects are required to train the
classifier (not to mention the need to compute a large number of features for
each EEG segment). Because of this, training an ad-hoc network for a given
subject is a relatively quick process. In these experiments, the average training
time per subject lies between 15 and 40 seconds with a Matlab implementation
running under a single CPU thread, and depends on the number of training
samples. With the aid of a modern GPU, training times can be even smaller.

On the other hand, results from A1/A2/A3 classification (Figure 4b) do
not follow such a regular pattern; in general, they show lower scores and large
variations from one subject to another. This is due to a number of reasons: first,
multi-class classification is usually a harder problem than binary classification
and often requires larger amounts of training data; however, since only A-phases
are used to train these classifiers, we are using approximately half the number
of training samples that were used for the A/N classifiers. For instance, in
the case of the A/N classifiers, one can obtain a competitive score (8̃0%) using
approximately 100 training samples per class (around 25% of the data, see Table
3). One could think that a similar amount of training samples per class would
yield a similar score for the sub-type classifier; however, this means using a total
of 300 training samples, which is approximately a 75% of the average number
of A-phases which occur during a whole-night’s sleep. In other words, for a
given percentage of training data, the number of training data per class in the
A1/A2/A3 classifier is roughly one third of the corresponding number for the
A/N classifier. Moreover, the distribution of A1, A2 and A3 phases is quite
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(a) A/N (b) A1/A2/A3

Figure 4: Average accuracy of 20 convolutional networks trained to classify A-
phases for each subject, using different percentages of training data (according
to the legend). The whiskers in each graph represent the standard deviation.
(a) Networks trained to distinguish between A-phases (regarless of their sub-
type) and N-phases. (b) Networks trained to classify A-phases according to
their sub-type.

unbalanced; for a given subject, there may not enough A2 and A3 phases to
meet the required 100 for each class. From these reasons, it should be clear why
the sub-type classification is considerably harder, but in average, still benefits
from a larger number of training samples, as the results in Table 3 demonstrate.

4.2 Retraining with expert-validated data

Results from the previous section suggest that the proposed deep network ar-
chitecture is capable of achieving a competitive accuracy (> 70%) with as little
as 100 training samples among all classes. This is roughly equivalent to an-
notating 1 hour of EEG data for A/B classification, or two hours of data for
A1/A2/A3 classification, from a polysomnographic recording of 8 hours. On
the other hand, accuracy percentages will, in average, increase as the expert
annotates more segments, but this of course requires additional work from the
expert.

One way to aid the expert in this task, is to train the network using a
small set of training samples (e.g., ∼ 50 segments), and then use that network
to classify the rest of the segments. Then, the expert could validate some of
the classified segments, for instance, those segments for which the expert has a
high certainty that they were correctly classified. This validation process should
require less involvement from the expert than the annotated segments used for
the initial training, since the user must only select some of the segments in
which he or she agrees with the automatic classification. Once this has been
done, the network can be re-trained with an extended data set composed of the
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Average accuracy
Classes 12.5% 25% 37.5% 50%
A / N 76.13 80.31 83.78 88.09

A1/A2/A3 69.37 71.87 74.95 77.31

Number of training/testing samples (A-phases only)
Subject 12.5% 25% 37.5% 50%

1 (45,11,10)/471 (90,23,20)/404 (136,35,30)/336 (181,47,40)/269
2 (23,9,11)/309 (46,18,23)/256 (69,27,35)/221 (93,36,47)/176
3 (17,13,13)/312 (35,26,27)/267 (52,39,40)/224 (70,53,54)/178
4 (57,3,7)/479 (115,6,15)/410 (173,9,22)/342 (231,12,30)/273
5 (37,14,11)/450 (75,28,23)/386 (113,43,35)/321 (151,57,47)/257
6 (38,12,5)/393 (76,24,10)/338 (115,37,15)/281 (153,49,21)/225
7 (26,7,6)/277 (53,14,12)/237 (79,21,18)/198 (106,28,24)/158
8 (20,4,7)/228 (41,8,15)/195 (61,12,22)/164 (82,17,30)/130
9 (29,10,6)/320 (58,20,12)/275 (88,30,18)/229 (117,40,25)/183

Mean 50.11/359.88 101.44/307.55 153/257.33 204.55/204.44

Table 3: Upper section: Average accuracy across all subjects for CNNs trained
to classify A-phases with different percentages of training data. Lower section:
number of A-phases used for training (A1, A2, A3) and testing, per subject.
The last row shows the average number of training/testing samples across all
subjects. The number of N-phases used for training the A/N classifiers are
approximately equal to the total number of A-phases for each subject.

original training set plus the expert-validated samples.
In order to test this idea, another set of experiments were performed where,

for each subject, a network was trained using only 12.5% of the subject’s
data, and then used to classify the remaining 87.5% of the segments. Expert-
validation was simulated by choosing a certain percentage (between 20% and
50%) of the data that had been correctly classified by the network. Then, the
network was re-trained using both the original training data and the expert-
validated data, and re-evaluated using the remaining data.

Results from these experiments are shown in Figure 5 and summarized in Ta-
ble 4. In these results, the base case corresponds to a single training stage using
12.5% of the available data for each subject (50 training samples, in average),
while percentages from 20% to 50% represent the amount of expert-validated
data that was used to augment the training set for a second training stage.

For the A/N classifier, Figure 5a shows that even with as little as 20% of
expert-validated data, one obtains a significant increase in accuracy. However,
using more than 20% does not seem to yield significant benefits as the average
accuracy stalls at around 81%. In this case, it seems to be more beneficial to
simply annotate more segments for the first training stage.

For sub-type classification, however, the results from re-training are very
interesting. On one hand, the accuracy increases for most subjects as the re-
training percentage increases. In all cases, re-training with at least 20% of
expert-validated data is highly beneficial. With only 20% of expert-validated
data, the proposed CNN achieves an average accuracy of nearly 79%, and the
accuracy increases up to 88.32% with 50% of user-validated data. This is very
encouraging since A-phase sub-type classification has been shown to be a dif-
ficult problem, where previous works have reported accuracy values between
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(a) A/N (b) A1/A2/A3

Figure 5: Average accuracy of 20 convolutional networks trained to classify A-
phases for each subject, using re-training with different percentages of expert-
validated data (according to the legend). The base case corresponds to an initial
training with 12.5% of the available data for each subject. The whiskers in each
graph represent the standard deviation. (a) Networks trained to distinguish
between A-phases (regarless of their sub-type) and N-phases. (b) Networks
trained to classify A-phases according to their sub-type.

Classes Base accuracy 20% 30% 40% 50%
A / N 76.34 80.71 80.31 81.51 81.71

A1/A2/A3 70.47 78.92 81.14 85.66 88.32

Table 4: Average accuracy across all subjects for CNNs trained to classify A-
phases using re-training with different percentages of expert-validated data. The
base case corresponds to an initial training with 12.5% of the available data for
each subject.

67% and 71% [36, 37, 38]. On the other hand, it is clear that the benefits of
re-training with more than 20% of the data depend on each subject, particu-
larly in the cases of subjects for whom the number of A2- and A3- phases is
considerably less or more than half the number of A1-phases, as with Subjects
2, 3 and 4 in this study.

5 Conclusions

Two convolutional neural networks (CNNs) for the classification of EEG seg-
ments as A-phases or non A-phases, and the classification of A-phases according
to their sub-type (A1 / A2 / A3), have been introduced in this work. There are
two important differences in the proposed method with respect to other meth-
ods proposed in the literature: first, instead of computing a number of static
features for each EEG segment, we compute the log-spectrogram of the signal
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and treat it as the input image for the CNNs. Second, we propose to train
an ad-hoc classifier for each subject; this approach requires some involvement
from an expert but achieves more accurate results in only a fraction of the time
required for the fully manual annotation.

The main findings are: (1) Semi-automatic A-phase annotation with assis-
tance from an expert, using ad-hoc classifiers trained for each subject could
provide a good alternative to fully automatic classifiers whose accuracy is lim-
ited. (2) The proposed approach is capable of producing competitive results
when there is little involvement from the expert, and very good results with
additional expert validation. (3) Results vary from subject to subject, but as
a rule of thumb, results are consistent for those subjects for whom the ratio of
the number of A2- and A3- phases with respect to the number of A1-phases is
close to 0.5.

It is important to recall that, in this work, it is assumed that the A-phase
onset times are known beforehand. However, according to [32, 33], A-phase
onsets are relatively easy to detect, either manually or automatically. The
A/N classifier could be then applied to filter out false positives, and then the
A1/A2/A3 classifier can be used to detect the A-phase sub-type, based on the
first 4s of the A-phase. With these ideas, we are currently working towards a
more efficient semi-automatic A-phase annotation system.
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